
Scalable Computing: Practice and Experience
Volume 14, Number 2, pp. 131–141. http://www.scpe.org

DOI 10.12694/scpe.v14i2.845
ISSN 1895-1767
c© 2013 SCPE

DESIGNING A SCALABLE SOCIAL E-COMMERCE APPLICATION

EUGENIO ZIMEO1AND GIANFRANCO OLIVA, FABIO BALDI, ALFONSO CARACCIOLO2

Abstract. eCommerce is gaining a momentum due to the wide diffusion of Web 2.0 technology. Social mining, recommenders
and data semantics are moving the focus of eCommerce applications towards context-awareness and personalization. However,
the design of these software systems needs specific architectures to support intelligent behaviors, still ensuring important non-
functional properties, such as flexibility, efficiency and scalability. This paper proposes an architectural pattern that helps designers
to easily identify the subsystems that characterize intelligent enterprise systems. By decoupling transactional behavior from batch
processing, the pattern avoids the interference of knowledge extraction and reasoning processes with the state and the performance
of the transactional subsystem, so improving scalability. The pattern has been experimented in eCommerce by designing an
intelligent and scalable virtual mall.

Key words: Architectural Pattern, Software Systems Design, Scalability, Enterprise Systems, Intelligent Systems, eCommerce

1. Introduction. Enterprise systems represent today an important class of large-scale software that sup-
ports many fundamental processes of complex organizations, ranging from resource planning to business intel-
ligence. In this class, eCommerce applications often groups many enterprise assets to offer an integrated and
coherent view to merchants and customers for performing business actions.

The adoption of eCommerce as a prevalent channel for selling products is changing the market rules, since
competition among vendors is being migrated on the Web. Reaching the widest set of potential customers with
information about the commercial products of their interest is one of the challenges that characterize the new
solutions and technologies for eCommerce applications.

In the evolution of the Web, Web 2.0 technology represents a milestone with its emphasis on supporting
social collaboration and reasoning over data semantics. The new way of interaction is introducing a radical
innovation in eCommerce [21], moving the focus towards context-awareness and personalization. If on the
one hand, these innovative features improve product selling, they also significantly impact the way modern
eCommerce applications are designed and implemented.

Traditional architectures exploited to design enterprise systems (in particular eCommerce applications)
need to be revised in order to take into account the desired ability of these systems to “generate” knowledge
while working, on the basis of several information sources that could be available as enterprise assets. These
sources could be tightly related to the eCommerce application or belonging to different enterprise subsystems
that support cross-business features; they can change over time or can be enriched with additional ones when
new needs emerge.

Designing an architecture for eCommerce applications in this new scenario is not simple, since designers
have to combine the expected intelligent behavior of the system with non-functional requirements, such as
flexibility, efficiency and scalability. Separation of concerns, already applied to design complex architectures by
separating orthogonal non-functional aspects in insulated modules, could be a viable approach also to design
flexible and scalable intelligent enterprise systems.

This paper presents an architectural pattern that helps satisfying both functional and non-functional scala-
bility during the design of intelligent enterprise systems. The pattern decouples the transactional behavior from
batch processing, in order to avoid dangerous interference of knowledge extraction and reasoning processes with
the state and the performance of the transactional subsystem.

The pattern is applied to the design of a complex eCommerce application, which virtualizes a mall composed
of a variable number of eShops. The pattern is adopted as a key step of the ADD - Attribute Driven Design
method [18], which is exploited as a reference process model to design the whole system. The paper shows the
effects of the pattern to simplify the comprehension of the system and to improve its design.

The rest of the paper is organized as follows. Section 2 discusses some common architectural patterns
exploited to design eCommerce applications and the role of patterns in designing intelligent systems. Section 3

1University of Sannio, Dep. of Engineering, 82100 - Benevento, ITALY (zimeo@unisannio.it)
2Poste Italiane S.p.A., TI - FSTI - Centro Ricerca, 80133 - Napoli, ITALY (OLIVAG11@posteitaliane.it, BALD-

IFA3@posteitaliane.it, CARACC52@posteitaliane.it)

131

132 E. Zimeo, G. Oliva, F. Baldi and A. Caracciolo

presents the Inference Pattern proposed. Section 4 discusses the application of the pattern in designing a real
system. Finally, Section 5 concludes the paper.

2. Background and related work. Architectural patterns, design patterns and idioms constitute an
extensible knowledge base that helps designers to take proper decisions in short times, when they design complex
software systems, by reusing solutions already experimented in similar application contexts.

Several architectural patterns have been proposed in the literature for different classes of software systems.
In this section, we mainly refer to the patterns that have been successfully exploited for designing enterprise
systems and we introduce some recently proposed patterns for intelligent systems, which inspired the one
presented and discussed in this paper.

The Treasury Architecture Development Guidance (TADG) [3] proposes some general architectural patterns
that can be also exploited to design enterprise systems: Client-Proxy Server, Customer Support, Reactor,
Replicated Servers, Layered Architecture, Pipe and Filter, Subsystem Interface.

An interesting proposal comes from IBM [1, 2]. It identifies several patterns at different abstraction levels to
guide the design of e-Business applications, a specific class of enterprise systems including eCommerce. In this
vision, user requirements drive the selection of one or more Business patterns among Self-Service, Collaboration,
Information Aggregation, and Extended Enterprise.

The first one captures the business interaction between a user and a service, typically a simple web site.
The second one enables the collaboration among users. The third one allows users to aggregate data to extract
information that is useful for business purposes (e.g. business intelligence). Finally, the fourth one enables
a business-to-business interaction to extend the functions of an enterprise with the ones provided by other
networked enterprises (e.g. supply chain management).

The business patterns are then used to suggest the adoption of application and integration patterns, often
called architectural patterns. The formers capture the functional and non-functional requirements of an ap-
plication, by proposing the system decomposition in functional and logical subsystems. The latters suggest a
way to integrate different subsystems: Access Integration patterns define a common entry point for accessing
services whereas Application Integration patterns represent a way to integrate the flow of actions or the data
owned by different subsystems. In the literature, a lot of integration patterns, mainly based on messaging, have
been introduced to support Enterprise Application Integration (see [5] for a presentation of these patterns).

A widespread architectural pattern that satisfies self-service interaction model is Model View Controller
(MVC) [6, 7]. This pattern, with its main variants (Model View Presenter [6] and Presentation Abstraction
Controller [9] are the most known), suggests the organization of the presentation layer and its decoupling
from the model of enterprise systems. However, additional patterns are needed to help the design of the other
layers proposed by multi-layer and multi-tier decompositions [10]. The layered organization allows for a clear
separation of presentation, application logic and data management that multi-tiered architectures exploit in
order to partition the different functional components onto dedicated resources, so ensuring important non-
functional attributes, such as security, scalability, efficiency and data persistence. In this context, enterprise
patterns [4] assume an important role in guiding the detailed design of complex applications.

Service Oriented Architecture (SOA) is becoming the reference high-level architectural pattern to design
flexible, reusable and dynamic enterprise and inter-enterprise systems, especially when asynchronous inter-
actions, based on an Enterprise Service Bus, are exploited. In [11], the authors propose a mediator-based
architecture that decouples service providers from consumers with the aim of binding services on demand on
the basis of customers’ preferences.

However, the “intelligent” dimension of enterprise systems needs more autonomous and proactive behav-
iors to satisfy users’ needs. Autonomic computing [12] is emerging as a promising approach to include self-*
properties in software design and workflow systems [22], whilst MAPE-K (Monitor, Analyze, Plan, Execute and
Knowledge) [13] is often used as a reference architectural pattern to design these software systems. This pattern
allows for observing the state of a resource in order to intercept possible deviations from a desired behavior that
can be controlled by planning adaptations. However, it represents only a starting point for intelligent enterprise
systems, where specific patterns are needed to design systems with the ability of inferring knowledge from data
generated during the execution.

The paper in [20] focuses on a knowledge management architecture to apply data mining to eCommerce

Designing a Scalable Social e-Commerce Application 133

but it does not address the general architecture of the system. In [14], the authors discuss an architecture to
efficiently perform OLAP on the data produced by customers through the interaction with an eCommerce site.
Even if, the idea of closing the knowledge loop - users, application, analysis, application changes, users - is
similar to the one proposed in this paper, the architecture does not provide users with sufficient hints about
the identification of finer-grained subsystems.

In this paper, we present a new architectural pattern, called Inference Pattern, that provides software
architects with a conceptual framework for designing the business logic of intelligent enterprise systems.

3. Inference Pattern. The pattern will be described according to a typical schema for patterns.
Problem. We want to design a software system able to perform processing on its own data, produced by

user interactions, with the aim of expliciting the implicit knowledge that may be useful to users and to the
system itself.

Context. Interactive applications generate data from users interactions, which are compliant to models
that are typically described through relational, ontological or object-oriented schemas. Data passed during
interactions can be processed with the support of data coming from other sources to generate new information
that can be useful to understand users’ behaviors and preferences. This knowledge, often defined implicit or
tacit, can be exploited to personalize the interaction between users and the system, since it eases the knowledge
transfer from software to users, by reducing the effort to access data. This improves the effectiveness of the
interaction with reference to the business objectives of the system. The knowledge acquired by the system can
be in turn reused by other systems.

Solution. The system is decomposed in two logically separated subsystems: the one in charge of answering
to user requests and the one responsible of collecting data and preprocessing them. The former becomes passive
with reference to the latter that, on the other hand, generates the aggregated data that are useful to improve user
interactions and the quality of the data hosted by the interactive subsystem. The logical separation promotes
both the knowledge base extensibility, thank to the possibility of using additional systems as subject, and the
continuous and concurrent processing with respect to the transactional activity generated by the interactive
subsystem, so easing and optimizing the successive deployment.

Participants. In the following, a list of participating subsystems (see Fig. 3.1) is given with a brief
description.

• Subject: is the observed subsystem from which implicit knowledge is extracted.
• Knowledge extraction: collects the data produced by the interactions between users and the subject
and extracts the implicit knowledge.

• Generation: generates new knowledge for the subject, by using the implicit knowledge extracted by the
Knowledge Extraction (KE) subsystems.

• Decision Support: it provides the user with a new knowledge extracted by the KE subsystem to support
proper decisions.

• Recommendation: suggests information to users. It may use the Generation subsystem to ask for the
generation of aggregated data or the Decision Support subsystem to recommend a choice to a user.

• Personalization: it personalizes the suggestions with respect to the specific user (or context in general).
It is a sort of recommender supporting personalization.

Structural view. In Fig. 3.1, the structural view of the pattern is described by highlighting the participants
introduced above and the use relationships among them. The red dotted line is a particular use dependency
since it, differently from the other ones, works on the Subject by writing onto it. In addition, the view shows
two subsystems of KE: Management and Search, which can be useful to configure the inference rules and to
perform particular search operations on the collected data.

The KE subsystem can access the Subject by means of synchronous (dependency regards the external
operations of the subject) or asynchronous (dependency is related to the events) interactions.

Related patterns. The proposed pattern is inspired by two known patterns: Observer [6] and MAPE. The
former is a design behavioral pattern that introduces the concept of observing the events generated by a Subject
(or Observable system) to drive the behavior of a multitude of Observers. The latter, on the other hand, changes
the viewpoint with respect to the subject, which becomes a resource monitored by a manager that is able to
analyze the state of the resource and to apply to it, if needed, some state changes (that in turn may produce

134 E. Zimeo, G. Oliva, F. Baldi and A. Caracciolo

Personalization

Decision Support

Knowledge Extraction

Subject

KNOWLEDGE MANAGER

Management

Recommendation

Generation

Search

Fig. 3.1. Structural view of the pattern

behavioral changes).

User-driven
operation

Logic

Automatic
operation

Explicited
Data

Explicit
Data

Implicit
Knowledge
Extractor

Inferred
index

Explicited Data : suggestInferredKnowledge (Context) Recommender
Logic

User

createExplicitData (Domain knowledge)

uses

uses

User-driven
operation

UI

Recommender
UI

Data management Business logic Presentation Use cases

AgentAgent

Trigger
(Application Event, Timer)

Trigger
(Context Event)

Subject

Knowledge Manager

Fig. 3.2. Partial application of the pattern in a multi-tier context

The Inference Pattern, differently from MAPE, does not aim at conferring an autonomic behavior to the
system but mainly at providing users with an additional knowledge inferred from the data collected from the
subject. Therefore, even if, like MAPE, it creates a closed-loop system, the closure is mainly performed by
users and, when possible, by the system itself through the writing operations (Generation) applied to the state
of the subject. Typically, these operations do not change the behavior of the system, but they make it possible
to retrieve further information by users, to feed the knowledge cycle.

Example. Fig. 3.2 shows an example of the pattern application in a typical case that combines interactive
transactions derived from users (user-driven operations that store data coming from users’ knowledge) and
concurrent data extraction and elaborations of (automatic) recommendations to the same user. The (software)
agents are in charge of performing the use cases that regard automatic operations. The results of these operations
represent the inferred knowledge that is used to provide suggestions in a given context. The figure also shows

Designing a Scalable Social e-Commerce Application 135

the separation of the subsystems in finer grained logical ones, useful to implement a layered architecture that
can be easily transformed in a multi-tier one thanks to the allocation of the subsystems onto different resources.

4. Case study: the InViMall system. The Inference Pattern has been exploited to design a scalable
eCommerce system, called InViMall (Intelligent Virtual Mall), at Poste Italiane S.p.A.

InViMall is an electronic mall, based on e-community concepts, that enhances the shopping experience of
users. It exposes several innovative features through a multichannel interface:

• Personalized suggestions [15]. They provide a personalized selection of products based on users interests,
preferences, interaction history and the history of related users. Recommenders exploit the relationships
between users and products to aid customers in selecting items from a set of choices, suggesting the
products fitting their tastes. Users’ profiles are either explicitly defined or inferred by analyzing their
behaviors during the interaction with the system.

• Automatic generation of personalized product bundles [16]. They find the combinations of products
that try to satisfy user preferences and requirements, guaranteeing, at the same time, the satisfaction
of merchants needs, such as the minimization of the dead stocks.

• Advanced marketing intelligence [17]. They propose suggestions to merchants, based on the analysis of
sales data from the entire system combined with the profiles of the registered users. They exploit also
social mining techniques to create viral campaigns targeted to the most influential members within a
community.

• Faceted Navigation. They provide customers and merchants with a semantic multi-dimensional search,
which is able to reach the desired product by using different attributes as entry point in the catalogue.

Table 4.1
Functional areas and potential functional subsystems

Name Description

eCommerce eShops mgmt, multi-shop order mgmt, catalogues, shopping list

Model Manager Semantic catalogue, product/customer relationships

Marketing Marketing campaigns, analysis of sales and reporting, buyer groups

Social Network Relationship among users, thematic groups and content sharing

Social Analyzer Social mining: opinion leader and friendships identification

Selection and Bundle Generator Prediction rating and automatic bundle generation

Other Systems Interface to payment, logistics, shipping, and financial systems

Communication Notifications, e-mails and messages exchange among users

Social Commerce Products, eShop and bundle ratings, reviews and likes

Personalization Products and bundle suggestions based on users preferences

Search Shop and Mall catalogue search, faceted navigation

These functions have to be implemented taking into account typical non-functional requirements for eCom-
merce systems, such as multichannel access and interoperability with external systems. The multichannel access
regards different kinds of devices (e.g. personal computers, mobile devices, kiosks) and communication channels
(http, dedicated protocols). Interactions with external systems regard:

• (a) the real-time monitoring of the entire product delivery process across the country, by exploiting the
Postal System Logistics platform of Poste Italiane;

• (b) payments, by using any of the several methods offered by Poste Italiane.

4.1. InviMall design. The design of InViMall was performed by following the Attribute Driven Design
method proposed in [8]. According to this method, it is important to clearly define the requirements, both
functional and non-functional with the aim of identifying the architectural drivers.

Therefore, the first phase of the process was the identification of scenarios and use cases that cover the
innovative aspects of the system. Hence, some functional areas and possible subsystems were initially identified
(see Table 4.1)

Due to the absence of a reference architectural pattern for the business logic of this kind of systems, the

136 E. Zimeo, G. Oliva, F. Baldi and A. Caracciolo

next step was the identification of dependencies among subsystems, by exploiting use cases analysis, with the
aim of building a Dependency Structure Matrix (DSM) [19]. It was useful for identifying and analyzing the
mutual dependencies among the subsystems.

As Fig. 4.1 shows, reasoning only about the functional areas created a dependency graph with several
mutual-dependencies, so generating a lot of coupling in the systems that could negatively impact flexibility,
reusability, performance and scalability.

Marketing

Selection & Bundle

Generator

Other System

Communication

eCommerce

Model Manager

Search

Social Analyzer

Personalization

Social Commerce

Social Network

Fig. 4.1. Preliminary decomposition of the InViMall system in subsystems

4.2. Application of the Inference Pattern. The ADD method, to design complex software systems,
suggests to identify the architectural drivers from the software requirements with the aim of selecting the proper
architectural patterns to adopt as a reference guide for the whole design phase. This allows software architects
to reuse the consolidated experience as an existing knowledge base to reduce the design effort.

In the case of complex and innovative software systems, existing patterns could not be sufficient to identify
subsystems and their relationships, so limiting the benefits of the ADD method. We encountered this problem
during the beginning of the design phase of InViMall, due to the lack of specialized patterns for designing the
business logic of intelligent eCommerce applications. To overcome the problem, the architectural drivers of the
InViMall system were generalized and an effort was done to abstract a solution by defining the architectural
pattern presented in the paper.

The application of the pattern caused a complete refactoring of the design (see Fig. 4.2), introducing
a strong reduction of mutual dependencies and a clear separation between the interactive and transactional
subsystem (called Mall), and the batch subsystem (called Intelligent Mall).

The former groups the typical subsystems that characterize an electronic mall, extended with social network
features. The latter hosts (i) a KE, which implements knowledge reasoning, predicted rating features and social
mining, (ii) a decision support subsystem that enables merchant to configure and manage innovative marketing
campaigns, (iii) a Generation subsystem that works onto the state of the Mall to store new explicit knowledge
extracted by KE from the implicit one collected from several sources. It is worth to note that several features
were tangled among different subsystems before applying the pattern, so generating mutual dependencies and
coupling.

The two main subsystems derived from the decomposition have different characteristics that impact their
implementation. The Mall is a typical transactional system and therefore it is characterized by concurrent
accesses, data persistence and ACID transaction management. On the contrary, the Intelligent Mall is mainly
a batch system using background processes to manipulate large amounts of data for analytical processing
and to generate correlations among entities. Due to these peculiarities, non-relational persistence systems (e.g.

Designing a Scalable Social e-Commerce Application 137

Intelligent Mall

Knowledge Extractor

Personalization

Recommendation

Catalog Updater

Decision Support

Marketing Intelligence

Mall

eCommerce

eShops Management

Mall Manager

eShop

Social Network

Generation

Bundle Generator
Actions

Model Manager Social Analyzer Selection

Model Manager

Fig. 4.2. InViMall architecture after the application of the pattern

columnar or graph-based DBs) could be exploited to improve the performance of the whole Knowledge Manager.

The derived architecture allows for adding innovative features without impacting the transactional sub-
system and makes it easy the integration of off-the-shelf software. Moreover, it enables the reuse of single
subsystems or groups of them in different business contexts of an enterprise. Finally, the pattern suggests a
way to exploit the implicit knowledge not only to suggest recommendations to users but also to drive automatic
actions (from the Intelligent Mall to the Mall) that aim at satisfying the business objectives of the enterprise.

Particular attention should be given to the proper allocation of business use cases to each subsystem,
especially those ones that extend or include use cases scattered across Mall and Intelligent Mall. This integration,
which is specific to the application, may be performed at the control layer trying to avoid strong coupling and
synchronization. To this end, an event-driven control layer is suggested to capture the events coming from the
user interface and to propagate them to the specific subsystems, so preserving a high degree of concurrency and
low degree of coupling.

The integration between the two subsystems could be performed by exploiting one or more of the fol-
lowing approaches: (a) Hard Coded integration; (b) Extract, Transform, Load (ETL) techniques; (c) Data
Virtualization technologies; (d) Enterprise Service Bus (ESB).

The simplest approach (in term of learning curve) is based on the hard coded implementation of the KE
that periodically accesses to the functional interface exposed by the transactional system. Several problems
need to be taken into account: timing policies (a short period causes continuous access to the transactional
subsystem; long period causes potential inconsistency); the list of functions to be invoked (changes or additions
of the features in the Subject would require the revision of the source code of the KE subsystem).

ETL consists of three steps: 1) data extraction from heterogeneous data sources; 2) data transformation for
the target; 3) data loading into target. This technique assumes the inconsistency between the data source and
the destination be tolerable, but this is not true in modern eCommerce applications since they need providing
users with up-to-date information through recommenders.

Data virtualization allows for accessing heterogeneous data systems providing a global integrated view. This
technology uses functional interfaces or data access as abstract sources through specific connectors (ODBC,
JDBC, REST, SOAP, etc). This integration allows for real-time data accesses but may generate access conflicts
with the transactional sub-system. The problem can be alleviated by using caching techniques that reduce the
number of concurrent accesses towards the transactional subsystem, keeping the already retrieved data in a
cache, so ensuring significant performance gains.

The integration through ESB allows for a strong decoupling and a reuse of single components. This tech-
nology provides a messaging system that is able to asynchronously exchange information between publishers

138 E. Zimeo, G. Oliva, F. Baldi and A. Caracciolo

+FilterManager

+FilterChain

InterceptingFilter

+Controller

FrontController

+View

+Helper

+CompositeView

+Command

Views&Helpers

+BusinessDelegate

BusinessDelegate
+SessionFacade

+BusinessObject

+ApplicationService

ServiceFacade
DataAccessObject

forward dispatch access access access

+ServiceLocator

ServiceLocator

lookup

Mapper

Map

DataTransferObject

use

useuse
use

BusinessObject

resolve

use

ValueObject

Business logic tier

Application server
Web tier

Servlet engine

SessionFacade : EJB Session

BusinessObject : Spring POJO

Application Service : Spring POJO

+DataAccessObject

MyBatis POJO

DataAccessObject :

EJB Session,

Spring POJO

POJO

BusinessDelegate :

ESB Session Proxy

ServiceLocator :

JNDI, Registry, Injection o

ServiceInvoker

access
DataSource

+ServiceInvoker

+BPM

ESB

DataSource

+ Staging DB

+ Graph DB

+ Columnar DB

extract

KnowledgeExtractor

access

RMI/IIOP JDBClocallocal

+ Index

Transaction control

Inference Pattern

DV

Jboss

EDSP

extract

access
local

+cache
use

Jboss

ESB

update

update

+View

+Helper

+Command

Views&Helpers_I

+BusinessDelegate

BusinessDelegate_I
+SessionFacade

+BusinessObject

+ApplicationService

ServiceFacade_I

access

local

access

RMI/IIOP

access

local

lookup

DataTransferObject_I

use
use

useuse

BusinessObject_IValueObject_I
POJO POJO

Extractor

trigger

listen

include

MALL

INTELLIGENT MALL

SOCIAL NETWORK

Fig. 4.3. Integrating the Inference Pattern with the enterprise patterns

(producers) and subscribers (consumers), so improving concurrency and reducing coupling.

Since ESB is typically not exploited for massive volumes of data, we decided to combine ESB, to com-
municate events, with (caching-based) data virtualization, for retrieving big data. This solution enables both
real-time access to transactional data and loose coupling among the sub-systems, ensuring, at the same time, a
strong reuse of services.

Fig. 4.3 shows the integration of the architectural pattern proposed in this paper with the well known
enterprise patterns [4] typically exploited to design applications according to multi-tier architecture design.

Following this architecture, software components are classified on the basis of their possible deployment,
so identifying two main classes: (a) Web and (b) Business logic components. The application of the Inference
Pattern splits the packages in two vertical groups (Mall and Intelligent Mall) and identifies the main packages
involved in its implementation (red dotted box).

4.3. Technical architecture and deployment. Following the structure view shown in Fig. 4.3, the
implementation of the application has been performed by exploiting specific technology that already offers
mechanisms that ease the implementation of the enterprise patterns.

The presentation layer has been developed with GWT (Google Web Toolkit), whereas the business logic
has been developed with Spring Framework and MyBatis to interface a MySQL Database. Almost all of the
functional components are invoked by Enterprise Java Beans. The data Layer has been built upon an RDBMS
(MySQL server), whereas a non-relational persistence system (Neo4J Graph DBMS) has been exploited to
improve the performance of the Social Analyzer hosted by the Knowledge Extractor.

Fig. 4.5 shows the technical view of the InViMall architecture. This view points out the logical subsystems
(organized in layers) and the kinds of servers and frameworks used to develop the platform. The presentation
logic exposes the business functions through HTTP, exploited by both browsers and apps.

The data of the Mall subsystem are shared with the Intelligent Mall subsystem through a staging database,
implemented by using the data virtualization mechanisms offered by JBoss Enterprise Data Services (Teiid). It
allows for accessing heterogeneous data systems providing a global integrated view.

The implementation of data virtualization has been built on three levels (see Fig. 4.4). The bottom level
represents the physical layer that contains the databases of Mall Manager, Social Network and the web services
exposed from the legacy eCommerce subsystem adopted (Magento). The middle level abstracts the data sources
with one to one mapping from DB to web services data. At this level, a data type transformation function
is used to improve the accuracy of data type definition. The top level is composed of a view of the different
data sources which are incorporated in a global view to represent the virtual database. This is used only for

Designing a Scalable Social e-Commerce Application 139

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

/
0
1
!
2
3
4
.
56
4
7
52
3

897897

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

'
'
:1
0
;
2
'
'
0
3
<
4
7
52
3

!"#$%&!"#$%&

;
4
7
4
.
2
8
:=
/
<
4
7
0
1

!"#$%&!"#$%&

)
=
3
<
.
0
:8
0
3
0
1
4
7
2
1
:4
;
7
52
3
!

897897

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

'
4
1
>
0
7
53
8
:5
3
7
0
.
.
58
0
3
;
0

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

'
2
<
0
.
:'
4
3
4
8
0
1
:>
0

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

!
0
.
0
;
7
52
3
:>
0

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

!
2
;
54
.
:4
3
4
.
?
6
0
1
:>
0

302@A302@A

897897

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

897897

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

'
4
.
.
::
'
4
3
4
8
0
1

0
!
B
2
/

0
!
B
2
/
:'
4
3
4
8
0
'
0
3
7

897897

!"#$%&
'()*+$,

!"#$%&
'()*+$,

'(!-.'(!-.

!
2
;
54
.
:3
0
7
9
2
1
>

!
"
#
#

$%
&
'
#
#
$(
'
%
&
)!
"
#
#

897897

A)2!!:03701/15!0:
<474:!01C5;0!

A)2!!:03701/15!0:
<474:!01C5;0!

'(!-.'(!-.

!>2!!>2!

0A)0A) 0A)0A) 0A)0A) 0A)0A) 0A)0A) 0A)0A) 0A)0A)

0A)0A) 0A)0A)

A
)
2
!
!
:0
!
)

0A)0A)

897897

'480372'480372

Fig. 4.4. Technological view: components, data virtualization configuration and communication

retrieving data while any insert/update/delete operation is performed through the ESB services that wrap the
mall functions.

Fig. 4.5. Technical view: hosting environments

The components of the InViMall system expose a stateless Session Bean for each interface, using a DAO
Layer (Data Access Object) based on MyBatis 3.1.1 for the access to the database. The communication between
the components is performed through the JBoss ESB (see Fig. 4.5 (b)).

The whole system has been deployed on virtual machines that are placed on four different virtual LANs.
The technological stack used allowed for generating several software deployment packages: a .war artifact for the
integrated web tier; an .ear artifact for each functional subsystem implemented through EJB-Spring-MyBatis
components; a .vdb artifact for the virtual database; an .esb artifact for packaging the services connected with
the ESB. In particular, according to the Inference Pattern, the developed artifacts were deployed onto the
virtualized system architecture shown in Fig. 4.6 and organized as follows:

• vLAN D0 (Static presentation tier) hosts an Apache web server for HTTP dispatching and static HTML

140 E. Zimeo, G. Oliva, F. Baldi and A. Caracciolo

Fig. 4.6. Application deployment

pages handling;
• vLAN D1 (Dynamic presentation tier) hosts an Application Server for the integrated GWT Servlets;
• vLAN D2 (Business logic tier) is switched in two segments and hosts: on the right side, an application
server for the ESB, an application server that runs the Mall business logic, a log server, and Magento;
on the left side, an application server for the ESB, an application server that runs the Intelligent Mall
business logic, an application server to host the data virtualization layer, and an application server that
runs the batch processes;

• vLAN D3 (Data management tier) is also switched in two segments and hosts: on the right side, a
MySQL DBMS for storing the Mall data; on the left side, a Neo4J Graph-based DBMS for storing
social data, and a MySQL DBMS for storing data for recommendation and decision support extracted
from the virtualized data base or from the Graph-based DB through batch processing.

It is worth to note, that the deployment analyzed before is a simplification of the real deployment, which
considers also the replication of each tier to address reliability and horizontal scalability through replication.

5. Conclusion. The paper presented an architectural pattern that helps software architects to design
intelligent enterprise systems that combine interactive features with batch processing to infer knowledge from
large amounts of data.

The pattern was applied with success to design a complex application that implements an electronic mall.
Thanks to it, software architects clearly and rapidly identified the functional subsystems, by associating to them
use cases. It, also, contributed to create a loosely coupled system with a clear logical separation between the
transactional and intelligent sub-systems, and a further separation among the subsystems of the intelligent side.

The benefits of the pattern were discussed also with respect to the integration techniques that can be
exploited to efficiently implement the pattern. The possibility to deploy the subsystems onto different resources
with specialized characteristics makes the overall system efficient and flexible, since additional subjects can be
easily added. Scalability is achieved by properly deploying transactional and batch oriented subsystems onto
different hardware resources linked to switched network segments.

The pattern enables the integration of both real-time, event-driven interactions, and data accesses for large
volume of data. In the future, the application of more sophisticated integration middleware platforms that
transparently combine the two benefits above will be investigated [23].

Acknowledgements. This work was partially supported by Italian Ministry of Economic Development in
the context of the Intelligent Virtual Mall (InViMall) Project MI01-00123.

Designing a Scalable Social e-Commerce Application 141

REFERENCES

[1] http://www.opengroup.org/togaf/
[2] http://www.ibm.com/developerworks/patterns/
[3] http://www.opengroup.org/togaf/
[4] http://martinfowler.com/articles/enterprisePatterns.html
[5] Hohpe G., Woolf B.: Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison

Wesley (2003)
[6] Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns - Elements of Reusable Object-Oriented Software, Addison-

Wesley (1995)
[7] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.: Pattern-Oriented Software Architecture - A System of

Patterns, John Wiley & Sons, (1996)
[8] Potel M., MVP: Model-View-Presenter: The Taligent Programming Model for C++ and Java. (1996)
[9] Plakalovic D., Simic D.: Applying MVC and PAC patterns in mobile applications. Journal of Computing, 2(1) (2012)

[10] Fowler M. J.: Patterns of Enterprise Application Architecture. Addison Wesley (2002)
[11] Cong S., Hunt E., Dittrich K. R.: IEIP: An Inter-Enterprise Integration Platform for e-Commerce Based on Web Service

Mediation. In: European Conference on Web Services - ECOWS, pp. 201-210 (2006)
[12] Kephart J., Chess D.: The vision of autonomic computing. Computer, 36(1):41-50, (2003)
[13] Huebscher M. C, McCann J.A.: A survey of autonomic computing - degrees, models, and applications. ACM Computing

Survey, 40(3):1-28 (2008)
[14] Ansari S., Kohavi R., Mason L., Zheng Z.: Integrating E-Commerce and DataMining: Architecture and Challenges. In:

International Conference on Data Mining, IEEE, pp. 27-34 (2001)
[15] Birtolo C., Ronca D., Armenise R.: Improving accuracy of recommendation system by means of Item-based Fuzzy Clustering

Collaborative Filtering. In: 11th International Conference on Intelligent Systems Design and Applications - ISDA ’11,
IEEE, Spain (2011)

[16] Birtolo C., De Chiara D., Ascione M., Armenise R.: A Generative Approach to Product Bundling in the e-Commerce domain.
In: the 3rd World Congress on Nature and Biologically Inspired Computing - NaBIC’11, pp. 169-175. IEEE, Spain (2011)

[17] Birtolo C., Diessa V., De Chiara D., Ritrovato L., Customer Churn Detection System: Identifying customers who wish to leave
a merchant. In: 26th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent
Systems, LNCS Springer, Amsterdam, June 17-21, pages: 411-420 (2013)

[18] Bachmann F., Bass L.: Introduction to the Attribute Driven Design Method. In: the 23rd International Conference on
Software Engineering - ICSE (2001)

[19] Clements P., et al.: Documenting Software Architectures: Views and Beyond. 2nd edition, Paerson Education (2011)
[20] Yu H., et al.: Knowledge Management in E-commerce: A Data Mining Perspective. In: Management of e-Commerce and

e-Management, IEEE (2009)
[21] Guo S., Wang M., Leskovec J.: The Role of Social Networks in Online Shopping: Infor-mation Passing, Price of Trust, and

Consumer Choice. In: Conference on Electronic Commerce, ACM (2011)
[22] Polese M., Tretola G., Zimeo E.: Self-adaptive management of Web processes. In: Web Systems Evolution (WSE), IEEE, pp.

33-42 (2010)
[23] Zagarese Q., Canfora G., Zimeo E., Alshabani I., Pellegrino L., Baude F., Efficient data-intensive event-driven interaction in

SOA. In: Symposium on Applied Computing - SAC 2013, ACM, 1907-1912, (2013)

Edited by: Viorel Negru and Daniela Zaharie
Received: June 2, 2013
Accepted: Jul 9, 2013

