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Abstract. Formal methods are necessary to capture the semantics and behavior of processes of various systems. They
characterize and provide insight into the behavior of real systems and thus identify their deterministic and non-deterministic
features. The design and deployment of cloud computing systems utilize the current technology development in order to provide
the appropriate service and accommodate the increasing demand while maintaining high quality and error free service. In this
paper, we discuss the state of the art on using formal methods for the verification of cloud computing systems. Even though formal
methods have been used successfully in the design and verification of several aspects of these systems, there are still many design
issues in cloud computing that can be enhanced using formal methods. For instance, several scheduling algorithms are being used
for cloud frameworks, such as Hadoop for instance, that are found to suffer from scheduling failures. This could have been avoided
if the schedular has been properly verified. On the other hand, several new paradigms have evolved with cloud computing such
as big data, these require fundamental changed on methods and algorithms that are being used for classical distributed systems,
which in turn, increase the chance of having faulty systems that are difficult to highlight using only simulation methods.
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1. Introduction and Backgrounds. Cloud computing [27] has emerged recently as a new paradigm
that moved enterprise computing from the classical host-based architecture pattern into the elastic computing
pattern. This new service-oriented vision delivers resources and applications on-demand based on the pay-
per-use concept. Cloud computing platforms include two main aspects: hardware infrastructure and software
architecture. The first includes communication network equipment, links, data and storage centers, servers,
and computational resources. On the other hand, the second includes operating systems, databases, software
development platforms, software applications, and middleware. The National Institute of Standards and Tech-
nology [58] defined five basic characteristics of cloud computing: on-demand service, fast application elasticity,
network access, resource pooling, and measured service. In addition, applications in the cloud are composed of
multiple software components running on complex distributed virtual machines, therefore, several management
tasks and dedicated protocols are required for configuring and monitoring these distributed applications in order
to preserve their consistency.

The cloud system should provide the application users with robustness, fault tolerance, execution automa-
tion, and powerful computing facilities. This implies various cloud service requirements to be maintained.
Therefore, several verification challenges arise throughout the design development and deployment of these
systems. In addition, unlike conventional software and hardware systems, a wide range of different properties
and design requirements arise in the cloud based systems. For instance, the consistency of data storage on
the cloud, where multiple copies of the data exist at the same time, and the data itself is stored on multiple
data centers, is a property that is particular to cloud systems. Additionally, problems arising from incorrect
interpretation of the service requirements lead to cloud services that do not conform to the user requirements.
Finally, the emergence of new areas such as big data collection and analysis puts more pressure on the need for
new verification methods. This explains why the use of formal techniques and tools is necessary in the process
of testing and verification of cloud computing systems.

On the other hand, the size of data centers have been continuously increased in order to accommodate the
increasing demand while at the same time reducing the management costs. In addition, virtualization has been
heavily used in order to increase the utilization of server resources by consolidating many virtual machines into
a single physical server. Therefore, cloud computing systems become very complex and dynamic which makes
it difficult to manage and test. This lead to various service failures, for instance, business data belonging to
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5,700 customers were lost due to the execution of improper operations which occurred at Firstserver Inc. [47].
Amazon Web Services, as another example, halted their services because of invalid configuration changes to their
network paths [7]. This incidents happen due to hidden flaws in the cloud system designs that only become
visible only after the occurrence of service faults. In order to prevent such situations, thorough testing and
verification is required. On the other hand, it has been shown that scheduling algorithms that are being used
for cloud frameworks, such as Hadoop for instance, can suffer from scheduling failures due to unforeseen changes
in the cloud environments [72]. Conventional simulation methods that are used for this purpose cannot provide
full coverage for complex systems, therefore, formal methods are used in addition to simulation to improve the
quality and the reliability of cloud systems.

Formal methods [2] use mathematical models for the analysis of computing, communication, and industrial
systems in order to establish system correctness with mathematical rigor. Formal methods are highly recom-
mended verification techniques for safety critical systems. Research in formal methods has recently led to the
development of promising verification techniques that facilitate the early detection of defects and hence enhance
the design quality. These techniques are accompanied by powerful tools that can automate various verification
steps which have been successfully used for the analysis of a variety of complex systems [18]. Besides, it has
been shown that formal verification would have revealed the exposed defects in, e.g., the Ariane-5 missile, Mars
Pathfinder, Intel Pentium II processor, and Therac-25 therapy radiation machine [12]. Existing formal methods
include: theorem proving, model checking, and equivalence checking. While the first two have been used recently
for the formal verification of cloud systems, the equivalence checking method have only been used in narrow
research areas such as digital systems. All formal methods are based on formal syntax and formal semantics,
on the other hand, other verification methods adopted formal syntax and allowed informal semantics. These
methods are called semi-formal verification methods in the literature.

In this paper, we survey the use of formal methods on testing and verification of cloud systems. This
work provides a state of the art reference for reasoning about the correctness of the operation of these systems
within their environments. In addition, we identify several open issues in the area and propose directions to
handle them. The rest of the paper is organized as follows: Section 2 present theorem proving based methods.
In Section 3, we present model checking based methods. Section 4 presents semi-formal methods and other
models. In Section 5, we address and discusses open issues. Finally, Section 6 concludes the paper.

2. Theorem proving. Theorem proving [49] is a formal verification method where mathematical logic is
used to formulate a theorem about the correctness of a design, then a general purpose theorem-prover is used to
construct the proof. The theorem can be expressed using the first-order logic where the proofs can be conducted
automatically. Second and higher-order logics are more expressive, and thus can be used to model more complex
systems. However, user interaction is required to guide the proof tools. The disadvantage of theorem proving
is the need for user interaction to guide the proof tools, and hence, it cannot be fully automated.

The use of theorem proving in modeling and verification of cloud computing systems is very recent. In [42],
the authors used Coq [15] formal reasoning system to define and reason about a framework for rewriting Service
Level Agreements (SLAs) using set theory to enable efficient co-location in a cloud setting. The authors showed
that the framework is consistent with respect to its semantics by providing machine-verified proofs. The work
in [6] also used Frama-C software verification tool and Coq theorem prover in order to model and verify the
virtual memory system of the cloud hypervisor Anaxagoros that is designed for resource isolation and protection.
In [44], and [45], the authors introduced cloud calculus, a process algebra based on structural congruence and a
reduction relation, for the specification of the migration of virtual machines and security policies in the cloud.
The calculus is used to model and verify that the global security policy is preserved after migration in the cloud
using Sugar [75].

In [26], the authors presented an abstract formalization of federated cloud workflows using the Z notation
[78]. The workflow is modeled as an abstract data type upon which various operations are possible. The
Z notation is used to encode the rules for security and cost analysis that enable the calculation of possible
workflows using theorem proving and term rewriting. In their work in [76], the authors proposed a cloud-based
assured information sharing system in order to define properties such as soundness, transparency, consistency
and completeness using Resource Description Framework (RDF). They intend to apply theorem proving using
ACL2 [46] to produce machine-checkable proofs that these properties are satisfied by the system. The authors
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Table 2.1

Theorem Proving Methods

Ref. System Verification Aspect Testbed Arch. Verified

Model Tool Analyzed Property

[42] Set Theory ARTIFACT-Coq SLA None Safe Transformation

[44] Cloud calculus Virtual Machines Security policy Amazon EC2 Migrating Virtual Machines

[45] Cloud calculus Sugar Security policy Amazon EC2 Migrating Virtual Machines

[26] Z Notation Z/EVES Federated Cloud None Workflows

[76] RDF ACL2 Information Sharing Hadoop Access Control

[63] Event-B Rodin Data Consistency None Integrity

[6] ACSL Frama-C, Coq Virtual Memory Anaxagoros Page Mapping

state no details on how these properties will be modeled or verified.

In a recent work in [63], the authors presented a method based on Event-B for formal modeling of re-
silient data storage. The work addresses the problem of data consistency in replicated data stores by formally
modeling write-ahead logging in replicated data stores in the cloud. Data integrity and consistency properties
are considered in three different replication architectures: synchronous, semi-synchronous and asynchronous
architectures.

Table 2.1 highlights the main points of the works we surveyed. It describes the formal model, verification
tool, cloud testbed architecture, and finally the property or design aspect of the system that was verified. The
proposed techniques in theorem proving are still premature and have been only explored for the verification
of basic properties for cloud computing systems. In addition there are several techniques and theorems that
have been used in the verification of related systems such as distributed and security systems. These theorems
could be reused in cloud systems verification if the appropriate cloud model can be devised. Examples of such
frameworks are Higher Order Logic (HOL) theorem proving framework [35, 73] and the Prototype Verification
System (PVS) [61, 64]. On the other hand, efficient probabilistic theorem proving techniques can be used in
formalizing and verifying several properties that are particular to cloud computing such as data consistency and
availability, where the focus on one property may affect another.

In fact, the most powerful feature of this technique is reusing proved theorems in constructing proofs of
other systems. This issue is not exploited well in the area of cloud computing. Even though theorem proving
based techniques require long time and practice, and need expertise in modeling the system and establishing the
proof, these deductive verification approaches can handle and verify complex systems due to the expressiveness
of this logic. Therefore it can be further explored for modeling and verification of complex properties in cloud
systems such as consistency, availability, and trust. For instance, trust can be achieved through reputation
establishment that depends on the relation with other nodes in the system, where there are certain thresholds
that need to be achieved before trust is granted, while systems have several performance constraints at the same
time, therefore, the process of trust establishment can be formalized using probabilistic verification methods
in theorem proving, or alternatively, in model checking. Finally, refinement based theorem proving methods,
such as Event-B [3] can also be used to model and verify cloud systems at several levels of abstraction using
Rodin [25] supporting tool. For instance, big data collection and analysis is an area where new programming
and analysis paradigms have emerged. Therefore, new testing and verification techniques need to be developed,
yet, there is no work that has addressed this aspect so far. For instance, security in partitioned cloud and
security within Amazon EC2 [8] are candidates for theorem proving approach.
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The work in also used Coq theorem prover in order to model and verify the virtual memory system of the
cloud hypervisor that is designed for resource isolation and protection.

3. Model Checking. Model checking [12] or property checking is a formal verification technique where we
check exhaustively and automatically whether a model of a system meets a given specification. Model checking
examines all possible system states in a brute-force manner in order to show that a given system model truly
satisfies a certain property. The main drawback of model checking approach is the limited size of number of
system states that can be checked, therefore, abstraction methods are used to enable the verification of complex
and large systems.

Similar to theorem proving methods, the use of model checking in modeling and verification of cloud
computing systems is very recent. In addition, most of the methods in the literature used an existing model
checker in order to verify a property within the cloud system. In [19], the authors used Petri Nets in order to
model a system using three approaches: multithreaded, distributed, and cloud based approach. Then, Time-
Basic (TB) nets were used in order to compare their performance in terms of facing the state space explosion
problem. In [21], the authors presented a λ calculus model for analyzing and verifying the resources used
in web service applications in cloud computing environment. They used Labeled Transition System Analyser
(LTSA) [56] to verify the validity of several protection policies. In [1], the authors used SPIN model checker [41]
in order to model for Event Condition Action (ECA) in the context of web services and then to verify service
agreement property.

In another work in [28], [69], and [68], the authors used parameterized boolean equation systems (PBES)
to build a toolbox for verifying distributed processes based on concurrency theory called CADP (Construction
and Analysis of Distributed Processes) [29]. The toolbox can handle compiling various formal specification
languages, equivalence checking, model checking, compositional verification, and performance evaluation. The
tool is illustrated on a self-configuration protocol for distributed applications in the cloud. The work in [77, 74]
presented an approach to generate test suites for service choreographies by translating them into Event-B [3]
models, and using ProB [53] model checker for the test generation.

In a recent work in [38], a formal framework called vTRUST, is proposed to formally describe virtualization
systems with abstraction. The system can be used to verify various properties in virtualization systems such as
confidentiality, verifiability, isolation and Platform Configuration Registers (PCR) consistency with respect to
certain adversary models. The authors used CSP to model virtualization, and then vTRUST to translate it into
the input language of the Process Analysis Toolkit (PAT) model checker [62], which in turn is used to conduct
model checking on the properties under test. The method is tested on Trusted Block as a Service (TBaaS)
cloud computing implementation. The work in [65] used a similar approach in order to model Hadoop system
using CSP and then verify it against deadlock and localization properties using PAT model checker.

On the other hand, the work in [13] used ProVerif [16] model checker to verify the security of cloud based
Encrypted Storage Protocols (ESP) against attacks. The authors used the WebSpi web security library to
study a series of commercial and academic cryptographic web applications such as SpiderOak, BoxCryptor,
and CloudFogger. A recent work in [47] used NuSMV model checker to verify several operational vulnerability
properties in a cloud computing system. They first established a formal state based model for cloud systems
and its properties, then translated the model into NuSMV syntax, where they conducted model checking to
verify a set of properties within a three-tier cloud system that uses Amazon EC2 elastic load balancing between
virtual machines.

The work in [57] used High-Level Petri Nets (HLPN) to model and analyze the structural and behavioral
properties of three open source VM-based cloud management platforms: Eucalyptus, Open Nebula, and Nim-
bus. The authors used Satisfiability Modulo Theories Library (SMT-Lib) [14] and Z3 Solver [24] to model
about 100 VMs and then verify properties about the consistent creation of VMs. The work in [11] presented
TRUSTFOUND, a formal model checking framework for trusted computing platforms that can be used to check
platforms on security properties such as confidentiality and attestability, and uncover the implicit assumptions
that must be satisfied to guarantee the security properties. The method is based on extending CSP with trust
computing and is applied on a cloud computing platform.

Probabilistic model checking has been used in [17] and [48]. In the first, the authors used AVISPA model
checker [10] in order to analyze systems security goals in the categories operational correctness, failure resilience,
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isolation, and security assurance issues such as failure deployment breach. They used a formal language to
express high-level security goals based on the Intermediate Format (IF) and set rewriting as formal foundation.
The shortage of this approach is ignorance of the probabilistic features of the AVISPA tool and IF language
that could be employed in a better way. In the second work, the authors used PRISM probabilistic model
checker [51] in order to measure several probabilistic properties such as having more than 4 migration operations
retained in a certain sender server. They first conducted experiments in a visualized system to measure the
performance characteristics of concurrent Virtual Machines (VM) live migrations. Next, they constructed a
model and formally defined quantitative properties formally, then used PRISM in order to determine whether
these properties can be satisfied by the constructed performance model. Recently, the work in [59] also used
Markov Decision Processes (MDP) in order to model elasticity in cloud computing, and then used PRISM model
checker in order to model and verify several elasticity decision policies that aim to maximize user-defined utility
functions.

Table 3.1 highlights the main points of the works we surveyed. Model checking suffers from the state-space
explosion problem that makes exhaustive verification very difficult for large and complex systems. In addition,
it is computationally expensive to cover all the state space of the system model. Therefore, we believe that
the use of existing model checking tools limits the verified model of the cloud while trying to fit it into the
syntax and semantics of that particular tool. In fact, abstraction is a powerful technique that enables fitting big
systems into model checkers, yet, it has not been explored well for modeling and verification of cloud systems.
In particular in the area of big data collection and analysis. For instance, CAP theory [34] and big data are
potential areas where model checking can be applied.

4. Semi-Formal Methods. While formal verification methods are based on formal syntax and formal
semantics, Semi-formal verification methods are based on formal syntax and allow informal semantics. There
are several semi-formal languages and supporting tools that have been used for modeling and verification both
in academia and industry. For instance, UML and Object Constraints Language (OCL), Petri Nets and its
variation, and assertion based verification [4].

In this theme, several approaches have been proposed for testing and verification of cloud computing systems.
The work in [71] presents Consistency Verification and Quality Assurance (CVQA) for verifying the consistency
of artifacts and data that has been collected through various data collection techniques in SaaS architectures.
In [36], the authors used an XML schema in order to model and verify a security policy for Service Oriented
Architecture (SOA) protocol in the cloud. In [79], the authors used belief logic to introduce Application-oriented
Remote Verification Trust Model (ARVTM) for reasoning about trust and authorization in the cloud. In [50],
the authors used Model-based Testing (MBT) to provide a QuickCheck [23] formal description for pre/post
conditions and invariant functions for distribute generation of large test data within MapReduce programming
model in Hadoop.

In [54], the authors used Interface Automata (IA) to model consistency of service and business processes in
SaaS along with transformation rules and algorithm between Business Process Execution Language (BPEL) and
the semantic service interface automata model. In [20], the authors used Satisfiability Modulo Theories (SMT)
based constraint solving techniques to propose a framework that checks conflicts and inconsistency against
policies within user requirements, and selecting appropriate cloud services that satisfy user requirements and
comply with the policies in cloud managing systems such as the Monsoon. The work in [66] presented a Trusted
MapReduce (TMR) framework based on Trusted Platform Module (TPM) for validating attestation ticket in
the cloud.

In [80], the authors proposed a graphical model based on Colored Petri-Nets (CPN) to formally model service
contract obligations properties within SaaS and integrate it into Protege [60] including boundedness, liveness,
and reversibility. The work in [70] used game theory in order to model retrievability property in cloud systems,
however, there is no implementation or tool support. Finally, the work in [37] presented expressions for formal
representation and reasoning within a service cloud model. They used coordination language to express SLA
interactions and information sharing constraints within cloud context. The work in [52] presented semantic-
aware model checking (SAMC) a white-box principle that takes simple semantic information of the target
system and incorporates that knowledge into state-space reduction policies where protocols can be specified and
validated. The method does not provide any formal semantics hence it is categorized here.
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Table 3.1

Model Checking based Methods

Reference System Verification Aspect Testbed Arch. Verified

Model Tool Analyzed Property

[19] Petri Nets TB nets None Hadoop State space explosion

[21] λ calculus LTSA None Web Service Resource protections

[1] Promela SPIN ECA Web Service Service Agreement

[28] PBES CADP Distributed Proc. None Consistency

[69] LOTOS NT CADP Distributed App. Virtual Machines Self-configuration

[68] [77] CSP/Event-B ProB None SOA Test generation

[13] CSP ProVerif ESP SaaS Encrypted Web Storage

[38] CSP/PAT PAT None TBaaS PCR Consistency
Confidentiality

[65] CSP/PAT PAT None Hadoop Deadlock, Locality

[59] MDP PRISM VM NoSQL Elasticity

[47] State-based NuSMV Operational EC2 Data Inconsistency,
vulnerability Misconfiguration, faults

[57] HLPN SMT-Lib VM Eucalyptus VM consistent
Z3 Solver Open Nebula creation

Nimbus

[74] [17] Set Rewriting (IF) VALID - Virtualized None Unreachability
AVISPA Infrastructure Failure Resilience

[11] TCSP TrustFound Security None Confidentiality
assurance Attestability

[48] Timed Automata PRISM Virtual Machines None Migration operations

Table 4.1 highlights the main points of the works we have surveyed. The use of semi-formal methods
has shown great success in the aspects that were addressed, however, we believe that there are still several
issues that need to be addressed. First, formal methods have been used successfully in the process of test case
generation in order to cover certain corner cases in the systems simulation. Hence, this is an area that is still
open in cloud computing context. Second, the integration of simulation and formal methods, mainly in assertion
based verification, has been a successful method in several applications in the literature. Hence, assertion based
verification can be employed in this area. In particular, in the verification of safety properties such as data
consistency, and liveness ones such as availability of data in the cloud. Finally, assertion based verification is
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Table 4.1

Semi-Formal Methods

Reference System Verification Aspect Testbed Arch. Verified

Model Tool Analyzed Property

[71] None CVQA none SaaS Assurance, consistency

[36] None XML SOAP Amazon EC2 Security policy

[79] Belief Logic ARVTM TFCC None Remote trust

[50] MBT VDM none Hadoop Distribution of data

[54] IA None BPEL SaaS Consistency

[20] SMT zChaff None Monsoon Policy conflict detection

[66] TPM TMR None Hadoop Trust: attestation ticket

[80] Protege CPN None SaaS Boundedness, liveness,
reversibility

[70] Game theory None None None Retrievability

[37] None None SLA None Information Sharing

[52] Semantic SAMC None Hadoop Deep bugs
knowledge MapReduce

a well developed technique that has not been explored yet in the verification of cloud systems. For instance,
cloud system availability property can be verified using assertion based verification.

5. Discussion and Open Issues. Most of the existing methods addressed the cloud as Software as a
Service (SaaS) model, yet other service models have rarely been considered in the verification process, i.e.
Infrastructure as a Service (IaaS), Platform as a service (PaaS), or Network as a Service (NaaS). In addition,
the use of existing verification tools limits the verified model of the cloud while trying to fit it into the syntax
and semantics of that particular tool. Therefore, designing a dedicated framework with proper semantics and
syntax that targets cloud based systems is an important issue to be addressed.

Theorem proving methods have not been yet explored well in the context of cloud computing despite the
expressiveness of their logic in formalizing systems. In addition, there are several existing techniques that can
be reused efficiently in this context. For instance, a lot of work has been conducted in proving security aspects
that can be reused here. On the other hand, probabilistic methods have gained quite good attention recently
and there are several mature methods in the literature that can assist in developing new techniques for cloud
computing based on model checking and theorem proving. In summary, we can identify and discuss four open
issues in cloud computing systems where formal methods can be efficiently used.

5.1. Probabilistic Verification of CAP. Consistency, Availability, and Partitions (CAP) [34] theory
for cloud computing has been addressed in several works. Formal methods, in particular, probabilistic ones, can
be effectively used to verify that the cloud system maintains a certain level of availability or consistency in a
partitioned system. For instance, in order to design a partition tolerant cloud system; lack of consistency and/or
availability must be tolerated since cloud systems can satisfy the three properties together. In addition, it is
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required to maintain the consistency and availability tolerance when using data in the cloud. For instance, to
prove that a partitioned cloud system can provide a availability while maintaining full consistency is a problem
that can be handled in probabilistic model checking. In addition, to prove that the cloud can maintain a
minimum level of c consistency and a minimum level of a availability is a more difficult problem that can be
handled using probabilistic theorem proving methods such as the one in [39].

The work in [9] presented a method that allows providing linearizable consistency and partition tolerance in
cloud systems. It is based on distributing and replicating data according to the principle of consistent hashing
to maintain a consistent view of the partitioned cloud system. This work presents an interesting and challenging
application where theorem proving technique can be used to formally verify safety and lifeness properties related
to the operation of cloud systems including the following properties: partition tolerance, reconfiguration safety,
consistent view, termination of reconfiguration, and termination of operations. This shows an interesting cloud
related area where theorem proving and/or model checking techniques can be effectively used.

5.2. Assertion based Verification of Safety and Availability. Assertion based verification [4] can be
useful in combining simulation and formal methods to verify properties such as safety and availability in the
cloud. In fact, multiple instances of the same application can be delivered in a scalable manner. Since failures
in the cloud do happen despite the fact that they are rare, application owners are ultimately responsible for
availability and recoverability There is a need to balance cost and complexity of high availability efforts against
such risks. In fact, increasing availability may affect the security level provided by the cloud system, hence,
assertion based verification can provide solution for instances where these security levels are violated. On the
other hand, assertions can be used to set a certain level of safety while trying to enhance availability. This helps
in detecting safety breaches while trying to achieve a high level of availability.

5.3. Verification of Security in Partitioned Cloud. In order to provide security in the cloud, several
developed and well established security methods and protocols were reused. However, this issue may lead into
several security problems. For instance, authentication protocols that are designed for typical networks may not
be enough in the cloud, since authentication can depend on multiple parts. Another security challenge in cloud
systems arise when an application needs to authenticate itself into a cloud data center while the application and
the data center are both running on several partitions in the cloud. In order to verify such security properties,
a precise formal model for the cloud need to be proposed, and then used to develop verification methods for
these properties. In addition, several methods were developed for network security and can be reused in the
verification of security properties in the cloud, in particular in theorem proving frameworks such as HOL or
PVS.

5.4. Verification of Firewalls in Partitioned Cloud in AWS. Security within Amazon EC2 [8]
is provided on multiple levels: the operating system, the virtual, a firewall, and customer security group
policies. These security measures are applied in order to prevent data contained within Amazon EC2 from
being intercepted by unauthorized systems or users. In addition, the cloud infrastructure should be able to
create secure Amazon EC2 instances without sacrificing the flexibility in configuration that customers demand.
Firewalls can have policies for groups permitting different classes of instances to have different rules, therefore,
this may increase the possibility of animalities between various policies. Since formal methods have been
successfully used in the verification of firewalls and security policies, existing methods can be extended to support
multiple levels security verification for cloud based infrastructures such as the Amazon EC2, in particular, the
correct implementation of customer security group policies. For instance, the work on modeling and verification
of firewall rulebase [31, 32], and the work on verification of firewalls with dynamic rulebase update [30, 33].

5.5. Modeling and Verification of Big Data. Big data [67] concept refers to the practice of collection
and analysis of huge data sets and the algorithms, tools, and data centers that are used to analyze the massive
information associated with this data. Testing and verification of such algorithms is considered costly and
challenging due to the huge amount of associated information. Hence, formal methods can provide the necessary
background to be able to handle such challenge. In particular, several developed abstraction techniques that
have supporting tools in both model checking and theorem proving can be used in this context. These techniques
can be efficient in providing abstract models for big data and help in their efficient analysis and verification.
For instance, the Event-B method supports abstraction and refinement. Therefore, it can be used to model big
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data at different levels of abstractions, in particular structured data. In addition, invariant checking in Event-B
is suitable for the modeling and verification of several properties related to big data analysis.

On the other hand, the emergence of new programming paradigms such as stream programming, illustrated
in the IBM Streams Processing Language (SPL) [40], puts more pressure on the need for reliable abstraction
techniques that will lead into efficient testing and verification of several issues related to big data analysis. We
believe that verification methods for big data collections and analysis in the cloud could be of great impact
because of the lack of any work in this area despite its importance, hence, this issue can have great impact
if it is well addressed. Several properties about can be identified and hence need to be modeled and verified
under cloud infrastructure. Here we identify the following properties, fault tolerance, scalability, quality, and
data realization. Several developed abstraction techniques or stream programming can be used to handle
this challenge for their efficiency. Fault tolerance, for example, is a critical issue in the efficiency of big data
processing, since non-recoverable data failures may take much time to handle during task scheduling. Hence,
model checking can be efficiently used this context, in particular by providing an abstract state based model
for big data, and then defining properties about fault tolerance.

Finally, integrity of big data in the cloud has been highlighted as a challenging research problem [55].
Despite that existence of several data integrity verification methods, the cloud owner may still to verify their
data that is stored remotely, which is very complex due to the huge amount of data and communication overhead.
While proposed solutions suggest to apply mechanisms such as digital signatures on distributed cloud servers
to verify data integrity, instead of retrieving the whole data, this methods can be subtle to several critical
security problems if the method is not designed properly. In this context, there exists several model checking
tools for security protocols that can effectively be used to verify such distributed algorithms. In addition, the
processing of large amounts of genomic data requires complex resource and software configuration tasks [22],
which adds more challenges to big data manipulation in the cloud. Finally, several emerging issues are currently
being integrated into the cloud, for instance, the development frameworks for cloud based medical images
processing [43] is a new prominent subject where formal methods can be used in order to enhance the trust in
such newly developed systems [5].

6. Conclusions. In this paper we surveyed the topic of using formal methods in testing and verification
of cloud systems. Cloud computing systems have emerged recently by moving computing services from the
classical host-based architecture pattern into the elastic computing pattern. Therefore, several design and
verification challenges have also emerged, such as the consistency of data storage in the cloud. In addition, new
research areas have also emerged as a result, such as big data collection and analysis. This justified the need
for alternative methods for the verification of these systems since traditional simulation may not be enough.
We identified related work in three main categories: theorem proving based methods, model checking based
methods, and finally semi-formal methods. We then summarized each category in one table where we showed the
underlaying formal model, verification tool, and the cloud related properties. We believe that formal modeling
and verification for cloud computing based systems has a positive outlook and involves several challenges, yet,
some open issues have not been addressed properly in the literature.

This paper identified possible open issues where formal methods can serve as the underlaying technique in
the testing and verification of cloud systems. In the theme of cloud system supporting both consistency and
availability, probabilistic theorem proving is very useful in verifying that a cloud system sustains a certain level
of assurance about one of these while maintaining the other. On the other hand, assertion based verification
techniques can be used for the verification of safety and availability properties. In a new research area, formal
models can be efficiently used in big data collections and analysis since abstraction techniques are mature in the
literature and can serve well in this area. Finally, new security issues, such as authentication in a partitioned
cloud, is an area that needs more investigations.

Formal verification of cloud systems must be integrated into the real time service providing process, and
hence, verification techniques need to be developed at the same pace cloud services methods are being advanced.
Recent research activities show that the attention is directed towards developing and enhancing the design of
cloud systems. However, given the complexity of these systems, and their usage to provide various types of
distributed services, their verification is essential during all design, deployment, and service providing stages.
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[15] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development: Coq’Art: the Calculus of Inductive
Constructions, Springer, 2004.

[16] B. Blanchet, M. Abadi, and C. Fournet, Automated verification of selected equivalences for security protocols, in Proc.
IEEE Symposium on Logic in Computer Science, IEEE, 2005, pp. 331–340.

[17] S. Bleikertz and T. Groß, A Virtualization Assurance Language for Isolation and Deployment, in Proc. IEEE Symposium
on Policies for Distributed Systems and Networks, 2011, pp. 33–40.

[18] P. Boca, J. Bowen, and J. Siddiqi, Formal Methods: State of the Art and New Directions, Springer, 2010.
[19] M. Camilli, Petri Nets State Space Analysis in the Cloud, in Proc. IEEE Int. Conference on Software Engineering, 2012,

pp. 1638–1640.
[20] C. Chen, S. Yan, G. Zhao, B. S. Lee, and S. Singhal, A Systematic Framework Enabling Automatic Conflict Detection

and Explanation in Cloud Service Selection for Enterprises, in Proc. IEEE Conference on Cloud Computing, 2012,
pp. 883–890.

[21] J. Chen, L. Huang, H. Huang, C. Yu, and C. Li, A Formal Model for Resource Protections in Web Service Applications,
in Proc. IEEE Cloud and Service Computing, 2012, pp. 111–118.

[22] P. Church and A. Goscinski, Selected approaches and frameworks to carry out genomic data analysis on the cloud, Scalable
Computing: Practice and Experience, 16 (2015).

[23] K. Claessen and J. Hughes, QuickCheck: a Lightweight Tool for Random Testing of Haskell Programs, ACM Notices, 46
(2011), pp. 53–64.

[24] L. De Moura and N. Bjørner, Z3: An Efficient SMT Solver, in Tools and Algorithms for the Construction and Analysis
of Systems, Springer, 2008, pp. 337–340.

[25] Rodin Platform, http://www.event-b.org, 2013, 2013. http://www.event-b.org, 2013.
[26] L. Freitas and P. Watson, Formalising Workflows Partitioning over Federated Clouds: Multi-level Security and Costs, in

Proc. IEEE World Congress on Services, 2012, pp. 219–226.
[27] B. Furht and A. Escalante, Handbook of Cloud Computing, Springer, 2010.
[28] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, CADP 2011: a Toolbox for the Construction and Analysis of

Distributed Processes, International Journal on Software Tools for Technology Transfer, 15 (2013), pp. 89–107.
[29] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, Cadp 2006: A toolbox for the construction and analysis of distributed

processes, in Proc. Computer Aided Verification, Springer, 2007, pp. 158–163.
[30] A. Gawanmeh, Automatic verification of security policies in firewalls with dynamic rule sequence, in International Conference

on Information Technology: New Generations, IEEE Press, 2014, pp. 279–284.
[31] A. Gawanmeh and S. Tahar, Modeling and Verification of Firewall Configurations Using Domain Restriction Method, in

IEEE International Conference on Internet Technology and Secured Transactions, IEEE Press, 2011, pp. 642–647.
[32] , Novel Algorithm for Detecting Conflicts in Firewall Rules, in IEEE Canadian Conference on Electrical and Computer

Engineering, IEEE Press, 2012, pp. 1–4.
[33] A. Gawanmeh and S. Tahar, Real time verification of firewalls with dynamic rulebase update, in IEEE Canadian Conference

on Electrical and Computer Engineering, IEEE Press, 2014, pp. 1–6.



Challenges in Formal Methods for Testing and Verification of Cloud Computing Systems 331

[34] S. Gilbert and N. Lynch, Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services,
ACM SIGACT News, 33 (2002), pp. 51–59.

[35] M. Gordon and T. Melham, Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, Cambbridge
Univ, Press, 1993.

[36] N. Gruschka and L. L. Iacono, Vulnerable Cloud: SOAP Message Security Validation Revisited, in IEEE Conference on
Web Services, 2009, pp. 625–631.

[37] M. Hale, M. Gamble, and R. Gamble, A Design and Verification Framework for Service Composition in the Cloud, in
Proc. World Congress on Services, IEEE, June 2013, pp. 317–324.

[38] J. Hao, Y. Liu, W. Cai, G. Bai, and J. Sun, vTRUST: A Formal Modeling and Verification Framework for Virtualization
Systems, in Proc. Formal Methods and Software Engineering, L. Groves and J. Sun, eds., vol. 8144 of LNCS, Springer,
2013, pp. 329–346.

[39] O. Hasan, S. Tahar, and N. Abbasi, Formal Reliability Analysis using Theorem Proving, IEEE Transactions on Computers,
59 (2010), pp. 579–592.

[40] M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. Mendell, H. Nasgaard, S. Schnei-

der, R. Soule, et al., IBM Streams Processing Language: Analyzing Big Data in Motion, IBM Journal of Research
and Development, 57 (2013), pp. 7–1.

[41] G. J. Holzmann, The Model Checker SPIN, IEEE Transactions on Software Engineering, 23 (1997), pp. 279–295.
[42] V. Ishakian, A. Lapets, A. Bestavros, and A. Kfoury, Formal Verification of SLA Transformations, in Proc. IEEE World

Congress on Services, 2011, pp. 540–547.
[43] C. Jansen, M. Beier, M. Witt, J. Wu, and D. Krefting, Extending xnat towards a cloud-based quality assessment platform

for retinal optical coherence tomographies, Scalable Computing: Practice and Experience, 16 (2015).
[44] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi, Cloud Calculus: Security Verification in Elastic

Cloud Computing Platform, in Proc. IEEE Collaboration Technologies and Systems, 2012, pp. 447–454.
[45] , Formal verification of security preservation for migrating virtual machines in the cloud, in Proc. Stabilization, Safety,

and Security of Distributed Systems, A. Richa and C. Scheideler, eds., vol. 7596 of LNCS, Springer, 2012, pp. 111–125.
[46] M. Kaufmann and S. Moore, ACL2: an Industrial Strength Version of Nqthm, in Proc. IEEE Computer Assurance, Systems

Integrity, Software Safety, Process Security, 1996, pp. 23–34.
[47] S. Kikuchi and T. Aoki, Evaluation of Operational Vulnerability in Cloud Service Management Using Model Checking, in

International Symposium on Service Oriented System Engineering, IEEE, March 2013, pp. 37–48.
[48] S. Kikuchi and Y. Matsumoto, Performance modeling of concurrent live migration operations in cloud computing systems

using prism probabilistic model checker, in Proc. IEEE International Conference on Cloud Computing, 2011, pp. 49–56.
[49] T. Kropf, Introduction to Formal Hardware Verification, Springer, 1999.
[50] S. Kusakabe, Large Volume Testing for Executable Formal Specification Using Hadoop, in Proc. Parallel and Distributed

Processing Workshops and Phd Forum, 2011, pp. 1250–1257.
[51] M. Kwiatkowska, G. Norman, and D. Parker, PRISM: Probabilistic symbolic model checker, in Proc. Computer Perfor-

mance Evaluation: Modelling Techniques and Tools, vol. 2324, Springer, 2002, pp. 200–204.
[52] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi, Samc: Semantic-aware model checking for

fast discovery of deep bugs in cloud systems, in USENIX Symposium on Operating Systems Design and Implementation,
USENIX Association, 2014, pp. 399–414.

[53] M. Leuschel and M. Butler, ProB: a Model Checker for B, in Formal Methods Europe, Springer, 2003, pp. 855–874.
[54] J. Li, S. Chen, L. Jian, and H. Zhang, A Web Services Composition Model and Its Verification Algorithm Based on

Interface Automata, in Proc. IEEE Conference on Trust, Security and Privacy in Computing and Communications, 2011,
pp. 1556–1563.

[55] C. Liu, R. Ranjan, X. Zhang, C. Yang, and J. Chen, A big picture of integrity verification of big data in cloud computing,
in Handbook on Data Centers, Springer, 2015, pp. 631–645.

[56] J. Magee, J. Kramer, R. Chatley, S. Uchitel, and H. Foster, LTSA–Labelled Transition System Analyser.
http://www.doc.ic.ac.uk/ltsa/, 2012.

[57] S. Malik, S. Khan, and S. Srinivasan, Modeling and Analysis of State-of-the-art VM-based Cloud Management Platforms,
Cloud Computing, IEEE Transactions on, 1 (2013), pp. 1–1.

[58] P. Mell and T. Grance, The NIST Definition of Cloud Computing. National Institute of Standards and Technology, USA,
September 2011.

[59] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Konstantinou, and S. Sioutas, Cloud elasticity
using probabilistic model checking, 2014.

[60] N. F. Noy, M. Crubézy, R. W. Fergerson, H. Knublauch, S. W. Tu, J. Vendetti, and M. A. Musen, Protege-2000:
an open-source ontology-development and knowledge-acquisition environment, in Proc. AMIA Annual Symposiom, 2003,
p. 953.

[61] S. Owre, J. M. Rushby, and N. Shankar, PVS: A Prototype Verification System, in Proc. Automated Deduction, Springer,
1992, pp. 748–752.

[62] PAT, Process Analysis Toolkit, http://www.comp.nus.edu.sg/, 2013, 2013. http://www.comp.nus.edu.sg/, 2013.
[63] I. Pereverzeva, L. Laibinis, E. Troubitsyna, M. Holmberg, and M. Pöri, Formal Modelling of Resilient Data Storage
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