
Scalable Computing: Practice and Experience

Volume 7, Number 3, pp. 1–8. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

EMPIRICAL PARALLEL PERFORMANCE PREDICTION FROM SEMANTICS-BASED

PROFILING

NORMAN SCAIFE∗, GREG MICHAELSON† , AND SUSUMU HORIGUCHI‡

Abstract. The PMLS parallelizing compiler for Standard ML is based upon the automatic instantiation of algorithmic skeletons
at sites of higher order function (HOF) use. Rather than mechanically replacing HOFs with skeletons, which in general leads to
poor parallel performance, PMLS seeks to predict run-time parallel behaviour to optimise skeleton use.

Static extraction of analytic cost models from programs is undecidable, and practical heuristic approaches are intractable.
In contrast, PMLS utilises a hybrid approach by combining static analytic cost models for skeletons with dynamic information
gathered from the sequential instrumentation of HOF argument functions. Such instrumentation is provided by an implementation
independent SML interpreter, based on the language’s Structural Operational Semantics (SOS), in the form of SOS rule counts.
PMLS then tries to relate the rule counts to program execution times through numerical techniques.

This paper considers the design and implementation of the PMLS approach to parallel performance prediction. The formulation
of a general rule count cost model as a set of over-determined linear equations is discussed, and their solution by single value
decomposition, and by a genetic algorithm, are presented.

Key words. Parallel computation, profiling, performance prediction, program transformation.

1. Introduction. The optimal use of parallel computing resources depends on placing processes on pro-
cessors to maximise the ratio of processing to communication, and to balance loads, to ensure that all processors
are maximally and gainfully occupied. These two requirements are strongly related: moving processing from one
processor to another in search of load balance changes inter-processor communication patterns. However, in the
absence of standard methodologies or generic support tools, process/processor placement remains something of
a black art, guided primarily by empirical experimentation on the target architecture. This can be a long and
painstaking activity, which ties up scarce, costly parallel resources at the expense of other users. It would be
most desirable to develop analytic techniques to guide process placement which do not depend on direct use of
the target system.

Process placement is greatly simplified given accurate measures of individual process communication and
processing behaviour. However, such measures, like most interesting properties of programs, are in general
undecidable. The only alternative is to use to some mix of approximative techniques for static and dynamic
analysis.

One approach is to focus on general patterns of processing with known behavioural characteristics. For
parallel programming, Cole’s algorithmic skeletons [9] form a popular class of patterns, including the data
parallel task farm and the binary tree structured divide and conquer. Here, simple analytic cost models have
been constructed which give good predictions of parallel behaviour when instantiated appropriately [18].

Alas, this just pushes the problem down a level as it is still necessary to characterise the task specific
behaviours that such patterns are to be populated with. For non-conditional and non-repetitive program
fragments, precise measures may be found through static cost modeling. However, in the more general cases,
either approximative static analyses or empirical measures must still be used.

Static methods such as computational complexity analysis [12] or microanalysis [8] break down in the
presence of conditional and repetitive constructs. Computational complexity analysis implementations are
often limited to libraries of known instances in these cases. Microanalysis has similar limitations, requiring the
solutions to sets of difference equations which, in turn, lack direct analytic solutions.

Dynamic measures may be based on sampling and counting methods. Sampling is where the program is
interrupted at regular intervals and a picture of where processing is concentrated can be built up. This has
been used for Standard ML [4]. Counting is where passage through specific points in the program are recorded.
Examples of this are used in the PUFF compiler [7] and the SkelML compiler [6].

∗LASMEA, Blaise Pascal University, Les Cezeaux, F-63177 Aubiere cedex, France,
(Norman.Scaife@lasmea.univ-bpclermont.fr).

†Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS,
(G.Michaelson@hw.ac.uk).

‡Department of Computer Science, Graduate School of Information Sciences, Tohoku University, Aobayama 6-3-09, SENDAI
980-8579, JAPAN, (susumu@ecei.tohoku.ac.jp).

1

2 N. Scaife, G. Michaelson and S. Horiguchi

Whatever technique is used to cost a program, the final measure must be related back to an actual perfor-
mance on the target architecture. Typically, both static and empirical measures give counts of features, such as
the presence of known operations, or behaviours, such as the number of times a construct is carried out. The
equivalent costs on the target architecture may be established in terms of individual CPU instructions, either
by direct instrumentation or from manufacturer’s specifications. This approach gives accurate predictions from
sequential profiling but is highly implementation dependent.

An alternative is to time representative programs on the target architecture and relate the times back to the
modeled costs. This offers a high degree of implementation independence but requires well chosen exemplars
and, like rule counting, is very dependent on the test data.

2. Background. The PMLS (Parallelising ML with Skeletons) compiler for Standard ML [14] translates
instances of a small set of common higher-order functions (HOFs) into parallel implementations of algorithmic
skeletons [9]. As part of the design of the compiler, we wish to implement performance-improving transforma-
tions guided by dynamic profiling. We contend that the rules that form the dynamic semantics of Standard ML
provide an ideal set of counting points for dynamic profiling since they capture the essence of the computation
at an appropriate level of detail. They also arise naturally during the evaluation of an SML program, eliminat-
ing difficult decisions about where to place counting points. Finally, the semantics provides an implementation
independent basis for counting.

Our approach follows work by Bratvold [6] who used SOS rule counting, plus a number of other costs, to
obtain sequential performance predictions for unnested HOFs. Bratvold’s work was built on Busvine’s sequential
SML to Occam translator for linear recursion [7] and was able to relate abstract costs in the SML prototype to
specific physical costs in the Occam implementation.

Contemporaneous with PMLS, the FAN framework [2] uses costs to optimise skeleton use through trans-
formation. FAN has been implemented within META [1] and applied to Skel-BSP, using BSP cost models and
parameterisations. However, costs of argument functions are not derived automatically.

Alt et al. [3] have explored the allocation of resources to Java skeletons in computational Grids. Their
skeleton cost models are instantiated by counting instruction executions in argument function byte code and
applying an instruction timing model for the target architecture. As in PMLS, they solve linear equations of
instruction counts from sequential test program runs to establish the timing model. However, the approach
does not seem to have been realised within a compiler.

Hammond et al. [11] have used Template Haskell to automatically select skeleton implementations using
static cost models at compile time. This approach requires substantial programmer involvement, and argument
function costs are not derived automatically.

Holger et al. [5] use dynamic measurements from sequential versions to optimize skeleton implementations
but have only applied it to specific algorithms.

The main goal of our work is to provide predictions of sequential SML execution times to drive a transfor-
mation system for an automated parallelizing SML compiler. In principle, purely static methods may be used to
derive accurate predictions, but for very restricted classes of program. From the start, we wished to parallelise
arbitrary SML programs and necessarily accepted the limitations of dynamic instrumentation, in particular
incomplete coverage and bias in test cases leading to instability and inaccuracy in predictions. However, we do
not require predictions to be highly accurate so long they order transformation choices correctly.

In the following sections, we present our method for statistical prediction of SML based on the formal
language definition, along with a set of test programs. We discuss the accuracy of our method and illustrate its
potential use through a simple example program.

3. Semantic rules and performance prediction. SML [15] was one of the first languages to be fully
formally specified. The definition is based on Plotkin’s Structural Operational Semantics (SOS) [16], where
the evaluation of a language construct is defined in terms of the evaluation of its constituent constructs. Such
evaluation takes place in what is termed a background, which usually consists of an environment and a state.
Environments bind identifiers and values, are modified by definitions and are inspected to return the values
of identifiers in expressions. States bind addresses and values, are modified by assignments to references and
inspected to return values from references.

A typical rule has the form:

B1 ⊢ e1 ⇒ v1 . . . Bi ⊢ ei ⇒ vi . . . BN ⊢ eN ⇒ vN

B ⊢ e ⇒ v

Empirical Parallel Performance Prediction 3

This defines the evaluation of language construct e in background B to give result v, in terms of the prior
evaluation of the N constituent constructs ei in backgrounds Bi to give constituent results vi.

For example, the rule for a local definition (93):

E ⊢ dec ⇒ E′ E + E′ ⊢ exp ⇒ v

E ⊢ let dec in exp end ⇒ v

says that if the evaluation of the declaration dec in environment E gives a new environment E′, and the
evaluation of expression exp in the environment E extended with the new environment E′ gives a value v, then
the evaluation of the local definition let dec in exp end in the environment E gives the value v.

Our methodology for dynamic profiling is to set up a dependency between rule counts and program execution
times, and solve this system on a learning-set of programs designated as “typical”.

Suppose there are N rules in an SOS and we have a set of M programs. Suppose that the time for the ith
program on a target architecture is Ti, and that the count for the jth rule when the ith program is run on a
sequential SOS-based interpreter is Rij . Then we wish to find weights Wj to solve:

R11W1 + R12W2 + . . . + R1NWN = T1

R21W1 + R22W2 + . . . + R2NWN = T2

. .

RM1W1 + RM2W2 + . . . + RMNWN = TM

such that given a set of rule counts for a new program P we can calculate a good prediction of the time on the
target architecture TP from:

RP1W1 + RP2W2 + . . . + RPNWN = TP

This linear algebraic system can be expressed in matrix form as:

RW = T(3.1)

Then given a set of rule counts for a new program P we can calculate a good prediction of the time on the
target architecture TP from:

RP1W1 + RP2W2 . . . + RPNWN = TP(3.2)

These are then substituted into the skeleton cost model for skeleton S. For the currently supported list
HOFs map and fold of function f over list L, the models take the very simple form, parallel cost:

CostS = C1 ∗ size(L) + C2 ∗ size(TX) + C3 ∗ size(RX) + C4 ∗ Tf(3.3)

where TX is the message required to transmit the arguments to function f, RX is the message returning the
result of f and Tf is the time to process f. The coefficients C1 . . . C4 are determined by measurements on the
target architecture, over a restricted range of a set of likely parameters[19]. We then deploy a similar fitting
method to this data, relating values such as communications sizes and instance function execution times to
measured run-times.

4. Solving and predicting. We have tried to generate a set of test programs which, when profiled,
include all of the rules in the operational semantics which are fired when our application is executed. We have
also tried to ensure that these rules are as closely balanced as possible so as not to bias the fit towards more
frequently-used rules.

We have divided our programs into a learning and a test set. The learning set consists of 99 “known”
programs which cover a fair proportion of the SML language. These include functions such as mergesort,
maximum segment sum, regular expression processing, random number generation, program transformation,
ellipse fitting and singular value decomposition.

The test set consists of 14 “unknown” programs which, in turn, represent a fair cross-section of the learning
set in terms of the sets of rules fired and the range of execution times. These include polynomial root finding,

4 N. Scaife, G. Michaelson and S. Horiguchi

least-squares fitting, function minimisation and geometric computations. The test set was generated by classi-
fying the entire set of programs according to type (e.g. integer-intensive computation, high-degree of recursion)
and execution time. A test program was then selected randomly from each class.

To generate the design matrix R, we take the rule counts Rtd
i and execution time T td

i for top level declaration
number td. The first timing T 0

i in each repeat sequence is always ignored reducing the effect of cache-filling.
The execution times T ti

i are always in order of increasing number of repeats such that T x
i < T

y
i for x < y. Using

this and knowing that outliers are always greater than normal data we remove non-monotonically increasing
times within a single execution. Thus if T td−1

i < T td
i < T td+1

i then the row containing T td
i is retained in the

design matrix. Also, to complete the design matrix, rules in Rall which are not in Rtd
i are added and set to

zero.
Some rules can be trivially removed from the rule set such as those for type checking and nesting of

expressions with atomic expressions. These comprise all the rules in the static semantics. However, non-
significant rules are also removed by totaling up the rule counts across the entire matrix. Thus for rule rx and
a threshold θ, if:

n∑

i=0

ti∑

j=0

R
j
i [rx].c < θ

n∑

i=0

ti∑

j=0

R
j
i [rmax].c(4.1)

rmax is the most frequent rule and R
j
i [rk].c means the count for rule rk in the list of rule counts R

j
i . Thus rules

with total counts less than a threshold value times the most frequently fired rule’s total count have their columns
deleted from the rule matrix R. This threshold is currently determined by trial and error. The execution time
vector Tn is generated from the matching execution times for the surviving rows in the rule matrix.

Fitting is then performed and the compiler’s internal weights updated to include the new weights. Per-
formance prediction is then a simple application of Equation 3.1, where R is the set of rules remaining after
data-workup and W is the set of weights determined by fitting. For verification, the new weights are applied to
the original rule counts giving reconstructed times Trecon and are compared with the original execution times
Tn.

Once the design matrix is established using the learning set, and validated using the test set, we can then
perform fitting and generate a set of weights. We have experimented with singular value decomposition (SVD)
to solve the system as a linear least-squares problem [17]. We have also adapted one of the example programs
for our compiler, a parallel genetic algorithm (GA) [13], to estimate the parameters for the system.

5. Accuracy of fitting. Our compilation scheme involves translating the Standard ML core language as
provided by the ML Kit Version 1 into Objective Caml, which is then compiled (incorporating our runtime C
code) to target the parallel architecture. We have modified the ML Kit, which is based closely on the SML SOS,
to gather rule counts directly from the sequential execution of programs. The ML Kit itself has evolved into a
sophisticated compiler with profiling tools but the effort which would be required to incorporate our existing
system into the current implementation of the ML Kit would be prohibitive. For cleaner sources, however, we
would consider Hamlet1 which is intended as a reference implementation of the SML definition.

Using an IBM RS/6000 SP2, we ran the 99 program fragments from the learning set using a modest
number of repeats (from 10 to about 80, depending upon the individual execution time). After data cleanup,
the resulting design matrix covered 41 apply functions2 and 36 rules from the definition, and contained 467
individual execution times.

Applying the derived weights to the original fit data gives the levels of accuracy over the 467 measured
times shown in Figure 5.1. This table presents a comparison of the minimum, maximum, mean and standard
deviation of the measured and reconstructed times for both fitting methods. The same summary is applied to
the percentage error between the measured and reconstructed times.

First of all, the errors computed for both the learning and test sets look very large. However, an average
error of 25.5% for SVD on the learning set is quite good considering we are estimating runtimes which span a
scale factor of about 104. Furthermore, we are only looking for a rough approximation to the absolute values.
When we apply these predictions in our compiler it is often the relative values which are more important and
these are much more accurate although more difficult to quantify.

1http://www.ps.uni-sb.de/hamlet/
2Apply functions are external primitive functions called by the SML core language.

Empirical Parallel Performance Prediction 5

Fit χ
2 Time (s) Min Max Mean Std. Dev.

Learning x Measured 5.11×10−6 0.00235 0.000242 0.000425
Set SVD 4.1×10−7 Reconstructed -2.65×10−6 0.00239 0.000242 0.000424

% Error 0.00571% 267.0% 25.5% 41.3%
GA 4.9×10−5 Reconstructed 5.98×10−8 0.00163 0.000179 0.000247

% Error 0.00977% 1580.0% 143.0% 249.0%
Test Set x Measured 8.61×10−6 0.0399 0.00221 0.0076

SVD Reconstructed -8.06×10−5 0.0344 0.00195 0.00656
% Error 0.756% 836.0% 158.0% 208.0%

GA Reconstructed 1.67×10−7 0.01600 0.000965 0.000304
% Error 1.56% 284.0% 67.9% 71.1%

Fig. 5.1. Summary of fit and prediction accuracy

The SVD is a much more accurate fit than GA as indicated by the χ2 value for the fit. However, the SVD
fit is much less stable than the GA fit as evidenced by the presence of negative reconstructed times for SVD.
This occurs at the very smallest estimates of runtime near the boundaries of the ranges for which our computed
weights are accurate. The instability rapidly increases as the data moves out of this region.

These points are graphically illustrated in Figure 5.2 which shows how the errors are greater for smaller
time measurements and shows the better quality of fit for SVD.

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-13 -12 -11 -10 -9 -8 -7 -6

R
ec

on
st

ru
ct

ed
 ti

m
e

(lo
g

s)

Measured time (log s)

Measured time vs Reconstructed time for SVD

Measured time vs Reconstructed time
exact

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-13 -12 -11 -10 -9 -8 -7 -6

R
ec

on
st

ru
ct

ed
 ti

m
e

(lo
g

s)

Measured time (log s)

Measured time vs Reconstructed time for GA

Measured time vs Reconstructed time
exact

Fig. 5.2. Quality of fit for SVD and GA

In summary, SVD results in a fast, accurate fit for the given data but is prone to numerical instability3

which limits the range over which the generated weights are valid. The GA, on the other hand, is very slow and
does not result in accurate fits to the given data but is less prone to the problems of numerical instability. GAs
also provide a very simple method of experimenting with constraints, such as forcing the weights to be strictly
positive. Applying linear constraints to SVD is also possible but would require non-trivial modifications to the
existing routine.

6. Performance Prediction Example. As part of the PMLS project we have used proof-planning to
construct a synthesiser which extracts HOFs from arbitrary recursive functions [10]. For example, given the
following program which squares the elements of a list of lists of integers:

fun squares [] = []

| squares ((h:int)::t) = h*h::squares t

fun squs2d [] = []

| squs2d (h::t) = squares h::squs2d t

the synthesizer generates the six programs shown in Figure 6.1. Note that there is no parallelism in this
program suitable for our compiler and we would expect our predictions to validate this.

3By numerical instability we mean large and small coefficients of the fit canceling each other out which gives very accurate fits
within a small region of coefficients but which prevent extrapolation to values of coefficients outside of the range of the test data.
Note that this is not manifested in the spread of points in Figure 5.2 which represents accuracy of fit but not numerical instability.

6 N. Scaife, G. Michaelson and S. Horiguchi

1. val squs2d = fn x => map (fn y => map (fn (z:int) => z*z) y) x

2. val squs2d =

fn x => foldr (fn y => fn z => (map (fn (u:int) => u*u) y::z)) [] x

3. val squs2d =

fn x => map (fn y => foldr (fn (z:int) => fn u => z*z::u) [] y) x

4. val squs2d =

fn x => foldr (fn y => fn z =>

foldr (fn (u:int) => fn v => u*u::v) [] y::z) [] x

5. val squs2d = fn x => map (fn y => squares y) x

6. val squs2d = fn x => foldr (fn y => fn z => squares y::z) [] x

Fig. 6.1. Synthesizer output for squs2d

V Position HOF Rules TSV D TGA Tmeasured

1 outer map 21 2.63 5.56 8.61
inner map 8 0.79 1.40 3.36

2 outer fold 21 4.97 6.01 9.17
inner map 8 0.79 1.40 3.14

3 outer map 20 1.73 7.53 12.6
inner fold 15 12.5 3.66 3.71

4 outer fold 20 4.06 7.98 11.1
inner fold 15 12.5 3.66 3.53

5 single map 19 3.58 3.45 6.65
6 single fold 19 5.91 3.90 7.97

Fig. 6.2. Predicted and measured instance function times (µS)

We require the execution times for the instance functions to the map and foldr HOFs. We have not yet
automated the collection of this data or linked the output from the performance prediction into the compiler
so we present a hand analysis of this code.

Figure 6.2 shows the predicted instance function execution times for the two fitting methods alongside the
actual measured times. The input data is a 5×5 list of lists of integers. The predictions are in roughly the
correct range but differ significantly from the measured times. Despite the greater accuracy of the SVD fit
to the learning-set data, the GA-generated weights give more consistent results compared to actual measured
values. This is due to the numerical instability of the SVD fit. However, these discrepancies are sufficient to
invert the execution times for nested functions. For instance, for Version 3 the inner fold instance function takes
longer than the outer one, even though the outer computation encompasses the inner.

Applying the skeleton performance models to the measured instance function times, plus data on com-
munications sizes gathered from sequential executions, gives the predicted parallel run-times for 1, 2, 4 and 8
processors, shown in Figure 6.3.

The GA- and SVD-predicted instance function times give identical predictions for parallel run-times. This is
because the parallel performance model is in a range where the run-time is dominated by communications rather
than computation. However, the P1 predictions are erroneous. These predictions represent an extrapolation of
a parallel run onto a sequential one which has no overheads such as communication. This also applies to the
P2 predictions, where these overheads are not accurately apportioned. Furthermore, the absolute values of the
predictions are unreliable. For the P8 values, some are accurate but some are out by an order of magnitude.
The most relevant data in this table is the ratio between the P4 and P8 values. This, in most cases, increases
as the number of processors increases, indicating slowdown.

7. Conclusions. Overall, our experimentation gives us confidence that combining automatic profiling with
cost modeling is a promising approach to performance prediction. We now intend to use the system as it stands
in implementing a performance-improving transformation system for a subset of the SML language. As well as
exploring the automation of load balancing, this gives us a further practical way to assess the broader utility of
our approach.

We already have a complex system of compiler pragmas which allow some degree of programmer control
over both the performance prediction and the transformation system. This was instituted to allow debugging

Empirical Parallel Performance Prediction 7

V Position HOF P/M P1 P2 P4 P8

1 outer map P 1.6000 3.230 6.480 12.990
M 0.1423 6.806 5.279 4.910

inner map P 3.2700 4.900 8.150 14.660
M 0.2846 35.200 15.620 14.440

2 outer fold P 7.3700 10.940 18.070 32.340
M 0.1617 4.204 3.101 3.634

inner map P 3.2700 4.900 8.150 14.660
M 0.3040 35.360 14.900 14.940

3 outer map P 1.6000 3.230 6.480 12.990
M 0.2205 7.314 3.923 4.739

inner fold P 14.2000 17.760 24.900 39.170
M 0.3875 26.020 14.570 15.770

4 outer fold P 7.3700 10.940 18.070 32.340
M 0.2344 5.058 2.907 4.047

inner fold P 14.2000 17.760 24.900 39.170
M 0.3907 23.080 13.200 16.110

5 single map P 1.6000 3.230 6.480 12.990
M 0.1375 6.590 4.092 4.570

6 single fold P 7.3700 10.940 18.070 32.340
M 0.1587 4.024 3.002 3.750

Fig. 6.3. Predicted (P) and measured (M) parallel run-times (mS)

and testing of the profiling mechanism but has wider implications for the development process where it could
be useful for example to help the compiler when it is unable to get accurate predictions or gets stuck in the
search space. Note that since our ultimate goal is fully automated parallelism we have not elaborated upon this
point.

While we have demonstrated the feasibility of semantics-based profiling for an entire extant language,
further research is needed to enable more accurate and consistent predictions of performance from profiles. Our
work suggests a number of areas for further study:

• introducing non-linear costs into the system relating profile information and runtime measurements.
The system would no longer be in matrix form and may require the use of generalised function min-
imisation instead of deterministic fitting;

• identifying which semantic rules counts are most significant for predicting run times, through standard
statistical techniques for correlation and factor analyses. Focusing on significant rules would reduce
profiling overheads and might enable greater stability in the linear equation solutions;

• investigating the effects on prediction accuracy of optimisations employed in the back end compiler.
Such optimisations fundamentally affect the nature of the association between the language semantics
and implementation;

• systematically exploring the relationship between profiles and run-times for one or more constrained
classes of recursive constructs, in the presence of both regular and irregular computation patterns. Our
studies to date have been of very simple functions and of unrelated substantial exemplars;

• modeling explicitly aspects of implementation which are subsumed in the semantics notation. In partic-
ular the creation and manipulation of name/value associations are hidden behind the semantic notion
of environment.

Acknowledgement. This work was supported by the Japan JSPS Postdoctoral Fellowship P00778 and
UK EPSRC grants GR/J07884 and GR/L42889.

REFERENCES

[1] M. Aldinucci, Automatic Program Transformation: The META Tool for Skeleton-based Languages, in Constructive Methods
for Parallel Programming, S. Gorlatch and C. Lengauer, eds., vol. 10 of Advances in Computation: Theory and Practice,
NOVA Science, 2002.

8 N. Scaife, G. Michaelson and S. Horiguchi

[2] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelegatti, Towards Parallel Programming by Transformation: The
FAN Skeleton Framework, Parallel Algorithms and Applications, 16 (2001), pp. 87–122.

[3] M. Alt, H. Bischof, and S. Gorlatch, Program Development for Computational Grids Using Skeletons and Performance
Prediction, Parallel Processing Letters, 12 (2002), pp. 157–174.

[4] A. W. Appel, B. F. Duba, and D. B. MacQueen, Profiling in the Presence of Optimization and Garbage Collection, Tech.
Report CS-TR-197-88, Princeton University, Dept. Comp. Sci., Princeton, NJ, USA, November 1987.

[5] H. Bischof, S. Gorlatch, and E. Kitzelmann, Cost optimality and predictability of parallel programming with skeletons,
in Europar 03, vol. 2790 of LNCS, Jan 2003, pp. 682 – 693.

[6] T. Bratvold, Skeleton-based Parallelisation of Functional Programmes, PhD thesis, Dept. of Computing and Electrical
Engineering, Heriot-Watt University, 1994.

[7] D. Busvine, Implementing Recursive Functions as Processor Farms, Parallel Computing, 19 (1993), pp. 1141–1153.
[8] C. Cohen, Computer-Assisted Microanalysis of Programs, Communications of the ACM, 25 (1982), pp. 724–733.
[9] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation, Pitman/MIT, 1989.

[10] A. Cook, A. Ireland, G. Michaelson, and N. Scaife, Discovering Applications of Higher-Order Functions through Proof
Planning, Formal Aspects of Computing, 17 (2005), pp. 38–57.

[11] K. Hammond, J. Berthold, and R. Loogen, Automatic Skeletons in Template Haskell, Parallel Processing Letters, 13
(2003), pp. 413–424.

[12] D. L. Métayer, ACE: An Automatic Complexity Evaluator, ACM TOPLAS, 10 (1988), pp. 248–266.
[13] G. Michaelson and N.Scaife, Parallel functional island model genetic algorithms through nested skeletons, in Proceedings

of 12th International Workshop on the Implementation of Functional Languages, M. Mohnen and P. Koopman, eds.,
Aachen, September 2000, pp. 307–313.

[14] G. Michaelson and N. Scaife, Skeleton Realisations from Functional Prototypes, in Patterns and Skeletons for Parallel and
Distributed Computing, F. Rabhi and S. Gorlatch, eds., Springer, 2003.

[15] R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML, MIT, 1990.
[16] G. D. Plotkin, A Structural Approach to Operational Semantics, Tech. Report DAIMI FN-19, Arrhus University, Denmark,

Sep 1981.
[17] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, CUP, 2nd ed., 1992.
[18] R. Rangaswami, A Cost Analysis for a Higher-Order Parallel Programming Model, PhD thesis, University of Edinburgh,

1995.
[19] N. R. Scaife, A Dual Source, Parallel Architecture for Computer Vision, PhD thesis, Dept. of Computing and Electrical

Engineering, Heriot-Watt University, 1996.

Edited by: Frédéric Loulergue
Received: November 14, 2005
Accepted: February 1st, 2006

