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ON THE EXTENSION AND APPLICABILITY OF THE P-GRAPH MODELING

PARADIGM TO SYSTEM-LEVEL DIAGNOSTIC PROBLEMS

BALÁZS POLGÁR† , ENDRE SELÉNYI† , AND TAMÁS BARTHA‡

Abstract.
This paper presents a novel approach that formulates different types of diagnostic problems similarly. The main idea is the

reformulation of the diagnostic procedures as P-graph models. In this way the same paradigm can be applied to model different
aspects of a complex problem. The idea is illustrated by solving the probabilistic diagnosis problem in multiprocessor systems and
by extending it with some additional properties. Thus, potential link errors and intermittent faults are taken into consideration
and the comparator based diagnostics is formulated including potential comparator errors.
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1. Introduction. Diagnostics is one of the major tools for assuring the reliability of complex systems in
information technology. In such systems the test process is often implemented on system level: the “intelligent”
components of the system test their local environment and each other. The test results are collected, and based
on this information the good or faulty state of each component is determined. This classification procedure is
known as diagnostic process.

The early approaches that solve the diagnostic problem employed oversimplified binary fault models, could
only describe homogeneous systems, and assumed the faults to be permanent. Since these conditions proved to
be impractical, lately much effort has been put into extending the limitations of traditional models [1]. However,
the presented solutions mostly concentrated on a single aspect of the problem.

In this paper we present a novel modeling approach based on P-graphs that can integrate these extensions in
one framework, while maintaining a good diagnostic performance. With this model, we formulate diagnosis as
an optimization problem and apply the idea to the well-known multiprocessor testing problem. Furthermore, we
have not only integrated existing solution methods, but proceeding from a more general base we have extended
the set of solvable problems with new ones.

The paper is structured as follows. First an overview is given about the traditional aspects of system-level
diagnosis [2, 3, 4] and the generalized test invalidation model used in our approach. Afterwards, the diagnostic
problem of a multiprocessor system is formulated with the use of P-graphs [5]. In the fourth section two
supplements are presented which can accelerate the solution method. Both use additional a priori information.
The first one adds unit failure probabilities to the model, the second utilizes special knowledge about the
structure of the system. Then an important aspect, the extensibility of the model is demonstrated via some
examples. The generation and the solution method of a P-graph model and the acceleration techniques are
clarified on a small example and simulation results are presented. Finally, we conclude and sketch the direction
of future work.

2. System-Level Diagnosis. System-level diagnosis considers the replaceable units of a system, and does
not deal with the exact location of faults within these units. A system consists of an interconnected network
of independent but cooperating units (typically processors). The fault state of each unit is either good when it
behaves as specified, or faulty, otherwise. The fault pattern is the collection of the fault states of all units in
the system. A unit may test the neighboring units connected with it via direct links. The network of the units
testing each other determines the test topology. The outcome of a test can be either passed or failed (denoted
by 0/1 or G/F); this result is considered valid if it corresponds to the actual physical state of the tested unit.

The collection of the results of every completed test is called the syndrome. The test topology and the
syndrome are represented graphically by the test graph. The vertices of a test graph denote the units of the
system, while the directed arcs represent the tests originated at the tester and directed towards the tested unit
(UUT). The result of a test is shown as the label of the corresponding arc. Label 0 represents the passed test
result, while label 1 represents the failed one. See Figure 2.1 for an example test graph with three units.
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Fig. 2.1. Example test graph (test topology with syndrome)

2.1. Traditional Approaches. Traditional diagnostic algorithms assume that
(i) faults are permanent,
(ii) states of units are binary (good, faulty),
(iii) the test results of good units are always valid,
(iv) the test results of faulty units can also be invalid. The behavior of faulty tester units is expressed in

the form of test invalidation models.
Fig. 2.2 shows the fault model of a single test and Table 2.1 covers the possible test invalidation models,

where the selection of c and d values determines a specific model. The most widely used example is the so-called
PMC (Preparata, Metze, Chien) test invalidation model, (c = any, d = any) which considers the test result of a
faulty tester to be independent of the state of the tested unit. According to another well-known test invalidation
model, the BGM (Barsi, Grandoni, Maestrini) model (c = any, d = faulty) a faulty tester will always detect
the failure of the tested unit, because it is assumed that the probability of two units failing the same way is
negligible. � �� � 	 
 � � �� � 
 �  � � 
 � 

Fig. 2.2. Fault model of a single test

Table 2.1

Traditional test invalidation models

State of State of Test result
tester UUT

good good passed
good faulty failed
faulty good c ∈ {passed , failed , any}
faulty faulty d ∈ {passed , failed , any}

The purpose of system-level diagnostic algorithms is to determine the fault state of each unit from the
syndrome. The difficulty comes from the possibility that a fault in the tester processor invalidates the test
result. As a consequence, multiple “candidate” diagnoses can be compatible with the syndrome. To provide a
complete diagnosis and to select from the candidate diagnoses, the so-called deterministic algorithms use extra
information in addition to the syndrome, such as assumptions on the size of the fault pattern or on the testing
topology.

Alternatively, probabilistic algorithms try to determine the most probable diagnosis assuming that a unit
is more likely good than faulty [6]. Frequently, this maximum likelihood strategy can be expressed simply as
“many faults occur less frequently than a few faults.” Thus, the aim of diagnostics is to determine the minimal
set of faulty elements of the system that is consistent with the syndrome.

2.2. The Generalized Approach. In our previous work [5, 7] we used a generalized test invalidation
model, introduced by Blount [8]. In this model, probabilities are assigned to both possible test outcome for
each combination of the states of tester and tested unit (Table 2.2). Since the good and faulty results are
complementary events, the sum of the probabilities in each row is 1. The assumption of the complete fault
coverage can be relaxed in the generalized model by setting probability pb1 to the fault coverage of the test.
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Probabilities pc0, pc1, pd0 and pd1 express the distortion of the test results by a faulty tester. Moreover, the
generalized model is able to encompass false alarms (a good tester finds a good unit to be faulty) by setting
probability pa1 to nonzero, however, it is not a typical situation.

Table 2.2

Generalized test model

State of State of Probability of test result
tester UUT 0 1
good good pa0 pa1

good faulty pb0 pb1

faulty good pc0 pc1

faulty faulty pd0 pd1

Of course, the generalized test invalidation model covers the traditional models. Setting the probabilities
as pa0 = pb1 = 1, pc0 = pc1 = pd0 = pd1 = 0.5, and pa1 = pb0 = 0, the generalized model will have
the characteristics of the PMC model, while the configuration pa0 = pb1 = pd1 = 1, pc0 = pc1 = 0.5 and
pa1 = pb0 = pd0 = 0 will make it behave like the BGM model. Analogically, every traditional test invalidation
model can be mapped as a special case to our model.

3. Diagnosis Based on P-Graphs. The name ’P-graph’ originates from the name ’Process-graph’ from
the field of Process Network Synthesis problems (PNS problem for short) in chemical engineering. In connection
with this field the mathematical background of the solution methods of PNS problems have been well elaborated,
see [9, 10, 11].

3.1. Definition of the P-Graph Model of the Diagnostic System. A P-graph is a directed bipartite
graph. Its vertices are partitioned into two sets, with no two vertices of the same set being adjacent. In
our interpretation one of the sets contains hypotheses (assumptions or information about the state of units
and the possible test results), the otherone contains logical relations between the hypotheses. Hypotheses are
represented by solid dots and logical relations by short horizontal lines. The edges of the graph point from the
premisses1 ’through’ the logical relation to the consequences2.

The set of premisses contains all states of each unit (e.g., ’unit A is good’, ’unit A is faulty’, ’unit B is
good’, denoted by Ag, Af , Bg), and the set of consequences contains the test results (e.g. ’unit A finds unit
B to be good’, ’unit B finds unit C to be faulty’, denoted by ABG, BCF ). Logical relations determine the
possible premisses of each possible test result. This means there are 8 logical relations for each test according
to the 8 possible combinations of the state of tester, the state of the tested unit and the possible test results.
Probabilities in Table 2.2 are assigned to relations expressing the uncertainty of the consequences. The P-graph
model of a single-test fault model introduced on Fig. 2.2 can be seen on Fig. 3.1.

� � �� � � � � �� �� � � � � � � 	 �� 
 �� � �� � � � � �� �� � � � � � � 	 �� 
 �
Fig. 3.1. P-graph model of a single test (vertices with same label represent a single vertex; multiple instances are only for

better arrangement)

A solution structure is defined as a subgraph of the original P-graph, which deduces the consequences back
to a subset of premisses.

Constraints can be defined in the model in order to assure that in a solution structure a unit should have
one and only one state. Formally, for each hypothesis h the function ǫ(h) determines the set of hypotheses
which are excluded by h. A P-graph is consistent if all constraints are satisfied.

The probability of the syndrome (PS) is the product of probabilities of relations in a solution structure.
This is the probability of occurrence of the consequences under the conditions of the given subset of system
premisses, that is the probability of occurrence of the syndrome under the condition of a given fault pattern.

1premiss: preliminary condition
2i.e., there are edges from the premisses to the logical relation and from the logical relation to the consequences.
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During the solution process more consistent solution structures can exist having different subsets of premisses
and having different PS values. The object is to find the solution structure containing the subset of premisses
that implies the known consequences with maximum likelihood. This is an optimization task.

In principle, this task can be solved by general mathematical programming methods like mixed integer
non-linear programming (MINLP), however, they are unnecessary complex. Friedler et al. [9, 10, 11] developed
a new framework for solving PNS problems effectively by exploiting the special structure of the problem and
the corresponding mathematical model.

3.2. Steps of the Solution Algorithm.

1. The maximal P-graph structure is generated. It contains only the relevant hypotheses and the relevant
logical relations, but constraints are not yet satisfied. It contains all possible fault patterns being consistent
with the given syndrome.

2. Every combinatorially feasible solution structure is obtained. These are the structures that satisfy the
constraints and draw the consequences (i.e., the syndrome) back to a subset of the premisses. Each of these
subsets determines a possible fault pattern.

3. For each combinatorially feasible solution structure the probability of syndrome is calculated. This is
the conditional probability of the syndrome under the condition of a particular fault pattern.

4. The structure having the highest probability is selected; this solution structure contains the maximum-
likelihood diagnosis.

Steps 2–4 can be completed either by a general solver for linear programming (since the generated maximal
structure is a special flat P-graph), or with an adapted SSG algorithm [9]. Since the complexity of the generation
of every combinatorially feasible solution structure in step 2 is exponential, the use of some kind of branch and
bound technique can be employed to accelerate the solution method.

In a branch and bound algorithm a search tree is built. It branches as possible exclusive premisses are fixed
for consequences. After a consistent solution is found, all those branches are bounded, which cannot have better
PS value. The algorithm proceeds until all branches are either containing a solution structure or are bounded.
The algorithm can be more efficient if the first solution structure have been found quickly and it is near to the
optimal one, because in this case bigger branches can be bounded.

4. Supplements to the Model. The base model described in the previous section can be supplemented
or altered in order to increase the efficiency of the solution algorithm. In this section two enhancement methods
are presented.

4.1. Probabilities of Unit Failures. Embedding more a priori information into the model does not
necessarily increase the diagnostic accuracy, but it can speed up the solution algorithm. This is the case if unit
failure probabilities are taken into account.

Let’s define pAg and pAf = 1 − pAg as the probability of the good and the faulty state of unit A. Similarly,
probabilities for the states of other units are defined. If the system is homogeneous, the values are the same for
each unit.

In the model these values are assigned to the vertices representing the corresponding state information
of the unit (Fig. 4.1). It is similar, as probabilities were assigned to logical relations. Now the probability of
the syndrome (PS) is defined as the product of probabilities of relations and premisses being in the solution
structure.
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Fig. 4.1. P-graph model of a single test containing the probabilities of the states

This addition results in a bigger difference between the PS values of the more and the less probable fault
patterns, which results that bigger branches can be bounded in the search tree.
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4.2. Mutual Tests. For special structures the model can be simplified or altered in order to increase the
efficiency of the solution algorithm utilizing the extra information known about the system. An example for it
is the case of mutual tests.

Tests t1 and t2 are mutual, if the tester in t1 is the tested unit in t2 and the tested unit in t1 is the
tester in t2. Because the sets of possible premisses of the results of these tests are the same, the two tests
can be handled together. Let’s substitute the two tests with one mutual test having four possible test results
(GG,GF,FG,FF )(Fig. 4.2). The test invalidation model is modified according to Table 4.1.� �� � � � � � � � � � � � � � � � � � �� � � � � � � � � �

Fig. 4.2. Fault model of a mutual test

Table 4.1

Probabilities of test result pairs depending on the states of units

State of State of Probability of test result pair
A B ABGG ABGF ABF G ABF F

good good pA0 pA1 pA2 pA3

good faulty pB0 pB1 pB2 pB3

faulty good pC0 pC1 pC2 pC3

faulty faulty pD0 pD1 pD2 pD3

In the initial P-graph model the 2x2x4 logical relations (two pieces from the P-graph on Fig. 3.1) are
replaced with 4x4 relations (Fig. 4.3). Although the size of the initial model is unchanged, after step 1 in
solution algorithm the maximal structure contains only 4 relations instead of 2x4, because information is in a
compact form in this model.

Of course, probabilities in Table 4.1 can be derived from the previous ones being in Table 2.2:

pA0 = p2
a0 pA1 = pa0pa1 pA2 = pa1pa0 pA3 = p2

a1

pB0 = pb0pc0 pB1 = pb0pc1 pB2 = pb1pc0 pB3 = pb1pc1

pC0 = pc0pb0 pC1 = pc0pb1 pC2 = pc1pb0 pC3 = pc1pb1

pD0 = p2

d0
pD1 = pd0pd1 pD2 = pd1pd0 pD3 = p2

d1
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Fig. 4.3. P-graph model of a mutual test

5. Extensions of the Model. The main contribution of this novel modeling approach is its generality.
With its use several aspects of system-level diagnosis can be handled in the same framework. Furthermore, it
became possible to formulate new aspects of diagnosis. Thus, it is possible to model and diagnose for instance
the following cases:
Systems with heterogeneous elements. There are systems like the supercomputer APEMille [12] which are

built up from processing elements having different complexity and different behavior. These differences
appear as the differences between the test invalidation models of the components. In the model it can
be handled easily. Each element can have its own test invalidation model and the probability for the
result of a test is taken from the invalidation model of the tester.

Multiple fault states. It is possible to construct and handle a finer model of the state of a unit than the
binary one. This means that the failure modes of a system can be distinguished as in the fault model of
the Parsytec GCel massively parallel multiprocessor machine described in [13]. In this model processors
can have three states, namely good if it operates as expected, faulty if it operates but provides faulty
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results and dead if it doesn’t operate or doesn’t communicate. This also implies that the result of a
test can have more than two values as well.
The model of a system having mutual tests is an example for systems having multiple test results. To
take multiple fault states into account, rows should be added to the test invalidation table according
to the possible combinations of the states of the tester and tested unit. This will result in more logical
relations in the P-graph.

Intermittent faults. These are permanent faults that become activated only in special circumstances. Because
these circumstances are usually independent from the testing process, these type of faults are diagnosed
for instance on the basis of multiple syndromes as in the method of Lee and Shin [14].

Systems with potential link errors. The base model assumes that links between processors are working
always properly. Conversely, the probability of the error of a link is not negligible in such systems
where processors are connected to each other through routers as in the above mentioned Parsytec GCel
machine.

Systems based on the comparator model. The comparator based diagnostic model of multiprocessor sys-
tems [15] is an alternative to the tester–tested unit model introduced by Preparata et al. In this model
both units perform the same test and a comparator compares the bit-sequence of the outputs. In this
case the syndrome consists of the results of the comparators, namely the information that ’the two units
differ’ or ’the two units operate similarly’. Of course, this model can be applied only for homogeneous
systems.
An example for the comparator based model is the previously mentioned commercially available
APEMille supercomputer [12] which was developed in collaboration by IEI-CNR of Rome and Pisa, and
the DESY Zeuthen in Germany.
A further possible application field of this model is the wafer scale diagnosis [15, 16]. The idea is to
connect individual processors on the wafer in order to form a multiprocessor system just for the time of
the diagnostic phase of the production. The advantage of it is that in this case processors can be tested
on working speed—and not only on reduced speed—before packaging and the more faulty processors
identified before packaging results in less cost.

The models of the last three items in the list are presented in details in the next subsections.

5.1. Modeling Intermittent Faults. Although handling of intermittent faults is one of the difficult to
manage diagnostic problems, a possible solution is the use of multiple syndromes, as mentioned above. In
this approach two or more testing rounds are performed in a row, and the possible differences between the
subsequent syndromes are used to detect intermittent faults.

The adaptation of the diagnostic P-graph model to this approach is similar to the model of mutual tests.
Considering the case of double syndromes the fault model, the test invalidation model and the P-graph model
correspond to the appropriate models of mutual tests on Fig. 4.2, 4.3 and in Table 4.1 having differences in the
testing method (Fig. 5.1) and in the derivation method of probability parameters.� �� � � � � � � � � � � � � � � � � � �� � � � � � � � � �

Fig. 5.1. Fault model of a single test in case of double syndromes

pA0 = p2
a0 pA1 = pa0pa1 pA2 = pa1pa0 pA3 = p2

a1

pB0 = p2

b0 pB1 = pb0pb1 pB2 = pb1pb0 pB3 = p2

b1

pC0 = p2
c0 pC1 = pc0pc1 pC2 = pc1pc0 pC3 = p2

c1

pD0 = p2

d0
pD1 = pd0pd1 pD2 = pd1pd0 pD3 = p2

d1

In the general case n test rounds are performed in a row. Thus, 2n result combinations are in the fault
model and each contains n single test result. Consider the case when a result combination contains nG passed
and nF = n − nG failed test results. In this case the corresponding column in the test invalidation model
contains the derived probabilities pnG

a0
· pnF

a1
, pnG

b0 · pnF

b1 , pnG

c0 · pnF

c1 , pnG

d0
· pnF

d1
.

Although the model generated this way seems to be growing as n increases, the P-graph model to be solved
(the model created after 1st solution step) is of the same size. The reason is that although the information
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known about the system is increased, it is represented in a compact form in the probabilities while the size of
the syndrome remains unchanged.

5.2. Modeling Systems with Potential Link Errors. The fault model of a single test shown on
Fig. 2.2 is extended with the Link component (L) according to Fig. 5.2. For each AB test a separate link LAB

is assumed, which has either good or faulty state (denoted by LABg, LABf).� ��� � � � � � �� � � � 	 � � � � 	
 � � 
 	
Fig. 5.2. Fault model of a single test with potential link error

The state of the link influences the test result, therefore the test invalidation table is modified according
to Table 5.1. The probabilities are the same as in Table 2.2 if LAB is good, but additional parameters are
introduced if it is faulty.

Table 5.1

Probabilities of test results when considering the state of the link

State of State of State of Probability of test result
L A B ABG ABF

good good good pa0 pa1

good good faulty pb0 pb1

good faulty good pc0 pc1

good faulty faulty pd0 pd1

faulty good x pe0 pe1

faulty faulty x pf0 pf1

If a link failure means no communication between the two units, then pe0 = 0 (and thus, pe1 = 1), because
a good tester doesn’t produce the good test result if it cannot reach the tested unit. But if a link failure means
that noise is added to the signal during transmission through the link, then these additional probabilities can
have arbitrary values according to the characteristics of the noise.

Fig. 5.3 shows the corresponding modified P-graph.
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Fig. 5.3. P-graph model of a single test with potential link error

5.3. Modeling Comparator-Based Diagnostics. As mentioned above, in the comparison model pairs
of units perform the same test and the outcomes are compared. The test result is 0 if they agree, and 1 otherwise
(Fig. 5.4). � �� � �  � � !� "  � # � "  � #$

Fig. 5.4. Fault model of a comparator based test

5.3.1. Model with Fault-Free Comparators. Traditional models assumes that comparators are fault-
free, and according to the behavior of the faulty units and the comparators different diagnostic models were
composed. In Malek’s model [17] the comparison outcome is 0 only if both units being compared are fault-free.
The model introduced by Chwa and Hakimi [18] allows arbitrary comparison outcomes when both the compared
units are faulty (Table 5.2).
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Table 5.2

Traditional test invalidation model of comparator based diagnostic models

Test result
State of State of Malek’s model of

A B model Chwa & Hakimi
good good 0 0
good faulty 1 1
faulty good 1 1
faulty faulty 1 x

To be able to handle these models together, parameters are introduced in the test invalidation model for
those state combinations, where test outcomes are not exactly determined. This is the case only if both units
are faulty (Table 5.3). Parameters represent the probabilities of the 0/1 test outcomes. The application of
probabilities means not only the unified handling of traditional models, but it allows to create a more realistic
description of the behavior of the system.

Table 5.3

Generalized test invalidation model of comparator based diagnostic systems

State of State of Probability of test result
A B AB0 AB1

good good 1 0
good faulty 0 1
faulty good 0 1
faulty faulty pd0 pd1

As it can be seen in Table 5.3, this model arise as a special case of the generalized test invalidation model
of the tester–tested unit approach. Hence, the corresponding P-graph appear to be the subgraph of that (the
relations with 0 probability are eliminated). Fig. 5.5 shows the P-graph model of a single comparison test.

� � �� � � �� �� � �� � ��� � 	� � � � � �� �� � � 

Fig. 5.5. P-graph model of a single comparator test

5.3.2. Model with Comparator Errors. The simple model can be extended in order to take into
account the potential errors of the comparators. For simplicity, states of the comparators are assumed to be
binary (good or faulty), see Fig. 5.6. According to the new component, the generalized test invalidation table
is doubled and probabilities are assigned to both test results for all state combinations (Table 5.4).� � � � �  � � � �  � � � � � ��� � � � �

Fig. 5.6. Fault model of a comparator based test with potential link error

Following the conversion rule of the invalidation table of a test into a P-graph model, the premisses of the
relations are the state combinations, the consequences are the possible test results and the occurring probabilities
in the table are assigned to the relations (Fig. 5.7).

The difficulty in creating the model is the determination of the conditional probabilities (for instance the
probability of the 0 test result, if both units and the comparator are faulty). It is easier to examine the behavior
of the comparator in itself and to derive the searched probabilities from it. Therefore the pC00, pC01, pC10, pC11

parameters are introduced, where pCxy is the probability that a faulty comparator alters the result from x to y.
Table 5.4 contains the derivation of the searched probabilities from these parameters, too.



Extension and Applicability of the P-Graph Modeling Paradigm 53

Table 5.4

Probabilities of test results in comparator based diagnostic model considering comparator errors

State of State of State of Probability of test result
comp. A B AB0 AB1

good good good 1 0
good good faulty 0 1
good faulty good 0 1
good faulty faulty pd0 pd1

faulty good good pe0 = pC00 pe1 = pC01

faulty good faulty pf0 = pC10 pf1 = pC11

faulty faulty good pg0 = pC10 pg1 = pC11

faulty faulty faulty ph0 = pd0pC00 + pd1pC10 ph1 = pd0pC01 + pd1pC11

� � �
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Fig. 5.7. P-graph model of a single comparator test with potential comparator error

6. Example. Consider the test graph and syndrome given on Fig. 2.1 and the test invalidation model
given in Table 6.1. Using the base modeling method the initial P-graph contains 6x7 logical relations where
probabilities are assigned only to relations. After step 1 in the solution algorithm, the relevant structure contains
the half of it, 3x4+3x3 pieces (see Fig. 6.1 without probabilities assigned to state information).

Table 6.1

Test invalidation model of the example

State of State of Probability of test result
tester UUT 0 1
good good 1 0
good faulty 0.1 0.9
faulty good 0.7 0.3
faulty faulty 0.4 0.6

During steps 2-4 at most eight solution structure can be generated because of the constraints. Each of it
contains six logical relations. The eight structures correspond to the 23 possible fault patterns of the three
units. That fault pattern is selected finally which produces the syndrome with the highest probability.

If the unit failure probabilities are known (Table 6.2), they can be assigned to the corresponding state
information (Fig. 6.1). The ’only’ difference to the previously described solution is that the PS values of
subgraphs are different, but this is an important one. Actually it means that the difference between the
conditional probabilities of the syndrome for different fault patterns is significantly larger. This results that the
solution found at first is closer to the optimum and bigger branches can be bounded.

It can be observed in the first two rows of Table 6.3. The first five columns contain the PS values of the
five fault pattern which is consistent with the syndrome (the biggest value is boldfaced and the second biggest
is in italic). The search tree contains 34 nodes if all five solution structure is determined. The sixth column
contains the number of nodes which was accessed during the search. It decreased from 17 to 10 when unit
failure probabilities were added to the model. The third and fourth rows contain these values for the case when
the result of the test BA was changed from BAG to BAF . In this case the difference is more significant between
the two approaches.

If we build into the model more information, namely that there exists mutual tests in the system (Fig. 6.2),
then the solution algorithm can be fastened further. After step 1 the maximal structure contains only 2x3+1x4
relations (Fig. 6.3) and it decreases the size of the search tree and the number of accessed nodes. The seventh
column in Table 6.3 shows this values; from the maximum 16 nodes only 7 nodes were accessed when unit failure
probabilities were also considered. Of course, the conditional probabilities are the same as previously.
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Table 6.2

Unit failure probabilities in the example

Unit P{good} P{faulty}
A 0.99 0.01
B 0.7 0.3
C 0.9 0.1� � � � � �� �� �� � � �� � �
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Fig. 6.1. Maximal P-graph structure of the base model of the example

Table 6.3

Fault patterns being consistent with syndrome; conditional probabilities of it for base/mutual model with and without unit
failure probabilities (FP) and with BAG/BAF test result; size of the entire search tree (S) and the number of accessed nodes (n)

Ag Cg Ag Bg Cg base mutual
Bf Bf Cf Af Cf Af Bf Af Bf Cf (n/S) (n/S)

BAG / no FP 0.170 0.016 0.001 0.005 0.014 17/34 9/16
ABF G FP 0.045 5 ∗ 10−4 9 ∗ 10−7 1 ∗ 10−5 4 ∗ 10−6 10/34 7/16
BAF / no FP 0.073 0.007 0.011 0.007 0.021 25/34 11/16
ABF F FP 0.019 2 ∗ 10−4 8 ∗ 10−6 2 ∗ 10−5 6 ∗ 10−6 10/34 7/16� �� � � � �

Fig. 6.2. Test graph of the example containing mutual tests
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Fig. 6.3. Maximal P-graph structure of the mutual model of the example

7. Simulation Results. In order to measure the efficiency of the P-graph based modeling technique a
simulation environment was developed, which generates the fault pattern and the corresponding syndrome for
the most common topologies with various parameters. The P-graph model of the syndrome-decoding problem
was solved as a linear programming task using a commercial program called CPLEX. Other diagnostic algorithms
with different solution methods taken from the literature were also implemented for comparison. First, the
accuracy of the developed algorithm is demonstrated for varying parameters, then its relation to other algorithms
for fixed parameters.
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The simulations were performed in a two-dimensional toroidal mesh topology, where each unit is tested by
its four neighbors and each unit behaved according to the PMC test invalidation model. Statistical values were
calculated on the basis of 100 diagnostic rounds. In every round the fault pattern was generated by setting each
processor to be faulty with a given probability, independently from others.
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Fig. 7.1. Simulation results depending on unit failure probability

Accuracy of the solution algorithm: measurements were performed with system sizes of 4 × 4, 6 × 6, 8 × 8,
10 × 10 units, and the failure probability of units varied from 10% to 100% in 10% steps. On the diagrams
in Figure 7.1 it can be observed that the algorithm has a very good diagnostic accuracy. Even if half of the
units were faulty, good units were almost always diagnosed correctly. It is crucial in wafer scale testing because
it means that none of good units are thrown away before packaging. Taking still the case when half of the
units were faulty the rate of rounds containing misdiagnosed faulty units did not exceed 15%, and the rate of
misdiagnosed units relative to the system size was under 1%.
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Fig. 7.2. Comparison of probabilistic diagnostic algorithms

Comparison to other algorithms : measurements were performed with system size 8× 8 and the unit failure
probability varied from 10% to 100% in 10% steps. The well-known algorithms taken from the literature were
the LDA1 algorithm of Somani and Agarwal [19], the Dahbura, Sabnani and King (DSK) algorithm [20], and
the limited multiplication of inference matrix (LMIM) algorithm developed by Bartha and Selenyi [4] from the



56 B. Polgár, T. Bartha and E. Selényi

area of local information diagnosis. It can be seen on the diagrams in Figure 7.2 that only the LMIM-algorithm
approximates the accuracy of P-graph-algorithm.

8. Conclusions. Application of P-graph based modeling to system-level diagnosis provides a general
framework that supports the solution of several different types of problems, that previously needed numerous
different modeling approaches and solution algorithms. The representational power of the model was illustrated
in this paper via some practical examples.

Another advantage of the P-graph models is that it takes into consideration more properties of the real
system than previous diagnostic models. Therefore its diagnostic accuracy is also better. This means that it
provides almost good diagnosis even when half of the processors are faulty, which is important in the field of
wafer scale testing.

The favorable properties of the approach are achieved by considering the diagnostic system as a structured
set of hypotheses with well-defined relations. The syndrome-decoding problem in multiprocessor systems has a
special structure, namely the direct manifestation of internal fault states in the syndromes. In more complex
systems the states of the control logic have to be taken into account in the model to be analyzed [21]. These
straightforward extensions to the modeling of integrated diagnostics can be well incorporated into the P-graph
based models. Our current work aims at generalization of the results into this direction by extending previous
results on the qualitative modeling of dependable systems with quantitative optimization [22].
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