
Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 95�107. http://www.spe.org ISSN 1895-1767© 2005 SWPSA FEEDBACK CONTROL MECHANISM FOR BALANCING I/O- ANDMEMORY-INTENSIVE APPLICATIONS ON CLUSTERSXIAO QIN∗ , HONG JIANG† , YIFENG ZHU† , AND DAVID R. SWANSON†Abstrat. One ommon assumption of existing models of load balaning is that the weights of resoures and I/O bu�er sizeare statially on�gured and annot be adjusted based on a dynami workload. Though the stati on�guration of these parametersperforms well in a luster where the workload an be modeled and predited, its performane is poor in dynami systems in whihthe workload is unknown. In this paper, a new feedbak ontrol mehanism is proposed to improve overall performane of a lusterwith a general and pratial workload inluding I/O-intensive and memory-intensive load. This mehanism is also shown to bee�etive in omplementing and enhaning the performane of a number of existing dynami load-balaning shemes. To apturethe urrent and past workload harateristis, the primary objetives of the feedbak mehanism are: (1) dynamially adjustingthe resoure weights, whih indiate the signi�ane of the resoures, and (2) minimizing the number of page faults for memory-intensive jobs while inreasing the utilization of the I/O bu�ers for I/O-intensive jobs by manipulating the I/O bu�er size. Resultsfrom extensive trae-driven simulation experiments show that ompared with a number of shemes with �xed resoure weights andbu�er sizes, the feedbak ontrol mehanism delivers a performane improvement in terms of the mean slowdown by up to 282%(with an average of 125%).Key words. Feedbak ontrol, I/O-intensive appliations, luster, load balaning1. Introdution. Sheduling [16, 19℄ and load balaning [1, 10℄ tehniques in parallel and distributedsystems have been investigated to improve system performane with respet to throughput and/or individualresponse time. Sheduling shemes assign work to mahines to ahieve better resoure utilization, whereasload-balaning poliies an migrate a newly arrived job or a running job preemptively to another mahines ifneeded.Sine lusters-a type of loosely oupled parallel system-have beome widely used for sienti� and ommer-ial appliations, several distributed load-balaning shemes in lusters have been presented in the literature,primarily onsidering CPU [9, 10℄, memory [1, 23℄, or a ombination of CPU and memory [26, 27℄. Althoughthese load-balaning poliies have been very e�etive in inreasing the utilization of resoures in distributedsystems (and thus improving system performane), they have ignored one type of resoure, namely disk (anddisk I/O). The impat of disk I/O on overall system performane is beoming signi�ant as more and morejobs with high I/O demand are running on lusters. This makes storage devies a likely performane bottle-nek. Therefore, we believe that for any dynami load balaning sheme to be e�etive in this new appliationenvironment, it must be made I/O-aware.Typial examples of I/O-intensive appliations inlude long running simulations of time-dependent phe-nomena that periodially generate snapshots of their state [22℄, arhiving of raw and proessed remote sensingdata [4℄, multimedia and web-based appliations. These appliations share a ommon feature in that theirstorage and omputational requirements are extremely high. Therefore, the high performane of I/O-intensiveappliations heavily depends on the e�etive usage of storage, in addition to that of CPU and memory. Com-pounding the performane impat of I/O in general, and disk I/O in partiular, the steady widening gap betweenCPU and I/O speed makes load imbalane in I/O inreasingly more ruial to overall system performane. Tobridge this gap, I/O bu�ers alloated in the main memory have been suessfully used to redue disk I/O osts,thus improving the throughput of I/O systems.This paper proposes a feedbak ontrol mehanism to dynamially on�gure resoure weights and I/Obu�ers in suh a way that the weights are apable of re�eting the signi�ane of system resoures, and thememory utilization is improved for I/O- and memory-intensive workload.The rest of the paper is organized as follows. Related work in the literature is reviewed in Setion 2. Setion 3desribes system model, and Setion 4 proposes the feedbak ontrol mehanism. Setion 5 evaluates theperformane of the mehanism. Finally, Setion 6 onludes the paper by summarizing the main ontributionsand ommenting on future diretions of this work.
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96 X. Qin et al.2. Related Work. There exists a large base of exellent researh related to distributed load balaningmodels, and to name just a few: sender or reeiver-initiated di�usion [5, 24℄, the gradient model [6, 13, 14℄,and the hierarhial balaning model Pollak [24℄. Eager et al. studied both reeiver and sender initiateddi�usion, and the results of their study showed that reeiver-initiated poliies are preferable at high systemloads if the overheads of task transfer under the two poliies are omparable [5℄. The gradient model makesuse of a gradient proximity map of underloaded proessors to guide the migration of tasks from overloaded tounderloaded proessors [6, 13, 14℄. Underloaded nodes dynamially update the gradient proximity map, whereasoverloaded nodes initiate task migrations. Pollark proposed a salable approah for dynami load balaning inlarge parallel and distributed systems on a multi-level ontrol hierarhy [15℄. The hierarhial sheme ahievesigni�ant performane gain due to the parallelism in the low level of the hierarhy and the possibility toaggregate information in the higher level of the ontrol tree [15℄.The issue of distributed load balaning for CPU and memory resoures has been extensively studied andreported in the literature. For example, Harhol-Balter et al. [9℄ proposed a CPU-based preemptive migrationpoliy that was more e�etive than non-preemptive migration poliies. Zhang et al. [27℄ foused on load sharingpoliies that onsider both CPU and memory servies among the nodes of a luster. Throughout this paper, theCPU-memory-based load balaning poliy presented in [27℄ will be referred to as CM. The simulation resultsshow that the CM poliy not only improves performane of memory-intensive jobs, but also maintains the sameload sharing quality of the CPU-based poliies for CPU-intensive jobs [27℄.A large body of work an be found in the literature that addresses the issue of balaning the load of disksystems [11, 18℄. Sheuermann et al. [18℄ studied two issues in parallel disk systems, namely striping and loadbalaning, and showed their relationship to response time and throughput. Lee et al. [11℄ proposed two �leassignment algorithms that minimize the variane of the servie time at eah disk, in addition to balaningthe load aross all disks. Sine the problem of balaning the utilizations aross all disks is isomorphi to themultiproessor sheduling problem [7℄, a greedy multiproessor-sheduling algorithm, alled LPT [8℄, an beapplied to disk load balaning [11℄. Thus, LPT greedily assigns a proess to the proessor with the lightest I/Oload [11℄. Throughout this paper, we refer to the approahes that diretly apply LPT to I/O load balaning asthe IO poliy. The I/O load balaning poliies in these studies have been shown to be e�etive in improvingoverall system performane by fully utilizing the available hard drives.Very reently, three load balaning models, whih onsider I/O, CPU and memory resoures simultaneously,were presented [21, 26℄. In [21℄, a dynami load-balaning sheme, tailored for the spei� requirements of theQuestion/Answer appliation, was proposed along with a performane analysis of the approah. Xiao et al.proposed e�etive load sharing strategies by minimizing both CPU idle time and the number of page faults inlusters [26℄.However, the load-balaning models presented in [21, 26℄ are similar in the sense that the weights ofsystem resoures and bu�er size are statially on�gured with a dynamial workload. In ontrast, the newfeedbak ontrol mehanism proposed in this study judiiously on�gures these parameters in aordane withthe workload of the luster. Trae-driven simulations show that, ompared with the CM and IO poliies, theproposed sheme with a feedbak ontrol mehanism signi�antly enhanes the overall performane of a lustersystem under both memory-intensive and I/O-intensive workload.Some work has been done to make use of feedbak ontrol mehanisms in operating systems and distributedenvironments [12, 20℄. For example, Steere et al. proposed a sheduling sheme that dynamially adjusts CPUalloation and period of threads using the feedbak of an appliation's rates of progress with respet to itsinputs and/or outputs [20℄. Li and Nahrstedt studied a feedbak ontrol algorithm to support end-to-end QoSin a distributed environment [12℄. However, the feedbak ontrols of resoure weights and bu�er sizes havenot been addressed in these works. In ontrast, this paper has presented the experimental results that verifythe bene�ts of the proposed feedbak ontrol mehanism for both resoure weights and bu�er sizes in a highlydynami environment.3. System Model. We onsider the issue of feedbak ontrol method to improve the performane of loadbalaning shemes in a luster onneted by a high-speed network, where eah node not only maintains itsindividual job queue that holds jobs until they �nish exeution, but also pereives reasonably up-to-date globalload information by periodially exhanging load status with other nodes. Jobs arrive at eah node dynamiallyand independently, and share three main resoures, namely, CPU, main memory, and disk I/O. It is assumedthat a round-robin sheduling (time-sharing) is employed as the CPU sheduling poliy [9, 27℄, and the disk of



A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 97eah node is modeled as a single M/G/1 queue [11℄. Sine jobs may be delayed beause of waiting in queues(to share resoures with other jobs) or being migrated to remote nodes, the slowdown imposed on a job u isde�ned as below, slowdown(u) =
tf (u) − ta(u)

tCPU (u) + tIO(u)
(3.1)where tf (u) and ta(u) are the �nish and arrival times of the job, and tCPU (u) and timeIO(u) are the timesspent by job u on CPU and I/O, respetively, without any resoure sharing.In expression 3.1, the numerator orresponds to the total time the job spends running, aessing I/O,waiting, or migrating, and the denominator orresponds to the exeution time for job u in a dediated setting.The de�nition of slowdown is an extension of the one used in [9, 26, 27℄, where I/O aess time is not onsidered.For simpliity, we assume that all nodes are homogeneous, having idential omputing power, memory a-paity, and disk I/O performane harateristis. This simplifying assumption should not restrit the generalityof the proposed model, beause if a luster is heterogeneous, the relative load of a given job imposed on a nodewith high proessing apability is less than that imposed on a node with low performane. The proposed shememay be extended to handle heterogeneous system by inorporating a simple onversion mehanism for relativeload [16℄.We also assume the network in our model is fully onneted and homogenous in the sense that ommuniationdelay between any pair of nodes is the same. This simpli�ation of the network is ommonly used in manyload-balaning models [9, 26, 27℄. Additionally, we assume that the input data of eah job has been stored onthe loal disk of the node to whih the job is submitted. This assumption is onservative in nature, sine weonduted an experiment to show that, under I/O-intensive workload, the performane of the proposed shemeswith suh assumption is approximately 10% less e�etive than that of the shemes without it.For a newly arrived job u at a node i, load balaning shemes attempt to ship it to a remote node with thelightest load if node i is heavily loaded, otherwise job u is admitted into node i and exeuted loally. To avoiduseless migration that may potentially degrade the system performane, the load balaning shemes onsidertransferring a job only if the load disrepany between the soure node and the destination node is greater thanthe load of the newly arrived job plus the migration ost, therefore guaranteeing that eah migration improvesthe expeted slowdown of the job. If an appropriate andidate remote node is not available or the migration isevaluated to be useless, the load balaning shemes will not initiate the job migration.4. Adaptive Load Balaning Sheme.4.1. Weighted Average Load-balaning Sheme. In this setion, we present WAL, a weighted averageload-balaning sheme. Eah job is desribed by its requirements for CPU, memory, and I/O, whih are measuredby the number of jobs running in the nodes, Mbytes, and number of disk aesses per ms, respetively. For anewly arrived job u at a node i, the WAL-FC sheme balanes the system load in the following �ve steps.1. First, the load of node i is updated by adding job u's load, assigning the newborn job to the loal node.2. Seond, a migration is to be initiated if node i's load is overloaded. Node i is overloaded, if: (1) its loadis the highest; and (2) the ratio between its load and the average load aross the system is greater thana threshold, whih is set to 1.25 in our experiments. This optimal value, whih is onsistent with theresult reported in [25℄, is obtained from an experiment where the threshold is varied from 1.0 to 2.0.3. Third, a andidate node j with the lowest load is hosen. In the ase where there are more than twonodes with the lowest load, we randomly selet one node to break the tie. If a andidate node is notavailable, WAL-FC will be terminated and no migration will be arried out.4. Fourth, WAL-FC determines if job u is eligible for migration. A job is eligible for migration if itsmigration is able to potentially redue the job's slowdown.5. Finally, job u is migrated to the remote node j, and the load of nodes i and j is updated in aordanewith job u's load.WAL-FC alulates the weighted average load index in the �rst step. The load index of eah node i isde�ned as the weighted average of CPU and I/O load, thus:load(i) = WCPU × loadCPU (i) + WIO × loadIO(i), (4.1)where loadCPU (i) is CPU load de�ned as the number of running jobs and loadIO(i) is the I/O load de-�ned as the summation of the individual impliit and expliit I/O load ontributed by jobs assigned to



98 X. Qin et al.node i. WCPU and WIO are resoure weights used to indiate the signi�ane of the orresponding re-soure.It is noted that the memory load is expressed by the impliit I/O load imposed by page faults. Let lpage(i, u)and lIO(i, u) denote the impliit and expliit I/O load of job u assigned to node i, respetively. loadIO(i) anbe de�ned by equation 4.2, where Mi is a set of jobs running on node i:loadIO(i) =
∑

u∈Mi

lpage(i, u) +
∑

u∈Mi

lIO(i, u). (4.2)Let rMEM (u) denote the memory spae requested by job u, and nMEM (i) represent the memory spae inbytes that is available to all jobs running on node i. It is to be noted that the memory spae, nMEM (i), anbe on�gured in aordane with the bu�er size that is adaptively tuned by the feedbak ontrol mehanismproposed in Setion 4.2. When the node's available memory spae is larger than or equal to the memory demand,there is no impliit I/O load imposed on the disk. Conversely, when the memory spae of a node is unable tomeet the memory requirements of the jobs, the node enounters a large number of page faults, leading to a highimpliit I/O load. Impliit I/O load depends on three fators, namely, the available user memory spae, thepage fault rate, and the memory spae requested by the jobs assigned to node i. More preisely, lpage(i, u) anbe de�ned as follows, where µi denotes the page fault rate of the node, and loadMEM (i) is the memory loaddenoted as the sum of the memory requirements of the jobs running on node i.
lpage(i, u) =

{

0 if loadMEM (i) ≤ nMEM (i),
µi×

P

v∈Mi
rMEM (v)

nMEM (i) otherwise. (4.3)
lIO(i, u) in Equation 4.2 is a funtion of I/O aess rate, denoted λu), and I/O bu�er hit rate h(i, u) thatwill be disussed in Setion 4.1. Thus, lIO(i, u) is approximated by the following expression:

lIO(i, u) = λu × (1 − h(i, u)). (4.4)In what follows, we quantitatively determine whether a job is eligible for migration. When a job u isassigned to node i, its expeted response time r(i, u) an be omputed in Equation 4.5.
r(i, u) = tu × E(Li) + tu × λu × E(si

disk +
Λi

disk × E((si
disk)2)

2(1 − ρi
disk)

), (4.5)where tu and λu are the omputation time and I/O aess rate of job u, respetively. E(si
disk) and E((si

disk)2)are the mean and mean-square I/O servie time in node i, and ρi
disk is the utilization of the disk in node i.

E(Li) represents the mean CPU queue length Li, and Λi
disk denotes the aggregate I/O aess rate in node i.Sine the expeted response time of an eligible migrant on the soure node has to be greater than the sum ofits expeted response time on the destination node and the migration ost, job u is eligible for migration if:

r(i, u) > r(j, u) + cu, (4.6)where j represents a destination node, and cu is the migration ost (time) modeled as follows,
cu = e + du × (
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), (4.7)where e is the �xed ost of migrating the job and loading it into the memory on another node, b
ij
net denotes theavailable bandwidth of the network link between node i and j, bi

disk is the available disk bandwidth in node i.In pratie, b
ij
net and b

j
disk an be measured by a performane monitor [3℄. Aordingly, the simulator disussedin Setion 5 estimates b

ij
net and b

j
disk by storing the most reent values of the disk and network bandwidth. durepresents the amount of data initially stored on disk to be proessed by job u. Thus, the seond term on theright hand side of Equation 4.7 represents the migration time spent on transmitting data over the network andon aessing soure and destination disks.



A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 994.2. Problem Desription and Examples. The feedbak ontrol mehanism that aims at minimizingthe mean slowdown fouses on adjusting the resoure weights and the bu�er sizes. To help desribe the problemof �xed resoure weights and I/O bu�er sizes, we �rst present the following examples that motivate the proposedsolution to improve the system performane.Assume a luster with six idential nodes [9, 17, 26, 27℄, to whih the IO load-balaning poliy is applied.The average page-fault rate and I/O aess rate are hosen to be 2.0 No./ms (Number/Milliseond) and 2.8No./ms, respetively. The total memory size for eah node is 640 Mbyte, and other parameters of the lusterare given in Setion 5.1. We modi�ed the traes used in [9, 27℄, adding a randomly generated I/O aess rate toeah job. The traes used in [9℄ have been olleted from one workstation on six di�erent time intervals. In thetraes used in our experiments, the CPU and memory demands remain unhanged, and the memory demandof eah job is hosen based on a Pareto distribution with the mean size of 4 Mbytes [27℄.To evaluate the impat of resoure weights (see Equation 4.1) on the system performane, we onduted asimulation experiment where the resoure weights were statially set. Figure 4.1 plots the relationship betweenthe resoure weight of I/O and the mean slowdown experiened by all the jobs in the trae. The result indiatesthat the mean slowdown onsistently dereases as the I/O resoure weight inreases from 0 to 1 with inrementsof 0.2. We attributed this observation to the fat that, under I/O-intensive workload onditions, the I/Oresoure weight with a high value is able to aurately re�et the signi�ane of the disk I/O resoures in thesystem.
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Fig. 4.1. Mean slowdowns as a funtion of the I/O re-soure weight. Average page-fault rate = 2.0No./ms, averageI/O aess rate = 2.8 No./ms.
0

10

20

30

40

50

60

110 160 210 260 310 360
Buffer Size (MByte)

Mean Slowdown

Fig. 4.2. Mean slowdowns as a funtion of the bu�er size.Average page-fault rate is 5.0 No./ms, average I/O aess rateis 2.3No./msThe memory of eah node is divided into two portions, with one serving as I/O bu�er and the other beingused to store working sets of running jobs. Without loss of generality, we assume that the bu�er sizes of sixnodes are idential. We onduted a seond experiment, in whih the bu�er sizes were statially on�gured.Figure 4.2 shows the bu�er size hosen in the experiment and the orresponding mean slowdowns obtained fromthe simulator.The urve in Figure 4.2 reveals that the bu�er size has a large e�et on the mean slowdowns of the IO-awarepoliy. When bu�er size is smaller than 210 MByte, the slowdown dereases with the inreasing value of thebu�er size. In ontrast, the slowdown inreases as the bu�er size inreases if the bu�er size is greater than 210MByte. Optimally, the mean slowdown of this given workload reahes the minimum value when bu�er size is210 MByte. A large bu�er size results in a high bu�er hit rate and redues I/O proessing time, thereby ausinga positive e�et on the performane. On the other hand, given a �xed value of the total available main memorysize, a larger bu�er size implies a smaller the amount of memory used to store the working sets of runningjobs, whih in turn leads to a larger number of page faults. In general, a large bu�er size may introdue bothpositive and negative e�et on the mean slowdown at the same time, and the overall performane depends onthe resultant e�et.Although the stati on�guration of resoure weights and bu�er sizes is an approah to tuning the per-formane of lusters where workload onditions an be modeled and predited, this approah performs poorlyand ine�iently for highly dynami environments where workloads are unknown at ompile time. Therefore, afeedbak ontrol algorithm is developed in this study to adaptively on�gure resoure weights and bu�er sizes.



100 X. Qin et al.4.3. A Feedbak Control Mehanism. The high level view of the arhiteture for the feedbak ontrolmehanism is presented in Figure 4.3, where the arhiteture omprises a load-balaning sheme, a resoures-sharing ontroller, and a feedbak ontroller. The resoure-sharing ontroller onsists of a CPU sheduler, amemory alloator and an I/O ontroller. The slowdown of a newly ompleted job and the history slowdownsare fed bak to the feedbak ontroller, whih then determines the required ontrol ation ∆WIO and ∆bufsize.
∆WIO > 0 means the IO-weight needs to be inreased, and otherwise the IO-weight should be dereased. Sinethe sum of WCPU and WIO is 1, the ontrol ation ∆WCPU an be obtained aordingly. Similarly, ∆bufsize > 0means the bu�er size needs to be inreased, and otherwise the bu�er size is to be dereased.
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Fig. 4.3. Arhiteture of the feedbak ontrol mehanismThe �rst goal of the feedbak ontroller is to manipulate the resoure weights in a way that makes it possibleto minimize the mean slowdown of jobs. The system model for an open loop balaner is approximately givenby the following equation, slowdown(z) = −wg(L)WIO(z) + wd(L), (4.8)where wg(L) and wd(L) are the gain fator and disturbane fator of the I/O resoure weight under workload L,respetively. The values of wg and wd largely depend on workload onditions and the applied load-balaningpoliy. Thus, wg and wd an be obtained based on simulation models for open-loop load balaners. The ontrolrule for the resoure weight is formally modeled below,
∆WIO,u = Gw(1 −

Su

Su−1

)
∆WIO,u−1

|∆WIO,u−1|
, (4.9)

WIO,u = WIO,u−1 + ∆WIO, (4.10)where ∆WIO,u is the ontrol ation, Su denotes the average slowdown, ∆WIO,u−1

|∆WIO,u−1|
indiates whether the previousontrol ation has inreased or dereased the resoure weight, and Gw denotes the ontroller gain for the I/Oresoure weight. In the experiments presented shortly in the next setion, Gw is tuned to be 0.5 for betterperformane. Let WIO,u be the resoure weight upon the arrival of job at the system, the resoure weight willbe updated to WIO,u−1 + ∆WIO. Without loss of generality, we make use of a linear model to apture theharateristis of varying workload onditions. The model is given by the following equation,slowdown(z) = −wg0(L)WIO(z) + wd0 + ∆wd, (4.11)The feedbak ontroller attempts to manipulate the resoure weights in the following three steps. First,when a job u is aomplished, the ontroller alulates the slowdown su of this newly ompleted job, Seond,

su is stored in the slowdown history table, and the average slowdown Su is omputed aordingly. Note that
Su re�ets a spei� pattern of the reent slowdowns in the dynami workload. The table size is a tunableparameter, and the oldest slowdown will be replaed by the latest one if the history table over�ows. In oursimulation model presented in Setion 5.1, the history table size is �xed to 50. Finally, the ontroller generates



A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 101ontrol ations ∆WIO,u and ∆WCPU,u, whih are based on the previous ontrol ation along with the omparisonbetween Su and Su−1. More preisely, the performane is regarded to be improved by the previous ontrol ationif Su−1 > Su, therefore the ontroller ontinues inreasing WIO if it has been inreased by the previous ontrolation, otherwise WIO is dereased. Similarly, Su−1 < Su means that the performane has been worsened sinethe latest ontrol ation, suggesting that WIO has to be inreased if the previous ontrol ation has redued
WIO, and vie versa.Besides on�guring the weights, the seond goal of the feedbak ontrol mehanism is to dynamially setthe bu�er size of eah node based on the unpreditable workload. The mehanism is aiming at improving bu�erutilizations and reduing the number of page faults by maintaining an e�etive usage of memory spae forrunning jobs and their data.We an derive the slowdown based on a model that aptures the orrelation between the bu�er size and theslowdown. For simpliity, the model an be onstruted as follows,slowdown(z) = −bg(L)bufsize(z) + bd(L), (4.12)where bg(L) and bd(L) are the bu�er size gain fator and disturbane fator under workload L, respetively.The ontrol rule for bu�er sizes is formulated as,

∆bufsizeu = Gb(Su−1 − Su)
∆bufsizeu−1

|∆bufsizeu−1|
, (4.13)where ∆bufsizeu is the ontrol ation, ∆bufsizeu−1

|∆bufsizeu−1
| indiates whether the previous ontrol ation has inreasedor dereased the resoure weight, and Cb denotes the ontroller gain. Gw is tuned to be 0.5 in order todeliver better performane. Let bufsizeu−1 be the urrent bu�er size, the bu�er size is alulated as bufsizeu =bufsizeu−1 + ∆bufsizeu.As an be seen from 4.3, the feedbak ontrol generates ontrol ation ∆bufsize in addition to ∆WCPU and

∆WIO. The adaptive bu�er size makes notieable impats on both the memory alloator and I/O ontroller,whih in turn a�et the overall performane (See Figure 4.2). The feedbak ontroller generates a ontrol ation
∆bufsize based on the previous ontrol ation along with the omparison between Su and Su−1. Spei�ally,
Su−1 > Su, means the performane is improved by the previous ontrol ation, thereby inreasing the bu�er sizeif it has been inreased by the previous ontrol ation, otherwise the bu�er size is redued. Likewise, Su−1 < Su,indiates that the latest bu�er ontrol ation leads to a worse performane, implying that the bu�er size hasto be inreased if the previous ontrol ation has redued the bu�er size, otherwise the ontroller dereases thebu�er size.The extra time spent in performing feedbak ontrol is negligible and, therefore, the overhead introdued bythe feedbak ontrol mehanism is ignored in our simulation experiments. The reason is beause the omplexityof the mehanism is low, and it takes a onstant time to make a feedbak ontrol deision.5. Experiments and Results. To evaluate the performane of the proposed load-balaning sheme witha feedbak ontrol mehanism, we have onduted a trae-driven simulation, in whih the performane metriused is slowdown that is de�ned earlier in setion 3. We have evaluated the performane of the followingload-balaning poliies:1. CM: the CPU-memory-based load-balaning poliy [27℄ without using bu�er feedbak ontroller. If thememory is imbalaned, CM assigns the newly arrived job to the node that has the least aumulatedmemory load. When CPU load is imbalane and memory load is well balaned, CM attempts to balaneCPU load.2. IO: the IO-based poliy [11℄ without using the feedbak ontrol mehanism. The IO poliy uses a loadindex that represents only the I/O load. For a job arriving in node i, the IO sheme greedily assignsthe job to the node that has the least aumulated I/O load.3. WAL: the Weighted Average Load-balaning sheme without the feedbak ontroller [21℄.4. WAL-FC: the Weighted Average Load-balaning sheme with the feedbak ontrol mehanism.5. NLB: The non-load-balaning poliy without using the feedbak ontroller.5.1. Simulation Model. Before presenting the empirial results, the trae-driven simulation model andthe workload are presented.



102 X. Qin et al.To study dynami load balaning, Harhol-Balter and Downey [9℄ implemented a trae-driven simulatorfor a distributed system with 6 nodes in whih round-robin sheduling is employed. The load balaning poliystudied in that simulator is CPU-based. Zhang et. al [27℄ extended the simulator, inorporating memoryreourses into the simulation system. Based on the simulator presented in [27℄, our simulator inorporatesthe following new features: (1) The above polies are implemented in the simulator. (2) The interonnet isassumed to be a fully onneted network. (3) A simple disk model is added into the simulator. (4) An I/O bu�ermodel, whih will be presented shortly in this setion, is implemented on top of the disk model. The traes usedin the simulation are modi�ed from [9℄[27℄, and it is assumed that the I/O aess rate is randomly hosen inaordane with a uniform distribution. We assume that the I/O aess rate of eah job is independent of thejob's memory spae requirement and CPU servie time. Although this simpli�ation de�ates any orrelationsbetween I/O requirement and other job harateristis, we an examine the impat of I/O requirement onsystem performane by on�guring the mean I/O aess rate as a workload parameter.The simulated system is on�gured with parameters listed in Table 5.1. The parameters for CPU, memory,disks, and network are hosen in suh a way that they resemble a typial luster of the urrent day.Table 5.1Data CharateristisParameters Value Parameters ValueCPU Speed 800 MIPS Page Fault Servie Time 8.1 msRAM Size 640 MByte Seek and Rotation time 8.0 msInitial Bu�er Size 160 MByte Disk Transfer Rate 40MB/Se.Context swith time 0.1 ms Network Bandwidth 1GbpsDisk aesses of eah job are modeled as a Poisson proess. Data sizes dRW
u of the I/O requests in job uare randomly generated based on a Gamma distribution with the mean size of 250 KByte and the standarddeviation of 50 Kbyte. The sizes hosen in this way re�et typial data harateristis for MPEG-1 data [2℄,whih is retrieved by many multimedia appliations.Sine bu�er an be used to redue the disk I/O aess frequeny (See Equation 4.4), we approximatelymodel the bu�er hit probability of I/O aess for job u running on node i by the following formula:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
ru

ru+1 ×
dbuf (i,u)
ddata(u) otherwise, (5.1)where ru is the data re-aess rate, dbuf (i, u) is the bu�er size alloated to job u, and ddata(u) is the amountof data job u retrieves from or stored to the disk, given a bu�er with in�nite size. I/O bu�er in a node is aresoure shared by multiple jobs in the node, and the bu�er size a job an obtain in node i at run time heavilydepends on the jobs' aess patterns, haraterized by I/O aess rate and average data size of I/O aesses.

ddata(u) linearly depends on aess rate, omputation time and average data size of I/O aesses dRW
u , and

ddata(u) is inversely proportional to I/O re-aess rate. dbuf (i, u) and ddata(u) are estimated using the followingtwo equations:
dbuf (i, u) =

λudRW
u dbuf (i)

∑

k∈Mi
λkdRW

u

, (5.2)
ddata(u) =

λutudRW
u

ru + 1
. (5.3)From Equations 5.1, 5.2 and 5.3, hit rate h(i, u) beomes:

h(i, u) =

{

ru

ru+1 if dbuf (i, u) ≥ ddata(u),
rudbuf (i)

tu

P

j∈Mi
λjdRW

j

otherwise. (5.4)Figure 5.1 shows the e�ets of bu�er size on the bu�er hit probabilities of the NLB, CM and IO poliies.When bu�er size is smaller than 150 Mbyte, the bu�er hit probability inreases almost linearly with the bu�er



A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 103size. The inreasing rate of the bu�er hit probability drops when the bu�er size is greater than 150 Mbyte,suggesting that further inreasing the bu�er size an not signi�antly improve the bu�er hit probability whenthe bu�er size approahes to a level at whih a large portion of the I/O data an be aommodated in thebu�er.
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Fig. 5.1. Bu�er Hit Probability as a funtion of theBu�er Size, page-fault rate is 4.0 No./ms, I/O aess rate is2.2No./ms.
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Fig. 5.2. Mean slowdowns as a funtion of the page-faultrate, I/O aess rate of 0.1 No./ms.5.2. Memory Intensive Workload. To simulate a memory intensive workload, the I/O aess rateis �xed to a omparatively low level of 0.1 No./ms. The page-fault rate is set from 7.2 No./ms to 8.8No./ms with inrements of 0.2 No./ms. The performane of CM is omitted, sine it is very lose to thatof WAL.Figure 5.2 reveals that the mean slowdowns of all the poliies inrease with the page-fault rate. This isbeause as I/O demands are �xed, high page-fault rate leads to a high utilization of disks, ausing longer waitingtime on I/O proessing.When the page-fault rate is high, WAL outperforms IO and NLB, and the WAL-FC has better perfor-mane than both WAL and IO. For example, the WAL poliy redues slowdowns over the IO poliy by upto 37.2% (with an average of 31.5%), and the WAL-FC poliy improves the performane in terms of meanslowdown over IO by up to a fator of 4 (400%). The reason is that the IO poliy only attempts to bal-ane expliit I/O load, ignoring the impliit I/O load that resulted from page faults. When the expliit I/Oload is low, balaning expliit I/O load does not make a signi�ant ontribution to balaning the overall sys-tem load. In addition, NLB is onsistently the worst among the six poliies, sine NLB leaves three sharedresoures extremely imbalaned and does not improve the bu�er utilization by the adaptive on�guration ofbu�er sizes.More interestingly, the poliies that use the feedbak ontrol mehanism algorithm onsiderably improvethe performane over those without employing the feedbak ontroller. For example, WAL-FC improves thesystem performane over WAL by up to 274% (with an average of 220%). Consequently, the slowdowns of NLB,WAL, and IO are more sensitive to the page-fault rate than WAL-FC.5.3. I/O-Intensive Workload. To stress the I/O-intensive workload in this experiment, the I/O aessrate is �xed at a high value of 2.8 No./ms, and the page-fault rate is hosen from 1.6 No./ms to 2.1 No./mswith inrements of 0.1No./ms. The low page-fault rates imply that, even when the requested memory spae islarger than the alloated memory spae, page faults do not our frequently. This workload re�ets a senariowhere memory-intensive jobs exhibit high temporal and spatial loality of aess. Figure 5.3 plots slowdown asa funtion of the page-fault rate. The results of IO are omitted from Figure 5.3, sine they are nearly identialto those of WAL.First, the results show that the WAL sheme signi�antly outperforms the NLB and CM poliies, suggestingthat NLB and CM are not suitable for I/O intensive workload. For example, as shown in Figure 5.3, WALimproves the performane of CM in terms of the mean slowdown by up to a fator of 9 (with an average of476%). This is beause the CM poliies only balane CPU and memory load, ignoring the imbalaned I/O loadof lusters under the I/O intensive workload.
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Fig. 5.3. Mean slowdown as a funtion of the page-fault rate, I/O aess rate is 2.8 No./ms.Seond, Figure 5.3 shows that WAL-FC signi�antly outperforms WAL. For example, WAL-FC delivers aperformane improvement over WAL by up to 282% (with an average of 125%). Again, this is beause the WAL-FC sheme applies the feedbak ontroller to meet the high I/O demands by hanging the weights and the I/Obu�er sizes to ahieve a high bu�er hit probability. This result suggests that improving the I/O bu�er utilizationby using the feedbak ontrol mehanism an potentially alleviate the performane degradation resulted fromthe imbalaned I/O load.Third, the results further show the slowdowns of NLB and CM are very sensitive to the page-fault rate.In other words, the mean slowdowns of NLB and CM all inrease notieably with the inreasing value ofI/O load. One reason is, as I/O load are �xed, a high page-fault rate leads to high disk utilization, aus-ing longer waiting time on I/O proessing. A seond reason is, when the I/O load is imbalaned, the ex-pliit I/O load imposed on some node will be very high, leading to a longer paging fault proessing time.Conversely, the page-fault rate makes insigni�ant impat on the performane of WAL, and WAL-FC. Sinethe high I/O load imposed on the disks is diminished either by balaning the I/O load or by improvingthe bu�er utilization. This observation suggests that the feedbak ontrol mehanism is apable of boostingthe performane of lusters under I/O-intensive workload even in the absene of any dynami load-balaningshemes.5.4. Memory and I/O intensive Workload. The two previous setions presented the best ases forthe proposed sheme sine the workload was either highly memory-intensive or I/O-intensive but not both. Inthese extreme senarios, the feedbak ontrol mehanism provides more bene�ts to lusters than load-balaningpoliies do. This setion attempts to show another interesting ase in whih the luster has a workload withboth high memory and I/O intensive jobs. The I/O aess rate is set to 1.5 No./ms. The page fault rate isfrom 7.2 No./ms to 8.4 No./ms with inrements of 0.2 No./ms.Figure 5.4 shows that the performanes of CM, IO, and WAL are lose to one another. This is beausethe trae, used in this experiment, omprises a good mixture of memory-intensive and I/O-intensive jobs.Hene, while CM takes advantage of balaning CPU-memory load, IO an enjoy bene�ts of balaning I/Oload. Interestingly, under this spei� memory and I/O intensive workload, the resultant e�et of balaningCPU-memory load is almost idential to that of balaning I/O load.A seond observation is that, under the memory and I/O intensive workload, load-balaning shemes ahievehigher level of improvements over NLB. The reason is that when both memory and I/O demands are high, thebu�er sizes in a luster are unlikely to be hanged, as there is a memory ontention among memory-intensiveand I/O-intensive jobs. Thus, instead of �utuating widely to optimize the performane, the bu�er sizes �nallyonverge to a value that minimizes the mean slowdown.Third, inorporating the feedbak ontrol mehanism in the existing load-balaning shemes is able tofurther boost the performane. For example, ompared with WAL, WAL-FC further dereases the slowdownby up to 54.5% (with an average of 30.3%). This result suggests that, to sustain a high performane inlusters, ompounding a feedbak ontroller with an appropriate load-balaning poliy is desirable and stronglyreommend.



A Feedbak Control Mehanism for Balaning I/O- and Memory-Intensive Appliations 105
0

10

20

30

40

50

60

70

80

90

100

7.2 7.4 7.6 7.8 8 8.2 8.4

NLB
CM
IO
WAL
WAL-FC

Number of Page Fault Per Millisecond

Mean Slowdown
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Fig. 5.5. Mean slowdown as a funtion of the size ofaverage data size. Page fault rate is 0.5 No./ms, and I/O rateis 2.6 No./ms.5.5. Average Data Size. In the previous experiments, the data sizes are hosen based on typial mul-timedia appliations. It is noted that I/O load depends on I/O aess rate and the average data size of I/Orequests, whih in turn rely on the I/O aess patterns of appliations. The purpose of this experiment is tostudy the performane improvements ahieved by the feedbak ontrol mehanism for other types of applia-tions if they exhibit di�erent harateristis. Spei�ally, Figure 5.5 shows the impat of average data size onthe performane of the feedbak ontrol mehanism. The page fault rate and the I/O aess rate are set to0.5 No./ms and 2.6 No./ms., respetively. The average data size is hosen from 100 KByte to 400 KByte withinrements of 50 KByte.Figure 5.5 indiates that, for three examined load-balaning poliies, the mean slowdown inreases as theaverage data size inreases. This is beause, under irumstane that both page fault rate and I/O aessrate are �xed, a large average data size yields a high utilization of disks, ausing longer waiting times on I/Oproessing. More importantly, Figure 5.5 shows that the performane improvement gained by the feedbakontrol mehanism beomes more notieable when the average data size is large. This result suggests that theproposed approah is not only bene�ial for multimedia appliations, but also turns out to be useful for a varietyof appliations that are data intensive in nature.6. Conlusions. In this paper, we have proposed a feedbak ontrol mehanism to dynamially adjustthe weights of reourses and the bu�er sizes in a luster with a general and pratial workload that inludesmemory and I/O intensive workload onditions. The primary objetive of the proposed approah is to minimizethe number of page faults for memory-intensive jobs while improving the bu�er utilization of I/O-intensivejobs. The feedbak ontroller judiiously on�gures the weights to ahieve an optimal performane. Meanwhile,under a workload where the memory demand is high, the bu�er sizes are dereased to alloate more memoryfor memory-intensive jobs, thereby leading to a low page-fault rate.To evaluate the performane of the mehanism, we ompared the proposed WAL-FC sheme with WAL,CM, and IO. For omparison purposes, the NLB poliy that does not onsider load balaning is also simu-lated. A trae-driven simulation provides extensive empirial results demonstrating that WAL-FC is e�etivein enhaning performane of existing dynami load-balaning poliies under memory-intensive or I/O-intensiveworkload. In partiular, when the workload is memory-intensive, WAL-FC redues the mean slowdown overthe CM and IO poliies by up to a fator of 9. Further, we have made the following observations:1. When the page-fault rate is higher and the I/O rate is very low, WAL and CM outperform IO andNLB, and WAL-FC has better performane than WAL;2. When I/O demands are high, WAL and IO are signi�antly superior to CM and NLB. And WAL-FChas notieably better performane than that of IO;3. Under an I/O intensive workload, the mean slowdowns of NLB and CM all inrease notieably withI/O load. Conversely, the page-fault rate makes insigni�ant impat on the performane of IO, WAL,and WAL-FC.4. Under the workload with a good mixture of memory and I/O intensive jobs, WAL-FC ahieves highlevel of improvements over NLB.
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