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COMPLEXITY ANALYSIS FOR 4-INPUT/1-OUTPUT FPGAS APPLIED TO MULTIPLIER
DESIGNS

NAZAR ABBAS SAQIB∗

Abstract. Some algorithms are more efficient than others. The complexity of an algorithm is a function describing the efficiency
of the algorithm which has two measures: Space Complexity and Time Complexity. In this paper, we present complexity analysis
for FPGA based designs which is based on 4-input and 1-output LUT structure followed by the majority of FPGA manufacturers.
The same procedure is then applied to Karatsuba-Offman Multiplier (KOM) because of two reasons. Firstly, due to the increased
use of FPGAs especially for security applications, it seems logical to compare various architectures for their efficiencies in FPGAs.
Secondly, for diverse security applications, it provides a prior estimation to hardware resources and achievable timing. We consider
a 4-input and 1-output structure as a basic building block available in majority of FPGAs by different FPGA manufacturers. We
then compare our theoretical and experimental results for KOM in FPGAs which are fairly convincible.

Key words. complexity analysis, field programmable gate arrays (FPGAs), Karatsuba-Ofman multiplier, cryptography,
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1. Introduction. The use of internet for financial applications and electronic commerce has been tremen-
dously increased which has made security a major concern. Public key cryptography [6] provides adequate
security solution to those applications. First introduced in 1976, many algorithms were designed and im-
plemented. The most popular schemes are due to RSA [31], ElGamal [9] and Elliptic Curve Cryptosystems
(ECCs) [17, 23]. The security of these system is based on computational difficulty for solving some mathematical
problems in modular arithmetic, multiplication being the most commonly used and costly operation.

Several quadratic and sub-quadratic space complexity multipliers have been reported in literature. Examples
of quadratic multipliers can be found in [20, 18, 41, 42, 37, 13, 38, 35, 13, 28, 43, 11, 19, 32, 29, 30, 22, 7, 15].
On the other hand, some examples of sub-quadratic multipliers can be found in [24, 3, 25, 26, 12, 33, 36, 5,
10, 8, 40, 21]. The latter category offers low complexity especially for large values of n and therefore they are
principally attractive for cryptographic applications.

The space and time complexities are the two measures for describing the efficiency of an algorithm. Space
complexity is a function describing the amount of memory (space) an algorithm takes in terms of the amount
of input to the algorithm. In FPGAs, it refers to the hardware resources (configurable logic blocks, memory,
etc) on the chip. Time complexity is a function describing the amount of time an algorithm takes in terms of
the amount of input to the algorithm. In FPGAs, it refers to all path delays including gate delays as well as
routing overheads. A prior estimation of these two parameters has considerable importance for cost and speed
estimations.

In VLSI designs, the estimation for both space and time complexities is relatively straightforward. If two
pair of inputs A&B and C&D are XORed and their two outputs are ANDed, the space complexity is simply
expressed as: #XORs = 2, #ANDs = 1. Similarly, if Tx is the delay for a single gate, time complexity for our
example is 2Tx, One Tx for XORing plus One Tx for ANDing. This is however not the case of an FPGA design.
As the basic building block in majority of FPGAs has 4-inputs/1-output structure and also it acts like a Look
Up Table (LUT), that is, the whole logic which bounds two, three or four inputs and produces one output, can
be accommodated in just a single Look Up Table (LUT). Space complexity is therefore a single basic unit (a
single LUT). In contrast to VLSI designs, Time complexity is not 1.Tx but it is 1.Tx plus path delays due to
routing overheads in FPGAs. It has been observed that almost 70% of the total path delays is due to routing
overheads in FPGAs. It is therefore difficult to link theoretical results to actual path delays in an FPGA based
design. However certain optimizing techniques can be applied to reduce path delays by placing several registers
at different stages of the design. At each move, the data travels from one stage to the next stage and hence the
net path delay is the maximum delay between any two stages.

Recently, there is an emerging trend for implementing cryptographic primitives in hardware due to improved
timing performances and also due to some security reasons. In contrast to software, hardware solutions offer high
timing performances which is becoming critical at high speed links. On the other hand for security applications,
it is more than that. The secret parameters ( digital keys) in cryptographic primitives are stored in hardware
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and they are not easily accessible which enhances security. Another attractive features of FPGA based designs
especially for security applications is due to ease in updating security algorithms as well as secret keys. The focus
of this article is to devise a methodology for manipulating space and time complexities for various cryptographic
primitives. We have selected Karatsuba-Ofman Multiplier (KOM) as our case study example.

The rest of this paper is organized as follows: Section 2 explains the procedure to perform complexity
analysis in FPGAs. Section 3 demonstrate the same procedure for classical multipliers. In Section 4, Karatsuba-
Ofman algorithm is explained for its space and time complexities in FPGAs. Section 5 shows the space-
time benefits by combining the Karatsuba-Ofman multiplier and other multiplication schemes like classical
multipliers. A comparison of all three multiplication schemes has been presented in Section 6. Conclusions are
finally drawn in Section 7.

2. Complexity Analysis for FPGAs based Designs. FPGAs are being manufactured by many ven-
dors like Xilinx [44], Altera [2], Atmel [4], Quick Logic [27], Actel [1], etc. All manufactures adopt different
nomenclature for the hardware resources available on the chip. However the basic structure of almost all the
FPGAs is the same. The basic building block in Xilinx FPGAs is called Configurable Logic Block (CLB). Each
CLB has two slices and each slice contains one Look Up Table (LUT) other than additional logic. And each LUT
has a 4-input and 1-output structure. Similarly, the basic building block in Altera FPGAs is called Logic Array
Blocks (LAB). Each LAB contains ten logic elements (LEs) and each LE contains 4-input and 1-output LUT
other than additional logic. However modern FPGAs even offer a 6-input and 1-output LUT [39]. Those build-
ing blocks are abundantly available in FPGAs. They can be configured into memory as well as into logic mode.
Currently, FPGAs offer an integrated environment containing LUTs, Memory blocks, multipliers, transceivers,
etc. In this article we focus on the smallest programmable unit in FPGAs, a LUT. We are considering FPGAs
with 4-input and 1-output LUT structure for realizing complexity analysis. However the same procedure can
be extended to advanced FPGAs with 6-input and 1-output LUTs.

First, in the context of 4-input and 1-output, we discuss two scenarios when number of inputs (IPs) are less
than or equal to 4 and when they are greater than four.

When number of inputs ≤ 4 :. Let the output bit Z be the function of four input bits a, b, c, and d,
then the significance of a LUT with 4-input and 1-output is that it would occupy just a single LUT in all the
cases when Z is the function of two, three or four input bits. Also it does not matter what kind of Boolean
logic is involved with those bits, that is,

• When Z is the function of two bits i.e, Z= F(a,b)
Examples

Z = a ⊕ a.b;
(One multiplication and one addition)

or
Z = a ⊕ b ⊕ a.b;

(One multiplication and two additions)
• When Z is the function of three bits i.e Z= F(a,b,c)

Examples
Z = a ⊕ b ⊕ c ⊕ a.b.c;

(Two multiplications and three additions)
or

Z = a.b ⊕ a.c ⊕ b.c ⊕ a.b.c;
(Four multiplications and three additions)

• When Z is the function of four bits i-e Z= F(a,b,c,d)
Examples

Z = a.b ⊕ a.c ⊕ a.d ⊕ b.c ⊕ b.d ⊕ a.b.c ⊕ a.c.d ⊕ b.c.d ⊕ d;
(Eleven multiplications and eight additions)

or
Z = a ⊕ b ⊕ c ⊕ d ⊕ a.b ⊕ a.c ⊕ a.d ⊕ b.c ⊕ b.d ⊕ a.b.c ⊕ b.c.d;

(Nine multiplications and ten additions)

When number of inputs > 4 :. When Z is the function of more than four bits, it occupies more
than one LUTs. For number of inputs from five to seven, Z utilizes two LUTs as four inputs go to the
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Fig. 2.1. Seven input bits to occupy two LUTs

1st LUT and then its output is fed to the second one acting as an input for the 2nd LUT as shown in
Fig. 2.1.
As a rule of thumb, for Z as a function of k input bits, it uses some k/3 (nearest rounding) LUTs.
e.g. The Z as a function of 10 and 11 inputs can be accommodated with 10/3 = 3.33 ∼= 3 and
11/3 = 3.66 ∼= 4 respectively.
The discussed results in this subsection can be applied to perform complexity analysis for any FPGAs
based design. We apply this simple procedure to our two case studies for a classical multiplier and a
Karatsuba-Ofman multiplier.

3. Complexity Analysis for a Classical Multiplier. We start with an example of a classical 4× 4 bit
multiplier as shown in Table 3.1.

Table 3.1

4-bit classical multiplier

a3 a2 a1 a0

b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0

a3b1 a2b1 a1b1 a0b1

a3b2 a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

z6 z5 z4 z3 z2 z1 z0

From Table 3.1, one can quickly calculate the value of k and also the number of LUTs (dividing k by 3) for
any zj where j=0 to 6 as shown in Table 3.2.

Table 3.2

Complexity analysis for 4-bit classical multiplier

zj FunctionF Partial Products kj LUTs
z0 = F (a0, b0) = a0b0 2 1
z1 = F (a0, b0, a1, b1) = a1b0 ⊕ a0b1 4 1
z2 = F (a0, b0, a1, b1, a2, b2) = a2b0 ⊕ a1b1 ⊕ a0b2 6 2
z3 = F (a0, b0, a1, b1, a2, b2, a3, b3) = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3 8 3
z4 = F (a1, b1, a2, b2, a3, b3) = a3b1 ⊕ a2b2 ⊕ a1b3 6 2
z5 = F (a2, b2, a3, b3) = a3b2 ⊕ a2b3 4 1
z6 = F (a3, b3) = a3b3 2 1

Total 11

Hence, a 4-bit classical multiplier can be realized with no less than eleven 4-input and 1-output LUTs as
shown in Fig. 3.1.

The procedure for performing complexity analysis of a 4-bit multiplier can be generalized to any n-bit
multiplier which consists of three steps:

Step 1: Write down the number of inputs kj for all partial sums zj . It can be obtained first by writing n in the
middle and then by writing all of its values from (n− 1) to 1 on its both sides. That gives the number
of partial products for any partial sum zj , that is,

1 . . . . . . (n − 2) (n − 1) n (n − 1) (n − 2) . . . . . . 1 (3.1)
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Fig. 3.1. 4-bit classical multiplier implementation using 4-input and 1-output LUTs

For n = 4 (4-bit multiplier),

1 2 3 4 3 2 1 (3.2)

As a single partial product contributes to two inputs, multiplying it by two, it give the number of inputs
kj for all partial sums zj , that is,

2 . . . . . . 2(n − 2) 2(n − 1) 2n 2(n − 1) 2(n − 2) . . . . . . 2 (3.3)

For n = 4 (4-bit multiplier),

2 4 6 8 6 4 2 (3.4)

2n 4(n − 1) 4(n − 2) . . . . . . 4 (3.5)

Step 2: The number of LUTs for all partial sums zj are manipulated by dividing each kj by 3 and rounding it
to the nearest integer value, that is,

2

3
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3

2(n − 1)
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3
(3.6)

For n = 4 (4-bit multiplier),
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(3.7)

Step 3: The number of LUTs for all partial sums zj are added to calculate total number of LUTs for any n-bit
classical multiplier,

2

3
+ · · · +

2(n − 2)

3
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2(n − 1)

3
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3
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(3.8)

By simplifying,

2n

3
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3
+ 2

2(n− 2

3
+ . . . . . . + 2.
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3
(3.9)
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{(n − 1) + (n − 2) + . . . . . . + 1} (3.10)
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The terms in brackets in Eq. 3.10 forms an arithmetic series for which the sum is equal to n(n−1)
2 , by

substituting:

2n

3
+

4

3

{

n(n − 1)

2

}

=
2

3
n2 (3.11)

For 4-bit multiplier
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(3.12)

By simplifying,

8

3
+ 2.

6

3
+ 2.

4

3
+ 2.

2

3
(3.13)

3 + 4 + 2 + 2 = 11

By using this formula, one can calculate the gate complexity for any n-bit classical multiplier. Table 3.3 provides
LUTs (cal) using the derived expression in Eq. 3.11 and also the number of LUTs (exp) experimented for first
40 values of n. The calculated LUTs exactly match with the experimental LUTs as we have instantiated LUT

Table 3.3

Gate complexities for first 40 values of n using classical multiplier

n LUTs (cal) LUTs (Exp) n LUTs (cal) LUTs (Exp)
1 1 1 21 294 294
2 3 3 22 323 323
3 6 6 23 353 353
4 11 11 24 384 384
5 17 17 25 417 417
6 24 24 26 451 451
7 33 33 27 486 486
8 43 43 28 523 523
9 54 54 29 561 561
10 67 67 30 600 600
11 81 81 31 641 641
12 96 96 32 683 683
13 113 113 33 726 726
14 131 131 34 771 771
15 150 150 35 817 817
16 171 171 36 864 864
17 193 193 37 913 913
18 216 216 38 963 963
19 241 241 39 1014 1014
20 267 267 40 1067 1067

module implicitly in our VHDL code.

4. Complexity Analysis for Karatsuba-Ofman Multiplier. Discovered in 1962, a divide-and-conquer
algorithm due to Karatsuba and Ofman was the first algorithm [16] to accomplish polynomial multiplication in

under O(m2) operations and reduces the complexity to O(nlog3

2 ). Suppose that n = 2l and A = AH2l +AL and
B = BH2l + BL are 2l-bit integers.
Then
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AB = (AH2l + AL)(BH2l + BL)
= AHBH22l + [(AH + AL)(BH + BL) − AHBH − ALBL]2l + ALBL

The product AB can be computed by performing three multiplications of l-bit integers along with two
additions and two subtractions. More details about Karatsuba-Ofman multiplication can be seen in [14, 34].

Let we take again the example of a 4 × 4 multiplier using Karatsuba-Ofman multiplication scheme.
Let A and B the two multiplicands with,

A = a3a2a1a0 and B = b3b2b1b0 (4.1)

Both A and B are divided into lower AL&BL and higher parts AH&BH :

AH = a3a2 and BH = b3b2 (4.2)

AL = a1a0 and BL = b1b0 (4.3)

Then three multiplications are required to be performed:

1. First multiplication between AH and BH

AHBH = (a3a2)(b3b2) = H2H1H0 (4.4)

2. Second multiplication between AL and BL

ALBL = (a1a0)(b1b0) = L2L1L0 (4.5)

For third multiplication the higher and the lower parts of both the operands are XORed.

MA = AH ⊕ AL = (a3a2) ⊕ (a1a0) = ma1ma0 (4.6)

MB = BH ⊕ BL = (b3b2) ⊕ (b1b0) = mb1mb0 (4.7)

3. Third multiplication between MA and MB

MAMB = (ma1ma0)(mb1mb0) = M2M1M0 (4.8)

Finally the overlapping of the three partial products is performed:

Table 4.1

Overlapping Function for a 4-bit Karatsuba-Ofman Multiplier

H2 H1 H0

L2 L1 L0 ⊕
M2 M1 M0 ⊕

H2 H1 H0 L3 L1 L0 ⊕
z6 z5 z4 z3 z2 z1 z0

By looking at the above expressions one can estimate the resource utilization as follows:
1. Three n/2 multiplications are always performed by using Karatsuba-Ofman multiplication scheme.

For a 4 × 4 Karatsuba-Ofman multiplier, it therefore requires three 2-bit multipliers as it is shown in
Eqs. 4.4,4.5, and 4.8. A 2- bit multiplier using Karatsuba-Ofman multiplication scheme costs 3 LUTs,
hence a total of 9 LUTs are being used.



Complexity Analysis for 4-Input/1-Output FPGAs Applied to Multiplier Designs 417

2. For third multiplication the two inputs of the multiplier are to be XORed as it has been shown in
Eqs. 4.6 and 4.7. They always require some 2 × n/2 XOR operations, and the same amount of LUTS
i-e n LUTs. For n = 4, four LUTs are therefore utilized.

3. Finally the overlapping part is concluded with 3n− 4 XORs thus consuming (3n− 4)/3 = n− 1 LUTs.
For a 4-bit multiplier it is evident the utilization of three LUTs in obtaining z3, z4 and z5, we call them
as output XORs.

The total number of LUTs for a 4-bit Karatsuba-Ofman multiplier can be obtained by adding all LUTs from
the above three steps which are 15. Some other results can also be deduced:

• LUTs due to input XORs = 2(n/2) = n
• LUTs due to output XORs = n − 1
• LUTs due to both input & output XORs = n + (n − 1) = 2n − 1
• LUTs due to three multipliers= 3× LUTs used by the base multiplier

The above procedure can be extended to generalize the expression for the estimation of number of LUTs
for any n-bit Karatsuba-Ofman multiplier. We select a 4-bit Karatsuba-Ofman multiplier as a base multiplier,
then,

For a 4-bit Karatsuba-Ofman multiplier (n = 4) :
Total number of LUTs = 15

For an 8-bit Karatsuba-Ofman multiplier (n = 8) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 4-bit multiplier
= (2n − 1) + 14(3)1

= 15 + 15(3)1 = 15(3)0 + 15(3)1 = K1

For a 16-bit Karatsuba-Ofman multiplier (n = 16) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 8-bit multiplier
= (2n − 1) + 3 × K1

= 31 + 3
{

15(3)0 + 15(3)1)
}

= 31 + 15(3)1 + 15(3)2 = K2

For a 32-bit Karatsuba-Ofman multiplier (n = 32) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 16-bit multiplier
= (2n − 1) + 3 × K2

= 63 + 3
{

31 + 15(3)1 + 15(3)2
}

= 63 + 31(3)1 + 15(3)2 + 15(3)3 = K3

For a 64-bit Karatsuba-Ofman multiplier (n = 64) :
Total number of LUTs

= LUTs due to input/output XORs + 3× LUTs used by the 32-bit multiplier
= (2n − 1) + 3 × K3

= 127 + 3
{

63 + 31(3)1 + 15(3)2 + 15(3)3
}

= 127 + 63(3)0 + 31(3)2 + 15(3)3 + 15(3)4

On continuing in a similar way, we can generalize the above expressions for any n:

15(3)k +

{

2n − 1

1
30 + (

2n

2
− 1)31 + (

n

2
− 1)32 + (

n

4
− 1)33 + · · · (

n

k − 1
− 1)3k−1

}

(4.9)

where k is the number of iterations and it is calculated as: k = log2(n) − 2. The subtraction of factor of
2 is due to the selection of 4-bit multiplier as a base multiplier which removes two iterations for 2 and 4 bit
multiplications.

Rewriting Eq. 4.9,
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15(3)k +

{

2n

1
30 +

2n

2
31 +

n

2
32 + · · · +

n

k − 1
3k−1

}

−
{

30 + 31 + 32 + · · · + 3k−1
}

(4.10)

The terms in brackets in Eq. 4.10 form a geometric series similar to a + ar + ar2 + ar3 + · · · where ’a’
represents the initial value and ’r’ is the ratio which can be obtained by dividing a value to its previous one.
The sum of nth terms for that series can be calculated by the formula:

Sn = a(1 − rn)/(1 − r) (4.11)

The sum of nth series for the two geometric expressions in Eq. 4.10 can be manipulated by using the formula
in Eq. 4.11.

For the first series,

{

2n

1
30 +

2n

2
31 +

n

2
32 + · · · +

n

k − 1
3k−1

}

(4.12)

Initial value = a = 2n & ratio = r = 3/2
Therefore the sum of nth terms is:

= 4n
[

(3/2)k − 1
]

(4.13)

For the second series,

{

30 + 31 + 32 + · · · + 3k−1
}

(4.14)

Initial value = a = 1 & ratio=r= 3
Therefore the sum of the nth terms is:

= 1/2
[

3k − 1
]

(4.15)

Substituting Eqs. 4.13 and 4.13 into Eq. 4.10,

15(3)k + 4n
[

(3/2)k − 1
]

− 1/2
[

(3)k − 1
]

(4.16)

Eq. 4.16 can be written in terms of just ’n’ by substituting the value of ’k’

15(3)log2(n)−2 + 4n
[

(3/2)log2(n)−2 − 1
]

− 1/2
[

(3)log2(n)−2 − 1
]

(4.17)

where k = log2(n) − 2
By using the formula in Eq. 4.17, we can calculate the space complexity for several n = 2k-bit Karatsuba-

Ofman multipliers as shown in Table 4.2. Table 4.2 also provides our experimental results for the same values
which shows minor difference to the calculated values to non-optimal behavior of HDL (Hardware Description
Language) compilers.

5. Complexity Analysis for Karatsuba-Ofman multiplier using Hybrid approach. In order to
construct a bigger multiplier for any larger value ’m’, we can use Karatsuba-Ofman multiplication approach
by using a smaller multiplier recursively. The smaller multiplier represents the end point where recursion
process exactly starts and it is termed as a base multiplier. A base multiplier can be constructed by any other
multiplication approach like classical multiplication scheme as well. For example, we can construct an 8-bit
multiplier from three 4-bit multipliers. Similarly a 16-bit multiplier can be constructed by using three 8-bit
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Table 4.2

Space complexity for n = 2k-bit Karatsuba-Ofman multiplier in terms of LUTs

n LUTs (cal) LUTs (Exp)
2 3 3
4 15 14
8 60 60
16 211 212
32 696 698
64 2215 2221
128 6900 6918
256 21211 21265
512 64656 64818

Fig. 5.1. 4-bit classical multiplier implementation using 4-input and 1-output LUTs

mutipliers and so on. A block diagram representation of this hierarchical setup by selecting a 4-bit multiplier
as a base multiplier is shown in Fig. 5.1.

Karatsuba-Ofman multiplier therefore can be viewed as a long array of base multipliers in middle and a
logic mapping required for input and output (overlapping) XOR operations as it has been depicted in Fig. 5.2.

The selection of the base multiplier is therefore critical to save the hardware resources. The saving of
few LUTs in the base multiplier helps in saving significant number of LUTs for large values of n. A hybrid
approach is therefore used which dictates the use of other multiplication schemes along with Karatsuba-Ofman
multiplication. We have implemented 4-bit Karatsuba-Ofman multiplier using the classical approach (school
method) which seems to be economical as compared to 4-bit Karatsuba-Ofman multiplier as it occupies 11
LUTs instead of 15 LUTs. The change of only base multiplier does not require any change in the formula for
complexity analysis, the factor of 15 is simply replaced with 11. The formula for an hybrid Karatsuba-Ofman
multiplier using a 4-bit classical multiplier as a base multiplier is shown in Eq. 5.1.

11(3)logn

2
−2 + 4n

[

(3/2)logn

2
−2 − 1

]

− 1/2
[

3logn

2
−1 − 1

]

(5.1)

By using Eq. 5.1, the space complexity for hybrid Karatsuba-Ofman multiplier can be manipulated as shown
in Table 5.1.

Table 5.1

Space complexity for n = 2k-bit Hybrid Karatsuba-Ofman multiplier in terms of LUTs

n LUTs (cal) LUTs (Exp)
2 3 3
4 11 11
8 48 45
16 175 168
32 588 567
64 1891 1828
128 5928 5739
256 18295 17728
512 55908 54207
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Fig. 5.2. Flattend Image of Karatsuba-Ofman multiplier using a MUL(2)4 as a base multiplier

6. Performance Results. The achieved results for the space complexities of classical, Karatsuba-Ofman
and hybrid Karatsuba-Ofman multiplication schemes can be combined for comparison purposes as shown in
Table 6.1.

Table 6.1

Space complexity for n = 2k-bit Classical, Karatsuba-Ofman, and Hybrid Karatsuba-Ofman multiplication schemes in terms
of LUTs

LUTs (cal) LUTs (cal) LUTs (cal)
n Classical Karatsuba-Ofman H. Karatsuba-Ofman

multiplier multiplier multiplier
2 3 3 3
4 11 15 11
8 43 60 48
16 171 211 175
32 683 696 588
64 2731 2215 1891
128 10923 6900 5928
256 43691 21211 18295
512 174763 64656 55908

It can be seen from Table 6.1 that classical multiplication schemes proves to be more economical for n < 32
when complexity analysis is performed for FPGAs based designs. For n > 32, however, hybrid Karatsuba-Ofman
multiplication approach proves to be more economical.

7. Conclusion. In this paper, we explained in detail how to perform complexity analysis for an FPGA
based design. We applied that procedure for manipulating space complexities for a classical Karatsuba-Ofman
multiplier, Karatsuba-Ofman multiplier and an Hybrid Karatsuba-Ofman multiplier. It has been shown that
obtained experimental results are exactly in match with those of theoretical manipulations in all three cases.
The similar procedure can be extended to realize complexity analysis for other cryptographic primitives. The
comparison tables for all three multiplication schemes can be utilized for selecting a base multiplier to construct
a bigger multiplier as it is required in cryptographic applications. Our future work includes the construction of
a low cost multiplier in FPGAs on the basis of the results obtained in this paper. Also we used a 4-input and
1-output structure for a LUT as the basic building block to perform complexity analysis for an FPGA based
design. Modern FPGAs however offer a 6-input and 1-output structure for their basic building block. We have
also planned to extend our manipulations for those FPGA devices.
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[33] F. Rodŕıguez-Henŕıquez and Ç. K. Koç, On Fully Parallel Karatsuba Multipliers for GF (2m), in International Conference

on Computer Science and Technology (CST 2003), Cancun, Mexico, May 2003, pp. 405–410.
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