
Scalable Computing: Practice and Experience

Volume 16, Number 2, pp. 153–162. http://www.scpe.org

DOI 10.12694/scpe.v16i2.1087
ISSN 1895-1767
c⃝ 2015 SCPE

A SCALABILITY STUDY USING SUPERCOMPUTERS FOR HUGE FINITE ELEMENT

VARIABLY SATURATED FLOW SIMULATIONS∗

FRED T. TRACY†, THOMAS C. OPPE‡, WILLIAM A. WARD§, AND MAUREEN K. CORCORAN¶

Abstract. This paper describes the challenges and scalability results of running a large finite element model of variably
saturated flow in a three-dimensional (3-D) levee on a large high performance, parallel computer using a mesh with more than a
billion nodes and two billion elements. MPI (Message Passing Interface) was used for the parallelization. The original finite element
model consisted of 3,017,367 nodes and 5,836,072 3-D prism elements. The model exhibited three characteristics which made the
problem difficult to solve. First, the different soil layers had soil properties that differed by several orders of magnitude. Secondly,
there existed a 5 ft × 6 ft × 6 ft region at the toe of the levee where the mesh was refined using 1 in × 1 in × 1 in 3-D prism
elements having randomly generated soil properties. Thirdly, variably saturated flow in levees is governed by the highly nonlinear
Richards’ equation.

A utility program was written to increase the size of the original problem by an arbitrarily large factor by replicating the original
mesh in the y direction. A factor of two, for instance, would exactly double the number of elements and double the number of nodes
less the interface nodes connecting the two pieces. The original data set was run using 32, 64, 96, and 256 MPI processes (one core
per process was used throughout this study) with time to solution taken for each of these process counts. The data set was then
magnified by 2 and runs for 64, 128, 192, and 512 processes were made with time to solution again recorded. This procedure was
repeated for different numbers of processes and magnification values. The largest data set was generated from a magnification of
350 yielding a mesh of 1,044,246,303 nodes and 2,042,625,200 3-D prism elements. The Cray XE6 and Cray XC30 computers were
used in this study. A tabulation of results is presented and analyzed, as well as the significant challenges that occurred in scaling
up the problem size. Weak and strong scalability results are also presented in this paper.

Key words: high performance computing, finite element method, variably saturated seepage flow modeling

AMS subject classifications. 35J66, 65Y05, 76S05

1. Introduction. The maturing of large parallel supercomputers makes it possible to solve problems never
before attempted. It is a trivial matter to ask for 100,000 or more cores in a batch submission script, but doing so
without experimenting with gradually scaled-up problem sizes often leads to unexpected parallel inefficiencies,
waste of resources, or even outright failure. This paper describes the challenges presented and the efforts made
to run ever larger finite element groundwater models using up to a billion nodes and two billion 3-D prism
elements. Weak and strong scaling were used to measure the success of the effort.

The problem chosen is a finite element simulation of variably saturated flow in porous media [1] where there
are significant heterogeneities in the soil and difficult nonlinearities in the governing partial differential equation
of Richards’ equation [2]. Large systems of linear, simultaneous equations must also be solved hundreds of times
using solvers such as the conjugate gradient method [3]. The matrices are often stored in a sparse matrix format
leading to matrix-vector operations that involve irregular data patterns and indirect addressing. Clearly, the
chosen problem is a difficult real-world problem to tackle.

2. Description of the problem. The problem consists of steady-state flow through a levee as shown in
Fig. 2.1 and idealized in Fig. 2.2 where there are several soil layers with soil properties differing by 5 to 6 orders
of magnitude (e.g., from clay with a low hydraulic conductivity to sand with a high hydraulic conductivity).
Fig. 2.3 shows a portion of the 3-D mesh of the levee system before a tree with its root system was added
at the toe. More details are given in [4]. To model the tree root at the toe of the levee, a 5 ft × 6 ft × 6
ft heterogeneous zone was added (see Fig. 2.4) in which the mesh was refined using 1 in × 1 in × 1 in 3-D
prism elements. To simulate heterogeneities, a randomly generated hydraulic conductivity was assigned to each
element in this zone. The resulting mesh consisted of 3,017,367 nodes and 5,836,072 3-D prism elements.

∗This work was supported in part by a grant of computer time from the Department of Defense High Performance Computing
Modernization Program (HPCMP).

†Information Technology Laboratory (ITL), Engineering Research and Development Center (ERDC), Vicksburg, MS, USA.
‡ITL, ERDC, Vicksburg, MS, USA.
§HPCMP, ITL, ERDC, Vicksburg, MS, USA.
¶Geotechnical and Structures Laboratory, ERDC, Vicksburg, MS, USA.

153

154 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Fig. 2.1. River side of a levee with trees.

Clay and silty clay

Clay mixed with sand

Aquifer sand

Gravel

Slurry wall
Levee sand

Silt

River elevation

Fig. 2.2. Cross section of a levee with material types and elevation of the river.

3. Computational challenges. The many computational challenges inherent in this application were as
follows:

• Complicated geometry. The geometry of the levee system contained several regions having different soil
properties.

• Wide-ranging material property values. The soils in the levee ranged from sand to silt to clay, and the
associated material properties such as hydraulic conductivity spanned several orders of magnitude [5].

• Nonlinear system of equations to solve. The system of equations resulting from the finite element dis-
cretization of the levee seepage flow problem was nonlinear because the flow was partially saturated and
partially unsaturated. This required the repeated solution of a simultaneous, linear system of equations
resulting from either a Picard or Newton linearization in conjunction with line search algorithms [6], [7],
and [8]. As the number of nodes and elements increased, this computation became increasingly difficult.

• Ill-conditioned system of linear equations. When the soil is partially saturated, material properties such
as relative hydraulic conductivity and moisture content become several orders of magnitude smaller as
the soil becomes less and less moist. This adds additional stress to solving the linear system of equations
at each nonlinear step. A study of preconditioners and solvers for the variably saturated problem is
given in [9].

• Sparse matrix format. The coefficients of the matrices used in solving the linear system of equations at
each nonlinear iteration were stored in sparse matrix format with indirect addressing. This irregular
pattern of data decreased the efficiency of the computer for such things as vectorization of the matrix-
vector calculations.

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 155

Fig. 2.3. Portion of the 3-D mesh before the root zone was added.

4. High performance parallel computing. A 3-D seepage/ground-water finite element program was
parallelized using MPI [10] on Garnet, the Cray XE6 at ERDC [11], and on Lightning, the Cray XC30 at the
Air Force Research Laboratory, Aberdeen, MD, USA [12]. Garnet consists of 4,716 dual-socket compute nodes
with each socket populated with a 2.5 GHz 16-core AMD 6200 Opteron (Interlagos) processor. Each node has
64 GB memory (60 GB user-accessible) or an average of 1.875 GB memory per core. The interconnect type is
Cray Gemini in a 3-D torus topology. Garnet is rated at 1.5 peak PFLOPS or 10 GFLOPS per core. Garnet
has a large Lustre file system that is tuned for parallel I/O. Lightning consists of 2,360 dual-socket compute
nodes with each socket populated with a 2.7 GHz 12-core Intel Xeon E5-2697v2 (Ivy Bridge) processor. Each
node has 64 GB memory (63 GB user-accessible) or an average of 2.625 GB memory per core. The interconnect
type is Cray Aries in a Dragonfly topology. Lightning is rated at 1.2 peak PFLOPS or 21.6 GFLOPS per core.
Lightning has a large Lustre file system that is tuned for parallel I/O.

The parallelization of the 3-D seepage/groundwater program was broken into four separate parts, and each
part was a stand-alone FORTRAN or C computer program. One MPI process was placed on each core of a
compute node. The four programs will now be described.

• Partitioner. The mesh is partitioned using the Parallel Graph Partitioning and Fill-reducing Matrix
Ordering program, ParMETIS [13], to divide the mesh into approximately equal pieces among the
processes. This is illustrated in Fig. 4.1 where three parallel processes have the nodes of the mesh
divided among them. The output of the first version of ParMETIS used was a single file containing a
line for each finite element node stating to which process the given node belongs. As the problem size
grew, the version of ParMETIS that distributes the output file over the processes in a block partition
style was used. As seen in Fig. 4.1, some elements contained nodes belonging to different processes.
Each element is assigned to that process that owns the first node of the element. Nodes of an element
belonging to a particular process that are not owned by that process are called ghost nodes. Also some
elements have nodes belonging to a particular process but that element does not belong to that process.
These are called ghost elements, and they create even more ghost nodes.

• Preparer. The next piece of the solution creates a file for each process that contains the owned and ghost
nodes and elements for that process using local numbers (see Sect. 5.2.2), a subset of the boundary
condition file and initial condition file belonging to that process, a list of nodes where data are to be
sent to every other process, a list of nodes where data are to be received from every other process, and

156 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Fig. 2.4. Heterogeneous zone representing the roots of a tree.

global node and element numbers for the owned and ghost nodes and elements on that process.
• Finite element program. This part does the finite element computations with resulting output files
containing results for each owned node of that process. This is the primary focus of the time-to-solution
results presented later in this paper.

• Postprocessor. This final part is a postprocessor program that combines all data from each process into
the final output files.

5. Challenges.

5.1. Partitioner. This original version of this program (written in C) simply reads in the geometry data
file and calls one of the ParMETIS programs to produce a single file with a line of data for each node that gives
the process that owns the node. That technique was adequate for the original problem with 3,017,367 nodes
and smaller versions of the bigger meshes. For example, when the original data set is doubled (m = 2), the
mesh has 6,000,831 nodes, and the partitioner program took only 6.3 seconds to run. At this size of problem, it
was possible to use global arrays to store the mesh. However, as the problem size grew, the geometry files also
continued to grow, and the time for reading this file into the program continued to grow as well.

5.1.1. No global arrays. The finite element mesh data needed for the partitioner took 710 Mbytes of
memory for the original problem. However, magnifying the problem to m = 100, for instance, required 68

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 157

Fig. 4.1. An example of dividing a finite element mesh into several partitions.

Gbytes of memory to store this same data. This clearly illustrated why no global arrays can be allowed in
any part of this application. To completely avoid this use of global arrays makes the process of parallelization
much more difficult. It was decided to first read the mesh data and store it in the block partition format. Then
the adjacency table routine [14] had to be modified to use this partitioned data. Finally, a different version of
ParMETIS was called and the output file written to all the processes in block partition format.

5.1.2. No ASCII data file containing the entire mesh. The original version of this application had
as one of its ASCII input files a file containing the nodes and elements. A node line began with the characters,
GN, and an element line began with GE. Further, these type lines could be mixed in any order, requiring the
reading and processing of one line at a time. As the problem size grew, the time to process the large geometry
data files became prohibitive. For example, at m = 2, the entire partitioner took 6.3 sec on Garnet and for
m = 4, the time was 11.8 sec on Garnet. However, at m = 100, the time to read this input file exceeded two
hours.

Different solutions were suggested including rewriting the ASCII file as a binary fire. A better solution
was to modify the serial program that generated the geometry file in the first place. Instead of writing one
huge file, the new version of the serial program wrote node and element data for each process. Further, one
file for nodes and one file for elements were written in a simpler format. In this new way, to create the data
files for each process for m = 100 took 2544.6 sec on Garnet. However, since 3,200 processes were used for the
seepage/groundwater program run, this is still less than one second per process. In the case of m = 100 in
which the grid data could not be read into the partitioner program in two hours using the previous approach,
the new approach required only 1.9 seconds on Garnet for the same task.

5.2. Preparation program. When this research project began, it was thought that the parallelization
of the actual finite element program would present the greatest challenge. However, because of the restriction
of no global arrays, the preparation program was by far the most troublesome and could be improved further
from the modifications that were made. Given below is a summary of the challenges faced for the preparation
program.

5.2.1. No ASCII data file containing the entire mesh. The same problem existed with the prepara-
tion program as with the partitioner in that the time reading the very large geometry file became overwhelming.
The same technique of reading the individual node and element files for each process worked well here, too.

5.2.2. Global, local, and ghost nodes and elements. Each node has an original global node number
assigned to it, and it is the same everywhere. When the nodes are first and temporarily distributed evenly in

158 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

the block partition style to the different processes, each node then has a local node number stating where it is
placed on its process. Now ParMETIS dictates that a given node actually belongs to a different process than,
in general, it now resides, giving rise to a second local node number. Also, elements are done exactly like the
nodes; read in block partition format and then moved to their proper final process. As with the nodes, each
element has two different local node numbers. As can be seen, managing all this data is very tedious.

5.2.3. Output files. The finite element program needs various files such that there is one for each process
and all data use the final local node and element numbers. These files will now be briefly described.

• Mesh file. The list of local (owned plus ghost) nodes and elements are placed in this file. Before writing,
the ghost nodes are sorted by increasing process number where the given node resides. For example,
suppose for a small problem, process 0 has 10 owned nodes and 2 ghost nodes from process 1, 3 ghost
nodes from process 4, and 1 ghost node from process 14. The ghost node numbers are assigned local
node numbers 11 and 12 for the process 1 ghost nodes, 13, 14, and 15 for the process 4 ghost nodes,
and 16 for the process 14 ghost node. Getting all these data properly numbered and sorted without
any arrays containing the entire mesh is remarkably challenging.

• Initial condition file. The original initial condition file contains a value of total head for each node to
give the finite element program a place to start for iterating to a solution. A value for all the local
nodes and elements is now needed for each process.

• Boundary condition file. The original file contains parameter data that is simply reproduced for the file
for each process. However, boundary conditions are also applied to individual nodes with one example
being the total head resulting from the elevation of a river. The original data has for this type of
boundary condition the global node number and the total head associated with it. An initial way of
handling such a boundary condition was to send the global node number to all the processes and then
have each process search through the global node numbers associated with each local node to see if the
node is on that process. If the node is on that process, that boundary condition line is written to that
process’ boundary condition file with the global node number being replaced with its local node number.
As the problem size increased, so did the number of such boundary condition nodes to consider. This
simple search had to be replaced with a hash formulation [15]. For m = 100, the search time using the
hash table was 7.5 sec on Garnet.

• Combination of global node numbers, global element numbers, and ghost node data. A file for each
process containing (1) the global node number for each local node, (2) the global element number for
each local element, (3) the number of values and starting memory location for data received from the
other processes, and (4) the number and values of the local node numbers where data are to be sent to
all the other processes.

5.3. Finite element program. This is the major piece of the seepage/ground-water suite of programs
that was tested and timed as it is the primary computational engine. It was initially thought that this would
cause the greatest difficulty in running huge problems with large numbers of processes. However, there was
only one place where global arrays were being used, so only this algorithm had to be revised. This was the
ghost node update portion of the conjugate gradient solver where the data created by the preparer program
was stored more efficiently.

6. Results and Analysis.

6.1. Results. Tables 6.1–6.12 give the time to solution for the finite element program on the Cray XE6
and XC30 for different problem sizes (m values) and process counts. The PGI [16] compiler with the compiler
option “-fastsse” was used in the computer runs. The original problem was run with 32 MPI processes. The
“weak” scaling or speedup in the tables refers to increasing the number of MPI processes the same amount as
the problem size is increased. Thus, in Table 6.2,

Tm=1,p=32

Tm=2,p=64

means divide the time obtained from running the

m = 1 problem with 32 MPI processes by the time it took to run the m = 2 problem with 64 MPI processes.
As another example, when m = 100, the number of processes used was 3200 for the weak scaling. The ideal
result of the weak scaling ratios is always 1.

“Strong” scaling in the paper refers to keeping the problem size the same while increasing the number of
MPI processes and computing the ratio of the original and new running times. For example,

Tm=1,p=32

Tm=1,p=256

in Table

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 159

Table 6.1

Time (sec) for the Cray XE6 and XC30 for m = 1, nodes = 3017367, and elements = 5836072.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2195.9

32 XC30 902.1
XE6 2195.8

.. XC30 899.6
XE6 2199.7

.. XC30 905.8
XE6 Avg: 2197.1

.. XC30 Avg: 902.7 NA NA
XE6 1082.7

64 XC30 458.0
XE6 1083.9

.. XC30 461.3
XE6 1079.1

.. XC30 458.7
XE6 Avg: 1081.9 = 2.03

.. XC30 Avg: 459.3
Tm=1,p=32

Tm=1,p=64
= 1.97 2

XE6 742.9
96 XC30 320.5

XE6 739.1
.. XC30 318.9

XE6 737.2
.. XC30 313.7

XE6 Avg: 739.7 = 2.98

.. XC30 Avg: 317.7
Tm=1,p=32

Tm=1,p=96
= 2.84 3

XE6 353.1
256 XC30 128.9

XE6 332.1
.. XC30 122.8

XE6 330.1
.. XC30 127.9

XE6 Avg: 338.4 = 6.49

.. XC30 Avg: 126.5
Tm=1,p=32

Tm=1,p=256
= 7.14 8

6.1 refers to dividing the time it took to run the problem when m = 1 using 32 MPI processes by the time it
took to run the same problem with 256 MPI processes. The ideal scaling or speedup value is always the ratio of
the new number of MPI processes and the original number of MPI processes. In the above example, the ideal
speedup is 8.

To test strong scaling, the process count was made 2, 3, and sometimes 8 times that of the original process
count for given values of m. Values of m = 2, 3, 4, 5, 10, 20, 30, 100, 200, 300, and 350 were evaluated. The
largest data set where m = 350 contains 1,044,246,303 nodes and 2,042,625,200 elements.

Fig. 6.1 shows the results of the weak scaling. It is important to note that between m = 1 and m = 2,
the number of elements exactly doubles, but the number of nodes less than doubles (slightly) due to interface
nodes. Thus the amount of computation per process may be slightly less in the m = 2 case for double the
number of processes. Thus, weak scaling ratios may be slightly higher than they would be if a perfect doubling
of the nodes was also done. Nevertheless, the ideal weak scaling is approximately 1. Figs. 6.2, 6.3, and 6.4
show plots of the strong scaling results. Table 6.13 shows a ratio of the running times for the XE6 and XC30
for different values of m. For multiple runs on the same machine using the same value of m, the elapsed times
were averaged.

6.1.1. Analysis. The weak scaling was excellent throughout all the problem sizes and both computers
with the XC30 results being better at the larger problem sizes. The strong speedup results were good on the
XE6 until m = 200 and the process count was increased 3 times such that the process count was 19,200. Also,
the XE6 did poorly at m = 300 when the process count was doubled. The XC30 consistently outperformed the

160 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Table 6.2

Time (sec) for the Cray XE6 and XC30 for m = 2, nodes = 6000831, and elements = 11672144.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2259.2

64 XC30 897.9
XE6 2196.8

.. XC30 908.3
XE6 2202.5

.. XC30 904.1
XE6 Avg: 2219.5 = 0.99

.. XC30 Avg: 901.8
Tm=1,p=32

Tm=2,p=64
= 1.00 1

XE6 1097.4
128 XC30 468.4

XE6 1093.5
.. XC30 460.5

XE6 1103.1
.. XC30 460.1

XE6 Avg: 1098.0 = 2.02

.. XC30 Avg: 463.0
Tm=2,p=64

Tm=2,p=128
= 1.95 2

XE6 743.1
192 XC30 312.9

XE6 748.5
.. XC30 316.4

XE6 756.2
.. XC30 314.7

XE6 Avg: 749.3 = 2.96

.. XC30 Avg: 314.7
Tm=2,p=64

Tm=2,p=192
= 2.85 3

XE6 360.8
512 XC30 130.4

XE6 348.5
.. XC30 130.2

XE6 349.7
.. XC30 130.5

XE6 Avg: 353.0 = 6.29

.. XC30 Avg: 133.7
Tm=2,p=64

Tm=2,p=512
= 6.72 8

XE6 by a factor of approximately 2.5.

7. Consistency check. A system of simultaneous, linear equations is solved each time one of 300 nonlinear
iterations is done with the number of unknowns equal to the number of node points. Some parallel programs
struggle with getting the same answers when the number of processes is increased. This test is much more
difficult in that the size of the problem and the number of processes are increased as m is increased. Table 7.1
gives pressure head results for the first few nodes and the last few nodes of the respective meshes for m = 1
and m = 350. Because of symmetry, these results should match. These numbers, in fact, match very well.

8. Conclusions. The following conclusions are made from this study:

• It is remarkable that even at over a billion nodes and two billion 3-D elements, the Cray XE6 and Cray
XC30 can still be productively used as indicated by the speedup computations when comparing the
times to solution of the original problem with data sets up to 350 times larger.

• The weak speedup values were excellent and about the same on both computers.
• The strong speedup capability began to fail for the XE6 at higher values of m. The XC30 values
remained good for all problems that were run.

• The XC30 performed approximately 2.5 times better than the XE6.
• It is well known that reading ASCII files can be inefficient. For very large data sets, the problem
becomes acute.

• For large problems, the use of global arrays in the source code becomes infeasible.

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 161

Table 6.3

Time (sec) for the Cray XE6 and XC30 for m = 3, nodes = 8984295, and elements = 17508216.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2215.1

96 XC30 906.1
XE6 2200.4

.. XC30 898.0
XE6 2195.3

.. XC30 901.8
XE6 Avg: 2203.6 = 1.00

.. XC30 Avg: 902.0
Tm=1,p=32

Tm=3,p=96
= 1.00 1

XE6 1097.3
192 XC30 462.0

XE6 1126.4
.. XC30 462.6

XE6 1117.2
.. XC30 460.6

XE6 Avg: 1113.6 = 1.98

.. XC30 Avg: 461.7
Tm=3,p=96

Tm=3,p=192
= 1.95 2

XE6 751.0
288 XC30 312.6

XE6 747.4
.. XC30 313.7

XE6 750.2
.. XC30 314.8

XE6 Avg: 749.5 = 2.94

.. XC30 Avg: 313.7
Tm=3,p=96

Tm=3,p=288
= 2.89 3

XE6 313.7
768 XC30 141.6

XE6 313.0
.. XC30 132.5

XE6 310.5
.. XC30 130.2

XE6 Avg: 312.2 = 7.06

.. XC30 Avg: 134.8
Tm=3,p=96

Tm=3,p=768
= 6.69 8

• Preparing the different data files for the finite element program requires very tedious bookkeeping when
using the traditional MPI paradigm of accumulating large amounts of data before sending them.

• Large nonlinear implicit algorithms for 3-D finite element variably saturated flow calculations can be
performed with excellent scalability when increasing the problem size to ever larger numbers of elements.

REFERENCES

[1] J. Istok, Groundwater modeling by the finite element method, AGU, 1989.
[2] L. A. Richards, Capillary conduction of liquids through porous mediums, J. of Physics, 1 (1931), pp. 318-333.
[3] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003.
[4] M. Corcoran, J. Peters, J. Dunbar, J. Llopis, F. Tracy, J. Wibowo, J. Simms, C. Kees, S. McKay, J. Fischenich,

M. Farthing, M. Glynn, B. Robbins, R. Strange, M. Schultz, J. Clarke, T. Berry, C. Little, and L. Lee, Initial
research into the effects of woody vegetation on levees, volume I of IV: project overview, volume II of IV: field data
collection, volume III of IV: numerical model simulation, and volume IV of IV: summary of results and conclusions,
U.S. Army Engineer Research and Development Center, Vicksburg, MS, 2011.

[5] A. W. Warrick, Soil Water Dynamics, Oxford University Press, 2003.
[6] S. Mehl, Use of Picard and Newton iteration for solving nonlinear ground water flow equations, Ground Water, 44 (2006),

pp. 583-594.
[7] F. T. Tracy, Testing line search techniques for finite element discretizations for unsaturated flow, Proc. of the 9th Int. Conf.

in Computational Science, Baton Rouge, LA, May 25-27, 2009.
[8] C. T. Kelley, Solving nonlinear equations with Newton’s method, SIAM, 2003.
[9] H. V. Nguyen, J. C. Cheng, and R. S. Maier, Study of parallel linear solvers for three-dimensional subsurface flow problems,

162 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Table 6.4

Time (sec) for the Cray XE6 and XC30 for m = 4, nodes = 11967759, and elements = 23344288.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2229.6

128 XC30 905.1
XE6 2224.3

.. XC30 910.0
XE6 2225.2

.. XC30 914.6
XE6 Avg: 2226.4 = 0.99

.. XC30 Avg: 909.9
Tm=1,p=32

Tm=4,p=128
= 0.99 1

XE6 1102.4
256 XC30 474.6

XE6 1102.6
.. XC30 471.9

XE6 1106.0
.. XC30 467.6

XE6 Avg: 1103.7 = 2.02

.. XC30 Avg: 471.4
Tm=4,p=128

Tm=4,p=256
= 1.93 2

XE6 757.3
384 XC30 332.9

XE6 757.2
.. XC30 327.4

XE6 753.7
.. XC30 316.1

XE6 Avg: 756.1 = 2.94

.. XC30 Avg: 325.5
Tm=4,p=128

Tm=4,p=384
= 2.80 3

XE6 312.0
1024 XC30 143.8

XE6 311.8
.. XC30 137.3

XE6 326.2
.. XC30 140.4

XE6 Avg: 316.7 = 7.03

.. XC30 Avg: 140.5
Tm=4,p=128

Tm=4,p=1024
= 6.48 8

Proc. of the 9th Int. Conf. in Computational Science, Baton Rouge, LA, May 25-27, 2009.
[10] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, Version 3.0, http://www.mpi-

forum.org/docs/mpi-3.0/mpi30-report.pdf, 2012.
[11] ERDC DSRC, http://www.erdc.hpc.mil/hardware/index.html, Department of Defense Supercomputing Resource Center,

Vicksburg, MS, 2014.
[12] AFRL DSRC, http://www.afrl.hpc.mil/index.html, Department of Defense Supercomputing Resource Center, Aberdeen, MD,

USA 2014.
[13] G. Karypis, ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering, http://glaros.dtc.umn.edu/

gkhome/metis/parmetis/overview, 2014.
[14] D. Eppstein, Lecture notes: graph algorithms, http://www.ics.uci.edu/eppstein/161/960201.html, ICS, 161 (1996).
[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed., Massachusetts Institute

of Technology, (2009), pp. 253-280.
[16] Portland Group, Inc., http://www.pgroup.com, 2014.

Edited by: Dana Petcu
Received: Dec 1, 2014
Accepted: Mar 19, 2015

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 163

Table 6.5

Time (sec) for the Cray XE6 and XC30 for m = 5, nodes = 14951223, and elements = 29180360.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2230.5

160 XC30 910.6
XE6 2222.8

.. XC30 911.34
XE6 2222.8

.. XC30 911.2
XE6 Avg: 2225.4 = 0.99

.. XC30 Avg: 911.0
Tm=1,p=32

Tm=5,p=160
= 1.00 1

XE6 1105.6
320 XC30 463.7

XE6 1105.4
.. XC30 464.6

XE6 1105.3
.. XC30 463.7

XE6 Avg: 1105.4 = 2.01

.. XC30 Avg: 464.0
Tm=5,p=160

Tm=5,p=320
= 1.96 2

XE6 762.5
480 XC30 314.9

XE6 770.9
.. XC30 317.4

XE6 761.8
.. XC30 317.4

XE6 Avg: 765.1 = 2.94

.. XC30 Avg: 316.6
Tm=5,p=160

Tm=5,p=480
= 2.88 3

XE6 333.2
1280 XC30 130.4

XE6 335.6
.. XC30 133.5

XE6 354.5
.. XC30 132.9

XE6 Avg: 341.1 = 6.52

.. XC30 Avg: 132.3
Tm=5,p=160

Tm=5,p=1280
= 6.89 8

Magnification (m)

W
e

a
k

s
p

e
e

d
u

p
(1

id
e

a
l)

0 50 100 150 200 250 300 350
0.5

0.6

0.7

0.8

0.9

1

XE6

XC30

Fig. 6.1. Weak speedup for different m values.

164 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Table 6.6

Time (sec) for the Cray XE6 and XC30 for m = 10, nodes = 29868543, and elements = 58360720.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2260.8

320 XC30 916.4
XE6 2264.3

.. XC30 922.1
XE6 2268.6

.. XC30 914.8
XE6 Avg: 2264.6 = 0.97

.. XC30 Avg: 917.8
Tm=1,p=32

Tm=10,p=320
= 0.98 1

XE6 1138.8
640 XC30 468.9

XE6 1143.4
.. XC30 467.2

XE6 1137.2
.. XC30 468.7

XE6 Avg: 1139.8 = 1.99

.. XC30 Avg: 468.3
Tm=10,p=320

Tm=10,p=640
= 1.96 2

XE6 787.0
960 XC30 331.1

XE6 774.6
.. XC30 335.9

XE6 801.0
.. XC30 347.1

XE6 Avg: 787.5 = 2.88

.. XC30 Avg: 338.0
Tm=10,p=320

Tm=10,p=960
= 2.72 3

XE6 447.3
2560 XC30 173.4

XE6 404.7
.. XC30 156.2

XE6 350.3
.. XC30 171.6

XE6 Avg: 400.8 = 5.65

.. XC30 Avg: 167.1
Tm=10,p=320

Tm=10,p=2560
= 5.47 8

Magnification (m)

S
tr

o
n

g
s

p
e

e
d

u
p

(2
id

e
a

l)

0 50 100 150 200 250 300 350
1

1.2

1.4

1.6

1.8

2

XE6

XC30

Fig. 6.2. Strong speedup for twice the original number of processes for different m values.

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 165

Table 6.7

Time (sec) for the Cray XE6 and XC30 for m = 20, nodes = 59703183, and elements = 116721440.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2276.2

640 XC30 918.5
XE6 2287.2

.. XC30 968.4
XE6 2277.4

.. XC30 920.0
XE6 Avg: 2280.3 = 0.96

.. XC30 Avg: 902.7
Tm=1,p=32

Tm=20,p=640
= 0.96 1

XE6 1152.4
1280 XC30 477.4

XE6 1171.7
.. XC30 476.5

XE6 1153.0
.. XC30 472.6

XE6 Avg: 1159.0 = 1.97

.. XC30 Avg: 475.5
Tm=20,p=640

Tm=20,p=1280
= 1.97 2

XE6 805.5
1920 XC30 323.2

XE6 812.3
.. XC30 329.3

XE6 805.8
.. XC30 324.1

XE6 Avg: 807.9 = 2.82

.. XC30 Avg: 325.5
Tm=20,p=640

Tm=20,p=1920
= 2.87 3

XE6 410.8
5120 XC30 141.1

XE6 402.2
.. XC30 140.1

XE6 408.7
.. XC30 140.9

XE6 Avg: 407.2 = 5.59

.. XC30 Avg: 140.7
Tm=20,p=640

Tm=20,p=5120
= 6.65 8

Magnification (m)

S
tr

o
n

g
s

p
e

e
d

u
p

(3
id

e
a

l)

0 50 100 150 200 250 300 350
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

XE6

XC30

Fig. 6.3. Strong speedup for three times the original number of processes for different m values.

166 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Table 6.8

Time (sec) for the Cray XE6 and XC30 for m = 30, nodes = 89537823, and elements = 175082160.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2276.5

960 XC30 924.1
XE6 2278.5

.. XC30 922.7
XE6 2277.9

.. XC30 923.7
XE6 Avg: 2277.6 = 0.96

.. XC30 Avg: 923.5
Tm=1,p=32

Tm=30,p=960
= 0.98 1

XE6 1172.5
1920 XC30 473.0

XE6 1165.8
.. XC30 473.4

XE6 1159.7
.. XC30 514.6

XE6 Avg: 1166.0 = 1.95

.. XC30 Avg: 487.0
Tm=30,p=960

Tm=30,p=1920
= 1.90 2

XE6 889.7
2880 XC30 348.8

XE6 895.0
.. XC30 364.8

XE6 872.4
.. XC30 370.0

XE6 Avg: 885.7 = 2.57

.. XC30 Avg: 361.2
Tm=30,p=960

Tm=30,p=2880
= 2.56 3

XE6 398.7
7680 XC30 139.9

XE6 429.1
.. XC30 139.4

XE6 447.1
.. XC30 138.2

XE6 Avg: 425.0 = 5.36

.. XC30 Avg: 139.2
Tm=30,p=960

Tm=30,p=7680
= 6.72 8

Magnification (m)

S
tr

o
n

g
s

p
e

e
d

u
p

(8
id

e
a

l)

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

XE6

XC30

Fig. 6.4. Strong speedup for eight times the original number of processes for different m values.

A Scalability Study using Supercomputers for Huge Finite Element Variably Saturated Flow Simulations 167

Table 6.9

Time (sec) for the Cray XE6 and XC30 for m = 100, nodes = 298380303, and elements = 583607200.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2369.4

3200 XC30 969.6
XE6 2358.4

.. XC30 934.2
XE6 2359.9

.. XC30 961.3
XE6 Avg: 2362.6 = 0.93

.. XC30 Avg: 955.0
Tm=1,p=32

Tm=100,p=3200
= 0.95 1

XE6 1228.4
6400 XC30 479.2

XE6 1357.0
.. XC30 499.5

XE6 1250.3
.. XC30 498.7

XE6 Avg: 1278.6 = 1.85

.. XC30 Avg: 492.5
Tm=100,p=3200

Tm=100,p=6400
= 1.94 2

XE6 899.8
9600 XC30 339.2

XE6 897.4
.. XC30 352.4

XE6 952.1
.. XC30 354.1

XE6 Avg: 916.4 = 2.58

.. XC30 Avg: 348.6
Tm=100,p=3200

Tm=100,p=9600
= 2.78 3

Table 6.10

Time (sec) for the Cray XE6 and XC30 for m = 200, nodes = 596726703, and elements = 1167214400.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2394.4

6400 XC30 947.3
XE6 2391.1

.. XC30 943.6
XE6 2392.4

.. XC30 945.3
XE6 Avg: 2392.6 = 0.92

.. XC30 Avg: 945.4
Tm=1,p=32

Tm=200,p=6400
= 0.95 1

XE6 1300.0
12800 XC30 494.8

XE6 1292.8
.. XC30 493.0

XE6 1340.4
.. XC30 488.3

XE6 Avg: 1311.1 = 1.82

.. XC30 Avg: 492.0
Tm=200,p=6400

Tm=200,p=12800
= 1.92 2

XE6 1783.5
19200 XC30 351.2

XE6 1782.0
.. XC30 350.3

XE6 1839.1
.. XC30 352.6

XE6 Avg: 1801.5 = 1.33

.. XC30 Avg: 351.4
Tm=200,p=6400

Tm=200,p=19200
= 2.69 3

168 F. T. Tracy, T. C. Oppe, W. A. Ward and M. K. Corcoran

Table 6.11

Time (sec) for the Cray XE6 and XC30 for m = 300, nodes = 895073103, and elements = 1750821600.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2671.7

9600 XC30 1039.2
XE6 2442.3

.. XC30 1041.0
XE6 2566.9

.. XC30 1034.9
XE6 Avg: 2560.3 = 0.86

.. XC30 Avg: 1038.4
Tm=1,p=32

Tm=300,p=9600
= 0.87 1

XE6 2351.4
19200 XC30 512.3

XE6 2390.8
.. XC30 517.1

XE6 2392.9
.. XC30 527.2

XE6 Avg: 2378.4 = 1.08

.. XC30 Avg: 522.2
Tm=300,p=9600

Tm=300,p=19200
= 1.99 2

Table 6.12

Time (sec) for the Cray XE6 and XC30 for m = 350, nodes = 1044246303, and elements = 2042625200.

Processes (p) Cray Time (T) Strong Scaling Ideal Weak Scaling Ideal
XE6 2464.6

11200 XC30 1041.9
XE6 2510.2

.. XC30 1048.6
XE6 2424.8

.. XC30 1043.1
XE6 Avg: 2466.5 = 0.89

.. XC30 Avg: 1044.5
Tm=1,p=32

Tm=350,p=11200
= 0.86 1

Table 6.13

Ratio of running times for the XE6 and XC30 for values of m.

m 1 2 3 4 5 10
Ratio 2.45 2.46 2.39 2.34 2.45 2.41

m 20 30 100 200 300 350
Ratio 2.58 2.59 2.57 3.44 3.51 2.36

Table 7.1

Consistency check comparing values of pressure head from the original mesh and the mesh for m = 350 for the first few nodes
and last few nodes of each mesh.

Node m = 1 Node m = 350
1 129.00000 1 129.00000
2 128.99678 2 128.99678
3 128.99345 3 128.99345
4 119.00000 4 119.00000
5 118.99735 5 118.99735
6 124.23808 6 124.23808
7 118.99464 7 118.99464
8 123.54520 8 123.54520
9 128.98993 9 128.98993
10 110.50000 10 110.50000

6000826 0.00000 1044246298 0.00000
6000827 0.041718481 1044246299 0.041718484
6000828 3.0365778 1044246300 3.0365778
6000829 0.036494874 1044246301 0.036494874
6000830 0.00000 1044246302 0.00000
6000831 0.00000 1044246303 0.00000

