
Scalable Computing: Practice and Experience

Volume 15, Number 2, pp. 153–168. http://www.scpe.org

DOI 10.12694/scpe.v15i2.981
ISSN 1895-1767
c⃝ 2014 SCPE

ADAPTIVE TIME-BASED COORDINATED CHECKPOINTING FOR CLOUD
COMPUTING WORKFLOWS

BAKHTA MEROUFEL1
AND GHALEM BELALEM2

Abstract. Cloud computing is a new benchmark towards enterprise application development that can facilitate the execution
of workflows in business process management system. The workflow technology can manage the business processes efficiently
satisfying the requirements of modern enterprises. Besides the scheduling, the fault tolerance is a very important issue in the
workflow management. In this paper, we analyse and compare between some existing checkpointing strategies, then we propose
a lightweight checkpointing adequate to the cloud computing and the workflows characteristics. The proposed strategy is an
Adaptive Time based Coordinated Checkpointing ATCCp, it ensures a strong consistency without any synchronization. ATCCp
uses the concept of soft checkpointing to minimize the storage time and it uses the VIOLIN topology to improve the checkpointing
performances. According to the experimental results, our approach decreases the overhead and the SLA violations.

Key words: Cloud computing, Workflow, Fault tolerance, Virtual machines, Checkpointing, Coordination, VIOLIN, Consis-
tency state, Stable memory, Overhead.

AMS subject classifications. 68M14, 68M15, 68M20, 68W15, 94C12

1. Introduction. The cloud provisions pools of computing resources as services via the internet using
a pay-as-you-go price model that eliminates initial costly capital investments in hardware and infrastructure.
Research and academic communities can leverage the benefit of the cloud price model for their computation-
intensive applications that traditionally run in HPC environments [34], [35], [36], [37] such as Amazon Web
Services’ HPC offering [38] or science cloud initiatives [39].

The HPC cloud market paradigm are usually smaller scale HPC users, such as small companies and research
groups who have limited access to supercomputer resources and varying demand over time. The perspective of
cloud providers is expanding their offerings to cover the aggregate of these HPC. The user jobs (HPC or not)
are presented as a workflows to facilitate the resources and the tasks management.

The workflow is a set of atomic tasks, interconnected in a directed acyclic graph through control flow and
data flow dependencies. Moving workflows to a cloud computing environment enables the utilization of various
cloud services to facilitate workflow execution. Besides the workflow scheduling, the failures are an important
issue to deal with during the management of workflow execution.

To ensure the cloud reliability, the system must contain a fault tolerance module to allow the cloud to
continue providing the services despite the occurrence of faults. Several fault tolerance techniques are proposed
such as:

• Check pointing/Restart: when a task fails, it is allowed to be restarted from the recently checked
pointed state rather than from the beginning [23], [12].

• Replication: it is a process of maintaining different copies of a data item or object. Various task
replicas are run on different resources, and the execution is successful if at least one replicated task is
not crashed [7], [14], [40]. Replication is a resource demanding.

• Resubmission: whenever a failed task is detected, it is resubmitted either to the same or to a different
resource [16].

Replication suffers from large resource consumption and resubmission can significantly delay the overall
completion time in case of multiple repeating failures. In this paper we use the fault tolerance based on
checkpointing. In a distributed system, since the nodes in the system do not share memory, a global state of
the system is defined as a set of local states, one from each node. In this case, transit and orphan messages
need to be handled; otherwise they can lead to inconsistent checkpoints [12].

1Dept. of Computer Science, Faculty of Exact and Applied Sciences, University of Oran - Es Senia, Oran, Algeria
(bakhtasba@gmail.com).

2Dept. of Computer Science, Faculty of Exact and Applied Sciences, University of Oran - Es Senia, Oran, Algeria
(ghalem1dz@gmail.com).

153



154 B. Meroufel and G. Belalem

Orphan messages are messages whose ”receive events” are part of the destination process checkpoint but
the corresponding ”send events” are lost. In case of a recovery, the destination process would receive those
messages twice, which could result in unpredictable application behavior. On the other hand, transit messages
occur when the ”send events” are part of the sender-side checkpoint but the ”receiving events” are lost.

Figure 1.1 presents three virtual machines (VMs), the horizontal lines represent execution process of each
VM, with time progressing from left to right. An arrow from one VM to another represents a message being
sent, with the send event at the base of the arrow and the corresponding receive event at the head of the arrow.
Internal events have no arrows associated with them. Given this graphical representation, it is easy to verify
the communication among VMs. The black boxes illustrate the checkpointing of each VM. C1 is the recorded
global state and it consists of the set of VMs checkpoints.

In the scenario presented in Figure 1.1, the message m2 is a regular message since its send and receive
events are not stored in C1 (m2 was sent and received after C1). The m1 is a transit message because it was
sent before C1 and received after C1 (the ”send event” of m1 is recorded in the global state C1 but the ”receive
event” is not). In case of a rollback, the VM2 will wait the m1 to be sent from VM1, but VM1 has already sent
this message (according to C1). The message m3 is an orphan message because its ”receive event” is recorded
in C1 but the ”send event” in not recorded. In case of rollback, VM3 receives m3 twice (one recorded in C1
and other sent by VM2 after the rollback) which can lead to incorrect and inconsistent computations.

Fig. 1.1. Communication and checkpointing among three VMs

The checkpointing must create a consistent state. A state without any orphan message is consistent. If
a consistent checkpointing do not create any transit messages then the consistency is strong. To satisfy that
consistency, literature offers three main solutions:

• Independent checkpointing (Uncoordinated) [4], [5]: the checkpoints at each process are taken indepen-
dently without any synchronization among the processes. Because of absence of synchronization, there
is no guarantee that a set of local checkpoints taken will be a consistent set of checkpoints. It may
require cascaded rollbacks that may lead to the initial state due to domino-effect [4]. The independent
checkpointing stores all the checkpoint files during the job life.

• Coordinated or synchronous checkpointing [1], [12]: the processes will synchronize to take checkpoints
in such a manner that the resulting global state is consistent. The main advantage is that it stores only
one permanent checkpoint in the stable memory and it is domino-effect free.

• Communication induced checkpointing: the processes take two kinds of checkpoints, local and forced.
Local checkpoints can be taken independently, while forced checkpoints are taken to guarantee the
eventual progress of the recovery line. However, the messages are piggybacked and useless checkpoints
can be created.

Even if the checkpointing is widely used in cloud computing environment [18], there are very few papers
that study or take into consideration the influence of checkpointing technique. The random choice of check-
pointing technique adds large overhead and decreases the system performance considerably. After studying a
real execution trace of a cloud computing, it is proved that 80% of communications happen inside the server
(among VMs) [8].

In this paper we propose an intra-sever checkpointing strategy. The inter-server can easily managed by
using the communication induced checkpointing at servers level [6]. The proposed checkpointing approach is low-



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 155

overhead time-based coordinated checkpointing (ATCCp). ATCCp technique does not need any synchronization
and it stores only one checkpointing file in the stable memory which decreases the overhead and the resource
consumption. An initiator is selected in ATCCp to manage the resynchronization and to solve the timer
problems.

The rest of this paper is structured as follows: Section 2 explains some related works. Section 3 presents
the adopted system model and its characteristics. Section 4 analysis in detail the time based coordinated
checkpointing strategies proposed in literature. In section 5, a description of ATCCp is given; a comparative
study is also presented in the same section. The experimental results are presented in section 6. The conclusion
and future works are presented in section 7.

2. Related works. Besides the scheduling, fault tolerance is a very important issue in workflow manage-
ment. Literature proposes many works in this field. The authors in [7], [14] use the replication to tolerate the
failures. This strategy is very effective when the system uses a deadline for the running application. However,
the replication is resource demanding and it can add complexity to the system. The resubmission is also another
strategy to ensure the correct execution of the workflow. The authors in [16] balance between the resubmission
and the replication to minimize the disadvantages of each strategy. Even with this combination, fault tolerance
decreases always the system performance and increases the SLA (service level agreement) violation [1].

The previous strategies (replication and resubmission) are used only for fault tolerance. Checkpointing
is a fault tolerance technique but it can be used to ensure or improve other services. In [1], [15], [13] the
authors use the checkpointing to ensure a fault tolerant scientific workflows. In this case, the system records
periodically its state by checkpointing all the running tasks. The proposed approach in [1] uses two phase
blocking coordinated checkpointing which considerably increases the system overhead. The authors in papers
[15], [28] use independent checkpointing which causes the domino effect. Independent checkpointing is used also
in [4], [5] to improve the migration and ensure the load balancing in cloud servers.

The fault tolerance service proposed in [28] and [29] chooses between replication and checkpointing to
tolerate the workflow depending on several criteria such as the cost and the overhead. In [27], a comparison is
done between the replication only and the combination between replication and checkpointing. The experimental
results prove that the checkpointing improves the replication performance.

It is clear that the checkpointing is a very popular technique and it can be used to ensure many services
at the same time. However, random choice of checkpointing technique can increase the system overhead and
the SLA violation. According to Section 1, coordinated checkpointing ensures the consistency without the
scalability and it is the contrary in case of uncoordinated checkpointing.

Time based coordinated checkpointing is a combination between both strategies (coordinated/ uncoordi-
nated) and it ensures both scalability and consistency with the minimum overhead. Many papers studied and
used this type of checkpointing. The majority of the proposed time based checkpointing suffer from many
problems and imperfections. Before presenting and analyzing this type of checkpointing, we present in the next
section the system model.

3. System model. The cloud computing is a set of datacenters geographically distributed. Each datacen-
ter contains multiple physical machines (servers/Hosts). The hypervisor [9] in each server provides a virtualized
hardware environment to support running multiple operating systems concurrently in different virtual machines
(VMs) using one physical server (See Figure 3.1). The VM can accept a special user request to execute an
application. All the virtual machines can concurrently serve, with different operating systems and software
configuration environments according to the need of the user. The kernel level in the VM contains the commu-
nication and the task management modules.

We have extended this architecture by implementing a checkpointing module (CP module) inside each VM.
We assume also that each datacenter contains a stable storage memory where checkpoint files will be stored. All
the servers are connected to the stable memory of their datacenter. The broker is the customer representative
in the cloud environment. It allocates resources for applications/services on multiple VMs in order to fulfill
requests of the client, it negotiates also with the resource provider (the cloud computing) to obtain the most
cost-effective resources. The contract between the broker and the resource provider is represented by the service
level agreement (SLA). The client, the broker and the cloud datacenters are connected by a network.



156 B. Meroufel and G. Belalem

Fig. 3.1. System model

The application models in cloud computing can vary from multi-tier web applications such as e-commerce
to scientific applications (parallel and data-driven applications and workflows) [15]. Typically such applications
consist of several tasks, which communicate with each other. A task consists of some computation and commu-
nication phases. Communications among tasks create dependencies [15], [19]. The workflow is used to indicate
the temporal relationship among tasks and to present their dependencies. In order to show how the workflow
is presented in the system, we used an oriented graph as shown in Figure 3.2.

Fig. 3.2. Workflow example with eight tasks

The oriented graph consists of eight tasks from T1 to T8, and two dummy tasks: tinput and toutput. The
number above each arc (directed edges) shows the estimated dependency factor between the corresponding tasks.
In other words, if task T1 sends five messages to task T4 then the ArcWeight = 5. The average communication
rate µ is calculated by the formula 3.1.

µ =

r∑
l=0

ArcWeightl

r
(3.1)

where r is the number of arcs in the workflow. The number of tasks executed in parallel depends on the number
of available VMs.

Since the tasks are dependent to each other by their communications, transit and orphan messages can exist
during the creation of checkpoints which makes the independent checkpointing inadequate to ensure a consistent
state. However, coordinated checkpointing is very expensive in term of overhead and energy consumption. To
resolve this problem, we used an adaptive time based coordinated checkpointing ATCCp.



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 157

The work in [6] is similar to our proposition but it assumes that VMs clocks are perfectly synchronized,
which may not be true in real system. The work in [6] ensures also only a simple consistency without taking
into consideration the transit messages. Our ATCCp deals with both transit and orphan messages to ensure a
strong consistency with the minimum overhead and without any need for clock synchronization.

4. Time based coordinated checkpointing. Time based coordinated checkpointing is a combination
between coordinated and uncoordinated checkpointing, it is proposed to avoid the problems of each checkpoint-
ing strategy. To facilitate the understanding of our work, we present in Table 4.1 the principal symbols cited
and used in the rest of this paper.

Table 4.1

Time based checkpointing parameters

Symbol Signification

ρ Timer drift
T Initial timer value
MD Maximum deviation
D Initial deviation of checkpointing interval
EDC Effective deviation for the consistency
EDR Effective deviation for the recoverability
csn Checkpoint sequence number
tmax Maximum delivery time of a message
tmin Minimum delivery time of a message
FSi Vector of sending flags of VMi

TC Checkpointing interval

Time based coordinated checkpointing is based on the idea that if the VMs create their checkpoints at the
same time (without any deviation), orphan messages will not exist [17], [18], [23]. However, the clock synchro-
nization among all the VMs is impossible in real systems. To overcome this problem, time based coordinated
checkpointing uses a timer instead of real clock and it assumes that the VMs have loosely synchronized clocks.
It assumes also that all the VMs timers are approximately synchronized with a deviation from real time of some
value ρ, which presents the clock drift.

If a timer is started on each of two VMs at the same time, and each VM has clock drift rate equal to ρ, the
timers will expire at 2ρT seconds apart, where T was the initial timer value and 10−8 < ρ < 10−5. Assuming
this, the clocks will exhibit a maximum drift of 2ρnT after N checkpoint intervals [19]. Time based coordinated
checkpointing ensures a strong consistency if it satisfies two conditions: consistency condition and recoverability
condition.

4.1. Consistency condition. The consistency condition ensures that the system will not create any
orphan message during the checkpointing process. So the checkpointing must ensure that if the ”sent event” of
a message m is not recorded in the checkpoint file of the source, the ”receive event” will not be recorded also in
the checkpoint file of the destination [12]. To deal with orphan messages and satisfy the consistency condition,
many solutions are proposed and implemented in the literature.

In [6], [17], [25], the authors assume that the timers (real or logical) are perfectly synchronized. In this case,
all the VMs will create their checkpoints at the same time. In Case 1 of Figure 4.1, VM0 and VM1 create their
checkpoint C0,0 and C1,0 at the same time (in Ci,j : the i is the VM identifier and j is the checkpoint csn). If
VM0 sends a message m to VM1 after the checkpointing, it is sure that the message will be received after the
checkpoint of VM1, so m will never be an orphan message. However, the perfect timer synchronization among
VMs is not possible in real systems.

To avoid the synchronization condition, the papers [18], [19], [24] take into account the timer deviation ρ.
In this case, orphan message can be created. The second case of Figure 4.1 illustrates a possible situation where
VM0 creates its checkpoint C0,1 at time t1 and then sends a message m1 to VM1. After receiving m1, VM1

creates the checkpoint C1,1. So m1 will be an orphan message and the consistency is not assured. If VM0 did
not send m1 during the timer deviation (until VM1 creates its C1,1), the consistency will be assured.

Based on this observation, the papers [18], [19], [24] propose to block the message sent during a certain period
after the checkpointing. Using time based checkpointing assumptions, it is possible to specify approximately



158 B. Meroufel and G. Belalem

Fig. 4.1. Possible cases of consistency condition

the time interval after the checkpointing where potential orphan messages can be created. If ρ ̸= 0 then the
Maximum Deviation can be calculated by Formula 4.1:

MD = D + 2ρnT (4.1)

where D is the initial deviation of checkpointing intervals. A message sent during MD after the checkpointing
can cause an inconsistency. The MD period can be minimized by taking into account the transmission time of
the message, so the effective deviation of consistency EDc will be (See Formula 4.2):

EDc = MD − tmin (4.2)

where tmin is the minimum delivery time of a message inside the server. If MD = 0 then the timers are fully
synchronized (case 1 of Figure 4.1). Preventing a VM to send messages during EDc period (by buffering this
message until the end of EDc) can resolve the problem. However, blocking the communication increases the
response time and the SLA violation.

Both the timer synchronization and the blocked communication decrease the system performances. To
ensure the consistency, another solution proposes the use of piggybacked messages [20], [21], [22], [23]. In this
case, each message will piggyback some extra data and the receiver will decide to create or not the checkpoint
according to this data. One of the piggybacked data is the checkpoint sequence number (csn) of the local VM.
The csn is an integer number that will be incremented each time the VM creates its checkpoint file. In case
of time based coordinated checkpoints, the csn in all VMs of the server must be the same since all these VMs
create their checkpoints using the same checkpointing interval TC .

So, if a VM receives a message where the piggybacked csn of the message is greater than the local csn, the
receiver VM knows that the sender has already created its checkpoint before sending the message. In this case
and to avoid the creation of orphan message, the VM receiver must create its checkpoint before dealing with
the received message (it buffers the message, creates the checkpoint and then computes this message).

In case 2 of Figure 4.1, the message m1 will piggyback the csn = 1, when VM1 receives this message, it
compares the local csn = 0 with the csn of the message, since the local csn is less than the sent csn, VM1 will
know that VM0 has created its checkpoint before sending m1, so VM1 will be forced to create the checkpoint
C1,1 before dealing with m1. This strategy increases the delivery time of messages.

4.2. Recoverability condition. The recoverability condition ensures that the system will not create any
transit message during the checkpointing process. The checkpointing must ensure that if the ”receive event” of
a message m is recorded in the checkpoint file of the destination, the ”send event” will also be recorded in the
checkpoint file of the source [12].

Using an illustrating example in Figure 4.2, transit messages can exist even if the VMs create their check-
points at the same time. In case 1 of Figure 4.2, both VM0 and VM1 created their checkpoints at the same
time, VM0 has sent m0 before the checkpointing but VM1 has received m0 after its checkpoint which makes
m0 transit.



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 159

Fig. 4.2. Possible cases of recoverability condition

The clock deviation also does not always cause a transit message. In case 2 of Figure 4.2, the message
m1 is not transit since its send and receive events are not recorded in the global state. So the existence of
transit message is related more to the transfer time of the message (time from sending a message to receiving it)
compared to the checkpointing interval. The case 3 of Figure 4.2 presents the same situation of case2. However
in case 3, the transfer delay of m2 was greater than the transfer delay of m1 in case 2, so m2 is received after
the checkpointing of VM1 but sent before the checkpointing of VM0 which makes it transit message.

To deal with the problem of transit messages, the paper [24] proposes to block the communication a certain
period just before the checkpointing time. The transit message is a message sent before the checkpointing of
a VMi and received after the checkpointing of VMj . So if we prevent VMi to send any message that can be
received after the checkpointing of VMj , the problem will be resolved.

Using time based checkpointing assumptions and adopting the same reasoning of blocked communication
used to resolve the problem of case2 in Figure 4.1, we can estimate the time interval that can create potential
transit messages. This interval named effective deviation of recoverability EDR is calculated by Formula 4.3:

EDR = MD + tmax (4.3)

where tmax is the maximum delivery time of a message in the server. However, blocking the communication
always adds an extra overhead to the system.

To avoid blocking communications, the papers [18], [20], [23] use the send-messages logging. In this strategy,
the VM logs all the messages sent. In case of rollback of the receiver, it can ask the sender to re-sent these
messages. But how many messages must be logged and until when. The only period that can create potential
transit message is EDR before the checkpointing time [20], [24], [25]. So logging the message sent during
this period can resolve the transit message problem. We summarized all the used techniques that ensure the
consistency and the recoverability conditions in Figure 4.3.

5. The contribution. In the previous section, we cited and explained the existing time-based coordinated
checkpointing works. The majority of these works deal with the consistency by blocking the communications
or piggybacking the messages. There are also some works that do not consider important parameters such as:
timer drift, checkpointing overhead, message transfer time. Some works ensure only a simple consistency. So
each strategy suffers from some imperfections and does not deal with some problems. And here comes our
contribution as a solution of these imperfections and problems.

5.1. Adaptive Time based Coordinated Checkpointing (ATCCp). The proposed contribution in
this paper is an adaptive time based non-blocking coordinated checkpointing (ATCCp). ATCCp ensures a
strong consistency without overheating the system and without synchronizing the timers or blocking the com-
munications. ATCCp has three phases: Initiator selection, Checkpointing and Resynchronization.

5.1.1. Initiator selection Phase. In this phase, each server (host) selects an initiator of checkpointing.
The initiator is the most powerful and less busy VM in the server. In ATCCp, the role of the initiator is the
general resynchronization and the checkpointing control.



160 B. Meroufel and G. Belalem

Fig. 4.3. Time based checkpointing strategies

5.1.2. Checkpointing Phase. Periodically, each VM creates its checkpoint independently without any
control message exchange. ATCCp ensures a strong consistency by dealing with both consistency and recov-
erability conditions. Since ATCCp is not blocking or synchronizing checkpointing, recording and piggybacking
messages are the only solutions to ensure a strong consistency. Contrary to the previous cited works, our ap-
proach ensures the desired consistency with the minimum overhead by reducing the number of recorded and
piggybacked messages.

In ATCCp, the messages sent during EDC after the checkpointing are potential orphan messages. To avoid
blocking the communication during EDC (such as the strategies in [18], [19], [24]), when a VM sends a message
during EDC to another VM (in this case the ”send event” is not recorded), the VM receiver buffers the message
and creates its checkpoint file, then it computes the message. In this case, the ”receive event” will be also
unrecorded in the checkpoint file of the receiver. However, not all the messages sent during EDC will force the
receivers to create their checkpoints. The VM destination is forced to create the checkpoint if the csn of the
message (actually it is the csn of the source VM) is greater than the local csn of VM destination.

Besides the csn, the piggybacked message will also contain the ”time to next checkpoint TNC” representing
the rest of the time before the next checkpoint of the source. The goal of this information is the resynchro-
nization. To reduce the number of piggybacked message in ATCCp, a VMi piggybacks only its first application
message sent during EDC (after it has create its checkpoint) to a VMj .

Each VMi uses a Boolean vector FSi of N size, where N is the number of VMs in the server. The FSi is
used to identify the first message sent to a VM destination, when VMi sends a message to VMj then FSi[j] = 1.
After each checkpointing the vector is initialized (FSi[j] = 0 / i ̸= j). The second computation message sent
to the same destination can not force the checkpointing creation because the source and the destination have
the same csn.

In ATCCp, the potential transit messages in VMi are those sent during the period EDR. So only the
messages sent during this period will be stored in the checkpoint file and VMi continues its execution without
blocking its communications. In case of rollback, the transit message will be detected and the source will send
it again to the destination. However in paper [20], the author has proved that if we use the same checkpointing
interval (even with deviations) and if Tc +MD > tmax (the maximum difference between the sender csn and



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 161

receiver csn is 1) then it is sufficient to store only the messages sent during the last checkpointing interval.

5.1.3. Resynchronization Phase. In time based checkpointing approachs, the clock deviation increases
with 2ρnT after n checkpoint intervals [18], [19]. The goal of the resynchronization phase is to reinitialize the
value of ρ. If ρ = 0 then the Maximum deviation will be: MD = D+2ρnT = D where D is the initial deviation
of checkpointing intervals. The synchronization can be executed by the initiator or the ordinary VM.

• The initiator can start the resynchronization when the deviation MD exceeds a certain threshold or the
size of logged messages exceeds the buffer size of VMs. In this case, the initiator sends special messages
to VMs to synchronize their timers.

• An ordinary VM can use its piggybacked message to minimize the deviation between the local timer
and the destination timer. So when the VM receives the piggybacked message, it uses the csn to decide
to create or not the checkpoints and it uses the synchronization data (time to next checkpoint TNC

and the message transfer delay) to minimize the clock deviation.

The combination between the initiator and the VM resynchronization decreases considerably the overhead.
The initiator synchronization overheads the server by control messages but it decreases the resource consump-
tion, i.e. the number of possible orphan and transit messages will be reduced since the EDR and EDC are
reduced. The VM synchronization adds more data on the piggybacked messages but it decreases the initiator
resynchronization rate.

However, if the timer of the sender is faulty, the erroneous timer information will be spread to the receiver.
Besides, since the transmission delay between the sender and the receiver is variable, the timer information from
the sender may not reflect the correct situation when the message finally arrives at the receiver. To achieve
more accurate timer synchronization, we can utilize the timers in the initiator as an absolute reference. The
Figure 5.1 illustrates a part of ATCCp process (only the consistency condition and the resynchronization of
an ordinary VM) in two communicating VMs (VMi and VMj). The green arrow presents a communication
message sent from VMi to VMj .

Fig. 5.1. ATCCp process in two VMs

Besides the checkpointing technique, it is proven that 70% of checkpointing overhead is caused by the
storage phase (called the checkpointing latency), i.e. the time needed by the VM to store its checkpoint file in
the stable memory. During the storage phase, the VM suspends its running task to execute the storage which
means that the task will be delayed and therefore the whole workflow will be delayed also.

To minimize the storage time, we used soft checkpointing. When the VM creates its checkpoint file, it sends
it to the initiator (the file) and continues immediately the running task. When the initiator receives all the
checkpoints files, it sends these files to the stable memory. The initiator can use I/O strategies such as data
sieving and collective I/O [26] to improve the storage time.



162 B. Meroufel and G. Belalem

Since ATCCp is a server checkpointing technique, we used an enhanced version of VIOLIN topology [2].
The VIOLIN (virtual networked environment) consists of multiple VMs connected by a virtual network. VMs
of the same server are connected by VIOLIN switches running in each server. In the classical VIOLIN proposed
in [2], the checkpoints are taken by VIOLIN switches from outside VMs using the strategy proposed in [3].
Although communications pass through the VIOLIN switch, each VM is responsible to manage its sent/received
messages. VIOLIN topology is destined for the fault tolerance, but it is very sensitive to the VIOLIN switch
failure. If a virtual switch in VIOLIN fails (in case of in-transient failures), the checkpointing will be impossible
and the cloud will lose its reliability.

To address this problem in VIOLIN topology we combined between the host topology of Figure 3.1 and the
classical VIOLIN by implementing a checkpointing module in each VM. One VM will be selected as VIOLIN

switch and in case of failure; another VM can replace it immediately. ATCCp does not need any extra-control
messages or extra-resource, so its implementation will not need major modifications.

To facilitate the checkpointing process, we suppose that the VIOLIN switch is always the checkpointing
initiator because it has a global view about the existing VMs in the host (server). In case of any need of control
(for example: specifying the maximum deviation time or starting the resynchronization), the VIOLIN switch
can forward the control messages without losing time in collecting data about the actual situation. Besides
that, the VIOLIN switch uses the server clock to solve the timer problem.

5.2. Analysis and comparative study. To analyze our contribution, we used the example of Figure 5.2.

Fig. 5.2. ATCCp parameters with an example

Figure 5.2 illustrates all the time intervals used in time based coordinated checkpointing (see Table 4.1). It
presents also an example of the checkpointing process in two VMs .

• Each VM estimates its EDR and EDC .
• VM0 and VM1 create their checkpoint files (T1 and T2 respectively) independently
• Each VM stores the messages sent during its EDR in the checkpointing file. Those messages are
probably transits. In case of rollback, the transit message will be sent again to its destination. In
Figure 5.2, the message m1 is transit and it will be stored in the checkpoint file of VM1. In case of
failure and rollback, the VM0 requests VM1 to resend m1, and m1 is already stored in the checkpointing
file of VM1.

• The messages sent during EDC of the source can be an orphan message, so if the message is sent for
the first time to a destination, that message will be piggybacked by some data (specially the csn) and
it will force the destination to create its checkpoint before the checkpointing (only if csn of the source
is greater than the csn of the destination). In this case, the message will be regular and the csn of the
source and the destination will be the same. In Figure 5.2, the VM0 sent m2 to the VM1 during its
EDC and since this message is the first message sent to VM1 after the last checkpoint T1, it will be
piggybacked by some data. At the reception of m2 (Sourcecsn = 2 > Destinationcsn = 1), the VM1

creates its checkpoint T2 before treating this message (not illustrated in the Figure 5.2) and it will also
resynchronize its timer. If VM0 sends a second message to VM1 during EDC , the message will not be
piggybacked with extra-data and it will not force the destination to create its checkpoint file since csn

of VM0 and csn of VM1 are equal.



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 163

Our approach solves many problems of time based coordinated checkpoints proposed in literature and it
does not omit the majority of parameters. Table 5.1 presents a comparison between our ATCCp and the other
time based coordinated checkpointing cited in this paper.

Table 5.1

Comparison between time based checkpointing

Paper ρ Transfer Timer Blocking Sys CP Synch Recov Piggy-

time prob type type back

[17] No No No Yes Dist H SM No No
[18] Yes Yes No Yes Dist H SM Yes No
[19] Yes Yes No Yes Dist H SM Yes No
[20] Yes No No No Mob S/H SM Yes Yes
[21] Yes Yes Yes No Mob S/H CM Yes Yes
[22] Yes No No No Mob H CM No Yes
[23] Yes No No No Mob S/H CM Yes Yes
[24] Yes Yes No Yes Mob H CPM Yes No
[25] No Yes No No Dist H SM Yes Yes
[6] No No No No Cloud H CM No Yes
ATCCp Yes Yes Yes No Cloud S/H CM/ No Not

SM always

The comparison criteria are: considering the timer drift (ρ), considering the transfer time of messages
(Transfer time), dealing with timer problems (Timer prob), if the system freezes communications or not
(Blocking), the system type where the checkpointing strategy was implemented for (Sys type: Mob (Mobile),
Dist(Distributed) or Cloud), the resynchronization tools (Synch represents the type of message where the
synchronization is piggybacked: SM (Special messages), CM (Computing messages) or CPM (Checkpointing
messages)), ensuring the recoverability condition (Recov), using the piggybacked messages (Piggyback). And
finally the type of checkpoint files: Hard (H ) or Soft (S ). In hard checkpointing, the VM stores its state in
the stable memory directly. In the soft type, the VM stores its checkpoint in the local memory or sends it to
a storage manager and continues its execution immediately. The S/H means that the checkpointing uses both
soft and hard checkpoint files.

6. Performance evaluation. In this section, we evaluate the performances of our checkpointing scheme
using CloudSim simulator [11]. The CloudSim is currently the most sophisticated discrete event simulator for
Clouds; it is an open source, scalable and low simulation overhead simulator [11]. It is used in many papers to
simulate the scientific workflows [31], [32], [33].

The experimentations in [32] prove that CloudSim has the best accuracy in workflows performances. The
accuracy is defined as the ratio between the predicted performances using a specified metric and the real
performances.

We did not compare our ATCCp with the other time based coordinated checkpoints because the ATCCp is
a solution of classical time based checkpointing problems, which makes it clearly better than those strategies.
However, we studied the ATCCp behavior compared to coordinated checkpointing CCp used in [1], [16], [35] and
independent checkpointing ICp used in [15], [28], [36]. The goal is proofing that our approach ensures a strong
consistency with the minimum cost (like the CCp) and with the minimum overhead (like the ICp). Simulation
parameters are presented in Table 6.1.

6.1. Makespan vs Number of VMs. In the first experiment, we measured the impact of number of
checkpoints on the makespan (scalability) for the three checkpointing strategies ATCCp, ICp and CCp. We
used the parameters cited in Table 6.1, except that the cloudlet length is fixed at 1000 MIPS, µ=50, the number
of VMs is 40 and the checkpointing interval: 100 < TC < 600s. The makespan is measured by Formula 6.1.

makespan = maxTi∈TExectT ime(Ti) (6.1)

where Ti is the task i in the running workflow T . And ExecT ime is the execution time of that task (Task i).



164 B. Meroufel and G. Belalem

Table 6.1

Simulation parameters

Parameter Value

Number of VM per server 10-100
Server BW 1 Gega bit per second
Cloudlet number (Tasks) 1500
Cloudlet length 100-12000 MIPS
communication rate µ 2-100
Checkpoint intervalCPInterval 100-500 second
Failure rate λ 2 to 5 per period

The results are presented in Figure 6.1. Incrementing the checkpointing number increases the makespan in
all the strategies (ATCCp, CCp, ICp). ATCCp uses soft checkpointing and it does not need any coordination
except in case of resynchronization, which makes its performances similar to the ICp with an average difference
of 10%.

In our work, we present the SLAV iolation by the overhead caused during the checkpointing [8]. The SLA is a
contract between customers and service providers of the level of service to be provided [1]. So the customer can
precisely specify the margin for acceptable overhead (20% for example). If the overhead caused by the checkpoint
exceeds the margin, then a SLA violation will be detected. In this experiment, SLAV iolation(ATCCp)=13%,
SLAV iolation (CCp)=27% and SLAV iolation (ICp)=11.78%.

Fig. 6.1. Makespan vs Number of checkpoints

6.2. Cost vs Number of checkpoints. As the cost is a very important parameter in cloud environment,
we used the parameters of the first experiment to analyze the cost of all checkpointing strategies. The total
cost is calculated using Formula 4.3:

TotalCost =

k∑

i=1

Cost(Ti) +

m∑

j=1

Cost(CPj) (6.2)

where k is the number of tasks in the workflow and m is the number of checkpoints created during the workflow
execution. Cost(Ti) is the cost of running the task Ti in the specified resource, it includes the communication
cost (running the send/receive events). The cost of the jth round of checkpointing is Cost(CPj) and it includes
the coordination cost, the state recording cost and the storage cost.

According to the results illustrated in Figure 6.2, the cost of CCp is less than the cost of CCp and ICp

(specially in case of high checkpointing rate). The only checkpointing communication needed in ATCCp is
during the resynchronization so the coordination cost will be reduced. Also the use of VMs resynchronization
minimizes the timer drift, so the periods EDC and EDR will also be reduced. In this case, the piggybacked
messages and the number of transit messages stored in checkpoint files will be reduced, which means less storage



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 165

Fig. 6.2. Cost vs Number of checkpoints

cost and less bandwidth consumption. Also in ATCCp, only one checkpointing state is needed to ensure a correct
rollback.

In CCp, the server must record all the sent messages to avoid the transit messages (ensuring the recover-
ability condition) and the initiator must coordinate with the VMs in each checkpointing round, which increases
the cost. The cost of ICp was significantly increased when the checkpointing rate increased because this type of
checkpointing needs to store all the checkpoint files to ensure the correct rollback (domino effect). So the ICp

cost is due to the checkpointing latency (storage).

6.3. Communication rate vs cost. Communication rate µ represents the dependency degree between
tasks of the workflow. This dependency causes a major problem in checkpointing techniques. In this experiment,
we measured the cost of the ATCCp and CCp checkpointing in the system with different µ. The ICp is not
affected by the communication rate since no coordination is needed.

Fig. 6.3. Communication rate Vs cost

The results (See Figure 6.3) prove that increasing the communication rate can improve the ATCCp per-
formances since the communication among VMs (specially during the EDC) decreases the timer drift (using
the piggybacked messages). So the period EDR will be reduced and the initiator resynchronization frequency
will be decreased. In CCp, a high µ implies more storage space needed to ensure the recoverability condi-
tion. The number of piggybacked messages in CCp will increase since this checkpointing does not block the
communications. In our ATCCp, piggybacked messages are sent only during EDC (See Section 5).

VIOLIN topology has improved both checkpointing techniques with almost 14.3% since the initiator is
VIOLIN switch (it has a global view about the communication among VMs), so no time is needed to select an
initiator, or to collect data about communications or VMs states in the server.

6.4. Rollback duration Vs failure rate. In this experiment, we fixed all the parameters cited in Table
6.1, but the failure rate λ is varied from 3 to 24 per period. Our goal is to measure the time needed for the



166 B. Meroufel and G. Belalem

rollback in case of failure. The performances of CCp and ATCCp are approximately the same because both
strategies need only the last stored checkpoint file to resume the work. However, ICp has to ensure the correct
state among all the stored checkpointing files, which can lead to the domino effect and therefore the rollback
duration will increase (See Figure 6.4).

Fig. 6.4. Rollback duration Vs failure rate

7. Conclusion. When computationally-intensive workflows are executed, fault handling is very important,
since the failure of a single component might lead to an abandonment of the entire workflow. This may lead to
the loss of the stability and the reliability in the system. Since both the customer and the cloud computing are
bound by the SLA contract, the choice of the checkpointing technique is very critical.

In this paper we proposed a fault tolerance service to tolerate failures using checkpointing technique. Our
approach is a time-based coordinated checkpointing ATCCp. It ensures a strong consistency with the minimum
control messages and without blocking the VMs communications. ATCCp uses the VIOLIN topology and the
soft checkpoint to improve the checkpointing performances.

To evaluate our approach, we compared it with the most popular checkpointing techniques: coordinated
and uncoordinated checkpointing. The experimental results prove that ATCCp omits the problems of classical
approaches. It decreases the overhead, minimizes the SLA violation and ensures a rapid rollback. Our work
focuses on intra-server checkpointing. However, ATCCp can be easily extended to support the inter-server
checkpointing by using multi-level checkpointing (Communication induced checkpointing at servers level and
ATCCp at VMs level). In the future work, we will use a real platform such as eucalyptus [30] to implement the
ATCCp.

REFERENCES

[1] M. Zhang, H. Jin, X. Shi and S. Wu, VirtCFT: A Transparent VM–Level Fault-Tolerant System for Virtual Clusters,
IEEE Proceeding of the 16th International Conference on Parallel and Distributed Systems (ICPADS), 8–10 Dec. 2010,
Shanghai, pp. 147–154.

[2] A. Kangarlou, P. Eugster and D. Xu, VNsnap: Taking Snapshots of Virtual Networked Infrastructures in the Cloud,
IEEE Transactions on Services Computing, 5(4): 484–496, 2012.

[3] F. Mattern , Efficient Algorithms for Distributed Snapshots and Global Virtual Time Approximation, Journal of Parallel
and Distributed Computing, 18(4): 423–434, 1993.

[4] S. Di ,Y. Robert, F. Vivien, D. Kondo, C–L. Wang and F. Cappello, Optimization of cloud task processing with
checkpoint–restart mechanism, International Conference for High Performance Computing, Networking, Storage and
Applications (SC2013), Nov. 17–22, 2013, Dever, Colorado, USA.

[5] D. Nguyen and N. Thoai, EBC: Application–level migration on multi–site cloud, The International Conference on Systems
and Informatics (ICSAI), 19–20 May, 2012, pp. 876–889.

[6] H. Hui, Z. Zhan, W. Bai–Ling, Z. De–Cheng and Y. Xiao–Zong, A Two–level Application Transparent Checkpointing
Scheme in Cloud Computing Environment, International Journal of Database Theory and Application, 6(2): 61–71, 2013.

[7] O. Ben–Yehuda, A. Schuster, A. Sharov, M. Silberstein and A. Iosup, ExPERT: Pareto–Effcient Task Replication on
Grids and a Cloud, IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS), 21–25 May, 2013,
pp. 167–178.

[8] R. Jhawar, V. Piuri and M. Santambrogio, Fault Tolerance Management in Cloud computing : A System–Level Perspec-
tive, IEEE Systems Journal, 7(2): 288–297, 2013.



Adaptive Time-based Coordinated Checkpointing for Cloud Computing Workflows 167

[9] M.N.O. Sadiku, S.M. Musa and O.D. Momoh, Cloud computing: Opportunities and challenges, Potentials IEEE Journal,
33(1): 34–35, 2014.

[10] W. Zhao, Y. Peng, F. Xie and Z. Dai, Modeling and Simulation of Cloud Computing: A Review, IEEE Asia Pacific Cloud
Computing Congress (APCloudCC), 14–17 Nov. 2012, Shenzhen, pp. 20–24.

[11] R. Calheiros, R. Ranjan, A. Beloglazov1, C. De Rose and R. Buyya, CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning algorithms, Software: Practice and Experience
journal, 41(1): 23–50, 2011.

[12] G. Cao and M. Singhal, On coordinated checkpointing in distributed systems, IEEE Transactions on Parallel and Distributed
Systems, 9(2): 1213–1225, 1998.

[13] I. Egwutuoha, S. Chen, D.Levy, B. Selic and R. Calvo, A Proactive Fault Tolerance Approach to High Performance
Computing (HPC) in the Cloud, Second International Conference on Cloud and Green Computing (CGC2012), 1–3 Nov.
2012, Xiangtan, pp. 268–273.

[14] L. Arockiam and G. Francis, FTM–A Middle Layer Architecture for Fault Tolerance in Cloud Computing, IJCA Special
Issue on Issues and Challenges in Networking, Intelligence and Computing Technologies, ICNIT 2012, No.2, pp. 12–16.

[15] T. Nguyen and J-A. Desideri, Resilience Issues for Application Workflows on Clouds, In Proceeding of the 8th International
Conference on Networking and Services (ICNS2012), Mach 2012, Sint–Maarten (NL).

[16] P. Palaniammal and R. Santhosh, Failure Prediction for Scalable Checkpoints in Scientific Workflows Using Replication
and Resubmission task in Cloud Computing, International Journal of Science, Engineering and Technology Research
(IJSETR), 2(4): 985–991, 2013.

[17] S. Neogy, A. Sinha and P. K. Das, Checkpointing with synchronized clocks in distributed systems, International Journal of
UbiComp, 1(2): 64–91, 2010.

[18] N. Neves and W.K. Fuchs, Coordinated checkpointing without direct coordination, IEEE International Computer Perfor-
mance and Dependability Symposium (IPDS98), 7–9 Sept. 1998, Durham, NC, pp. 23–31

[19] P.K. Suri and M. Satiza, System Progress Estimation in Time based Coordinated Checkpointing Protocols, International
Journal of Computer Applications, 52(11): 1–6, 2012.

[20] N. Neves and W.K. Fuchs, Adaptive Recovery for Mobile Environments, Communications of the ACM, 40(1): 68–74, 1997.
[21] C–Y. Lin, S–C. Wang and S–Y. Kuo, An Efficient Time–Based Checkpointing Protocol for Mobile Computing Systems over

Mobile IP, Mobile Networks and Applications, 8(6): 687–697, 2003.
[22] K. Singh, On mobile checkpointing using index and time together, World Academy Science, Engineering and Technology, Vol.

26, 2007, pp. 144–151.
[23] J. Surender, S. Arvind, K. Anil and S. Yashwant, Low Overhead Time Coordinated Checkpointing Algorithm for Mo-

bile Distributed Systems, Computer Networks & Communications (NetCom) in Lecture Notes in Electrical Engineering
(LNEE), Vol. 131, 2013, pp. 173–182.

[24] M. Tripathy and C.R. Tripathy, A new co–ordinated checkpointing and rollback recovery scheme for distributed shared
memory clusters, International Journal of Distributed and Parallel Systems (IJDPS), 2(1): 49–58, 2011.

[25] B. Gupta and S. Rahimi, A Novel Low-Overhead Recovery Approach for Distributed Systems, Journal of Computer Systems,
Networks and Communications, Vol. 2009, 2009, pp. 1–8.

[26] J. Fu, M. Min, R. Latham and C. D. Carothers, Parallel I/O Performance for Application–Level Checkpointing on the
Blue Gene/P System, Workshop on Interfaces and Architectures for Scientific Data Storage (IASDS), in conjunction with
IEEE International Conference on Cluster Computing (Cluster), 26–30 Sept. 2011, Austin, TX, pp. 465–473.

[27] I.I. Yusuf and H. W.Schmidt , Parameterised Architectural Patterns for Providing Cloud Service Fault Tolerance with
Accurate Costings. In Proceedings of the 16th International ACM SIGSOFT symposium on Component–based software
engineering (CBSE13), June 17–21, 2013, Vancouver, BC, Canada, pp. 121–130.

[28] L. Ramakrishnan and D. A. Reed, Performability Modeling for Scheduling and Fault Tolerance Strategies for Scientific
Workflows. In Proceedings of the 17th international symposium on High performance distributed computing (HPC08),
23–27 June 2008, Boston, MA, USA, pp. 23–34.

[29] M. Wang, L. Zhu and J. Chen, Risk–aware Checkpoint Selection in Cloud-based Scientific Workflow, Second International
Conference on Cloud and Green Computing (CGC2012), Xiangtan, Hunan, China, November 1–3, 2012, pp. 137–144.

[30] E. Caron, F. Desprez, D. Loureiro, and A. Muresan, Cloud computing resource management through a grid middleware:
A case study with DIET and eucalyptus, IEEE International Conference on Cloud computing (CLOUD2009), 21–25 Sept.
2009, Bangalore, India, pp. 151–154.

[31] M. Sudha and M. Monica, Investigation on Efficient Management of workflows in cloud computing Environment, Interna-
tional Journal on Computer Science and Engineering (IJCSE), 2(5): 1841–1845, 2010.

[32] W. Chen and E. Deelman, WorkflowSim: A Toolkit for Simulating Scientific Workflows in Distributed Environments. In
Proceedings of the IEEE 8th International Conference on E–Science (E–SCIENCE ’12), October 8–12, 2012, Chicago, IL,
USA, pp. 1–8.

[33] R. N. Calheiros and R Buyya, Meeting Deadlines of Scientific Workflows in Public Clouds with Tasks Replication, IEEE
Transactions on Parallel and Distributed Systems (TPDS), No. 99, 2013, pp. 1–10.

[34] A. Gupta, L. Kale, F. Gioachin, V. March, C. Suen, B. Lee, P. Faraboschi, R. Kaufmann and D. Milojicic, The Who,
What, Why and How of High Performance Computing Applications in the Cloud, Technical Reports, HP Laboratories,
HPL–2013–49, 2013. pp. 1841–1845.

[35] K.L. Keville, R. Garg, D.J. Yates, K. Arya and G. Cooperman, Towards Fault–Tolerant Energy Efficient High Perfor-
mance Computing in the Cloud, IEEE International Conference on Cluster Computing (Cluster12), 24–28 Sept. 2012,
Beijing, pp. 622–626.

[36] B. Nicolae and F. Cappello, BlobCR: Virtual Disk Based Checkpoint–Restart for HPC Applications on IaaS Clouds,



168 B. Meroufel and G. Belalem

Journal of Parallel and Distributed Computing , 73(5): 698–711, 2013.
[37] P. Zaspel and M. Griebel, Massively parallel fluid simulations on Amazons HPC cloud, First International Symposium on

Network Cloud Computing and Applications (NCCA2011), 21–23 Nov. 2011, Toulouse, France, pp. 73–78.
[38] E. Walker, Benchmarking Amazon EC2 for high–performance scientific computing, LOGIN , 33(5): 18–23, 2008.
[39] L. Ramakrishnan, P.T. Zbiegel, S. Campbell, R. Bradshaw, R.S. Canon, S. Coghlan, I.Sakrejda, N. Desai, T.

Declerck, and A. Liu, Magellan: experiences from a science cloud, In Proceedings of the 2nd international workshop
on Scientific cloud computing (ScienceCloud11), June 8, 2011, San Jose, California, USA, pp. 49–58.

[40] B. Meroufel, G. Belalem, Collaborative Services for Fault Tolerance in Hierarchical Data Grid, International Journal of
Distributed Systems and Technologies (IJDST), 5(1): 1–21, 2014.

Edited by: Florin Fortiş
Received: Mar 1, 2014
Accepted: Jun 24, 2014


