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FOR HPC APPLICATIONS∗
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Abstract. After a decade of diffusion, cloud computing has received wide acceptance, but it is not yet attractive for the HPC
community. Clouds could be a cost-effective alternative to clusters and supercomputers, providing economy of scale, elasticity,
flexibility, and easy customization. Unfortunately, most clouds are optimized for running business applications, not for HPC.
However, they can be profitably used to run small-scale parallelism codes.

This paper presents a framework built on the top of a cloud-aware programming platform (mOSAIC) for the development of
bag-of-tasks scientific applications. The framework integrates a cloud-based simulation environment able to predict the behavior
of the developed applications. Simulations enable the developer to predict at an early development stage performance and cloud
resource usage, and so the infrastructure lease cost on a public cloud.

The paper sketches the framework organization and presents the approach followed for the performance simulation of applica-
tions, focusing on a software development methodology that hinges on early performance prediction. After showing the results of
some validation tests of simulation accuracy, an example of early performance prediction is presented.
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1. Introduction. After about a decade of fast and widespread diffusion, cloud computing has received wide
acceptance, standing as the new information technology platform. However, it is a fact that cloud computing is
not yet attractive for the HPC (High Performance Computing) community, leaving the great potential of this
paradigm partly underutilized.

At least in theory, clouds could be profitably used to bring the power of economic and scalable parallel
computing to the masses, as a cost-effective alternative to clusters and supercomputers. IaaS (Infrastructure
as a Service) clouds easily enable users to lease a set of nodes and set up a virtual cluster. Cloud advantages
include economy of scale, elasticity, flexibility, and easy customization by exploiting the virtualization of cloud
resources. In particular, HPC on clouds appears to be particularly appealing for the users who cannot afford
to buy dedicated HPC infrastructures, or have only sporadic parallel computing demands.

However, most clouds (whether public or private) are optimized for running business applications, not for
HPC. The biggest obstacles for efficient execution of HPC applications in clouds are the performance losses due
to the systematic use of virtualization and, above all, to the use of networks designed mainly for scalability, and
not for performance [5]. Moreover, multitenancy, the presence of loads hidden from the user view and control
and HPC-agnostic cloud schedulers induce substantial variability of performance from one run to another [20],
precluding the possibility to perform fine-grained software optimization. Studies and performance measurements
made in the last years [26, 31, 40, 50] have diffused the pessimistic opinion that present-day clouds are simply
unfit for the majority of HPC applications.

Simply stated, the problem is that today HPC and clouds are agnostic about each other [23]. There are
essentially two options: or i) to re-design both clouds and HPC applications, so as to enable efficient execution
of HPC codes in the cloud [24] , or ii) to deploy on the cloud only applications that are relatively unaffected by
all the above-mentioned performance inhibitors. These applications include most small-scale parallelism codes,
which can be run effectively on tiny virtual clusters, as well as embarrassingly parallel and tree-structured
computations, which can exploit a high number of virtual processors without significant performance inefficiency.

This paper moves a step in the second direction. There is a wide range of applications widely used in
science, engineering and for commercial purposes that have highly variable response times, are moderately CPU
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intensive, are not fit (unless heavily redesigned) for GPU computing and are made up of loosely coupled tasks, so
that computation easily dwarfs communication times. We think that this class of “para-scientific” applications
is an almost ideal candidate for execution on the cloud. The major advantage is economic: the cost for leasing
a small set of virtual cores can be very low, especially if there are relaxed time constraints for obtaining the
results. A wise choice among provider offerings often allows to acquire the computing resources needed at very
low cost (see for example the EC2 Spot Instances offer [2]). This enables any organization to run parallel code
whenever needed, at a low cost, without investing the capital in rapidly obsolescing parallel hardware. The
second important issue is cloud elasticity, which allows to scale in/out the number of virtual cores on-the-fly

(i.e., while the application is running), based on the particular job requirements, paying just for the resources
actually used. In other words, cloud computing is also a great opportunity for everyone to experiment and to
exploit parallel computing at low cost, using a comfortable pay-as-you-go model.

We think that the final step to make clouds fully advantageous for sporadic scientific users is providing
simple tools to predict the performance behavior of their application, allowing them to make a tradeoff between
performance and leasing costs. In a previous paper [15] we proposed the use of a cloud-enabled programming
platform. This platform makes it possible to develop cloud applications on the top of a cloud-aware programming
framework (mOSAIC [42, 43]) by exploiting the bag-of-tasks programming paradigm. The bag-of-tasks (BOT)
paradigm, also known as master-worker, processor farm, etc., is widely understood, and ubiquitous in small and
medium-scale scientific computing.

Moreover, in the past we worked on the performance prediction of cloud applications developed on the
top of the mOSAIC framework [14]. Already-available tools enable us to predict the performance of a cloud
application without running it on (payed) cloud resources. In this paper, we discuss the enrichment of the bag-
of-task framework with performance prediction capabilities, allowing the automatic generation of the application
simulation models.

The remainder of this paper is structured as follows. In the next section we will examine related work.
Section 3 illustrates the rationale and the architecture of the framework we have implemented for the develop-
ment of bag-of-tasks applications in the cloud. Section 4 presents our approach to early performance prediction
and Section 6 shows some of our simulation validation tests. Then an example of the use of early prediction to
estimate response times and associated cloud leasing costs for a huge-sized problem is presented in Section 7.
The paper closes with our conclusions and plans for future research.

2. Related Work.

2.1. HPC in the Cloud. The potential of clouds for scientific computing linked to economicity and to
on-demand provision is discussed in [33]. As mentioned in the introduction, in the last few years there have
been many works studying the suitability of clouds for HPC computations [11, 18, 27, 28, 29, 30, 36, 37, 50],
almost all pointing out the performance losses of at least one of order of magnitude as compared to HPC
clusters and the extreme variability of response times. The use of clouds only for particular classes of HPC
loads is suggested in [26, 31]. Reference [23] and companion papers [24, 25, 26] suggest the design of HPC-aware
clouds. The seminal paper dealing with cloud benchmarking is [49]. More recent results, showing the advances
in performance of commercial clouds in the last few years, can be found in [20, 40]. Paper [47] tackles the
interesting problem of the optimal use of the low-cost AWS spot instances.

In [35], the applicability of cloud platforms, and in particular of Microsoft Azure, to scientific computing is
studied by implementing a well-known bioinformatics algorithm (BLAST). An implementation of BOT similar
to the one presented in this paper, although with a few significant differences, is presented in [4]. A Java
framework for the development of fault-tolerant applications is proposed in [38].

A few papers discuss how to exploit the intrinsic elasticity of clouds, i.e., the ability to increase or decrease
the amount of computing resources used for application execution. In [19], the Authors present Cloudine, a
platform for the development of generic scientific applications able to exploit at best cloud elasticity. The
paper [45] tackles the problem of adding elasticity to existing MPI codes. This is obtained by terminating
the execution and restarting the program on a different amount of resources, scaling up/down the number of
computing nodes used. The execution of MPI codes over a cloud-aware communication library is discussed
in [21], where CMPI, a novel MPI library based on the cloud-oriented communication optimizations proposed
in [22], is presented.
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2.2. Simulation and Performance Prediction. The core of our proposal is the use of a simulation-
based approach for application performance prediction. The use of simulation in the HPC context is widely
discussed in a number of papers, as [7, 17]. Recent efforts in this field are documented in [3] and [10].

For Component-Based Software Systems (CBSS), most approaches available in the literature focus on inte-
grating performance prediction and evaluation techniques at design time, i.e., when the system implementation
is not available. An exception, which has some similarities with our approach, is the COMPAS system [39].
The paper [32] presents a complete survey of performance strategies for CBSS.

CloudCMP [34] is one of few examples of simulation-based performance predictions of cloud applications,
where the goal is to compare different cloud providers and to select a suitable one. Another notable work in
this area is CloudSim [9], which targets the simulation of the entire stack of software/hardware components in
a cloud infrastructure.

3. The Framework for Science Applications. The solution we proposed in [15] for BOT cloud ap-
plication development requires several assumptions that span the various steps of the scientific application
life-cycle:

• Development: the developer of the application provides only the basic sequential code blocks imple-
menting the chosen algorithm. He should not care about communication/synchronization details, but
only take into account how data are organized and elaborated.

• Deployment: the developer/user should be able to start the application over the cloud, choosing the
amount of resources to be used and possibly scaling dynamically them up/down at run time. Fault
tolerance is guaranteed by the development framework, and is completely hidden at code level.

• Execution: the developer/user submits multiple job to the application, which performs always the
same actions over different data.

Our BOT development framework implements the simple and common split-work-merge solution pattern.
A problem to be solved is split in sub-problems (tasks), and handed out to task solvers (workers), whose partial
results are finally merged (see Figure 3.1). The resulting workflow could be applied also in the context of the
map-reduce programming model [16], which involves a similar split-work-merge sequence. The difference is in
the timing, as the workers in a bag-of-tasks are not constrained to proceed in lock-step, and can work on sub-
jobs asynchronously among them. Bag-of-tasks applications can be developed by extending the above described
components with problem specific-algorithms. The details of the development framework are presented in [15].

The BOT development framework provides all the needed components (splitter, merger, worker and orches-

trator) and an API that can be used to integrate the user-supplied application code. In fact, all the supplied
components are mOSAIC components. mOSAIC is a cloudware that builds up a Platform-as-a-Service on the
top of computing resources leased in Infrastructure-as-a-Service mode from a single or even multiple cloud
providers [42]. The mOSAIC platform offers an easy way to package and to deploy automatically in the cloud
software components. Through the platform interface it is possible to deploy multiple instances of the same
component and to restart them, in the case of a failure.

mOSAIC offers a set of already-developed basic components, which can be easily extended by the developer
(as we have done in the case of the BOT framework). Among the standard components, Queues and KVstores

play the most important roles.
The mOSAIC Queue component is a customized version of the RabbitMQ queue server [48]. It is a software

component that offers an API to create messages queues, which can used by the applications to communicate
each other. After that a queue has been created, all connected applications can send a message through it. All
applications registered as consumers will be able to receive the message.

The KVstore component is based on Riak [1]. It offers a persistent NoSQL storage service to cloud ap-
plications. Computation and communication components can store data in the shared KVstore components,
and retrieve them by a key. For example, the HTTPgw can use the KVstore to store HTTP messages that
have a large body; “computing” mOSAIC components (cloudlets) can store in a KVstore the results of their
elaboration, in order to make them be accessible to the external interface.

4. Performance prediction of bag-of-tasks applications. In the previous section we have described
our bag-of-tasks framework for the development of scientific applications in the cloud. A key point is that such
applications are fully defined by the number of instances of the mOSAIC components mentioned above and by
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Fig. 3.1. Architecture of the BOT framework

their interconnections. Moving from these premises, we have devised a performance model of the application
that can be used to predict its behavior and to tune its performance.

Our performance model is process-based [12, 41, 46], in that it is described through a set of discrete-event
simulation components whose temporal behavior is described as a process. Event management and discrete-
event actions/reactions are modeled in terms of process synchronization primitives. The simulated components
have been developed by exploiting the JADES simulation library [12], which allows the description of process-
oriented simulations in Java.

A noteworthy feature of the solution devised is that the simulation models expressed through the JADES
library can be easily evaluated through the mJADES platform [13]. mJADES is a recently-developed system that
supports the distribution of multiple JADES simulations on cloud resources. The mJADES simulation system
is based on a Java-based modular architecture. The mJADES simulation manager produces simulation tasks
from simulation jobs, and schedules them to be executed concurrently on multiple instances of the simulation

core. This is a process-oriented discrete-event simulation engine based on the JADES simulation library. The
outputs from the runs are handed on to a simulation analyzer, whose task is to compute aggregates and to
generate reports for the final user. mJADES has been developed as a collection of mOSAIC components, and
so the evaluation of the models can be performed on any mOSAIC platform. This could be the one where the
application under study is deployed and executed, or even a different one.

4.1. Bag-of-tasks Simulation Model. To model a bag-of tasks application, we developed a simulation
component for each of the core components making up the bag-of-task framework (Splitter, Worker and
Merger), and for each component devoted to manage the cloud application execution (HTTPgw, Orchestrator),
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Fig. 4.1. Bag-Of-Tasks simulation model

communication and storage (Queue and KVstore) (Figure 4.1).

The management components of the bag-of-task framework (HTTPgw and Orchestrator) have the role of
managing the cloud application execution, offering an interface to end users (HTTPgw) and orchestrating the
execution, forwarding the messages to the right splitter when multiple bag-of-tasks are executed on the same
resources and starting/stopping the triple Splitter-Worker-Merger.

Our simulation model is driven by a workload generator, which is in charge to generate the sequence
of requests the users issue in time. At the start of simulation, it begins sending out the messages to the
Orchestrator according to the chosen workload, described in a configuration file. Two simple workload models
are currently available: a set of requests with fixed inter-arrival time, and a Poisson arrival model that generates
messages with random exponential inter-arrival time. Moreover, it is also possible to start a multiple number
of concurrent workloads miming the load generated by multiple users.

The Orchestrator model is fairly simple: it continuously receives Jobs from a queue (that mimics an
HTTP channel) and forwards them to the Splitter. At the state of the art, our model is very simple, since it
is based on the assumption of a fixed application configuration, which cannot be dynamically altered (i.e., we
cannot start a new set of Split-Work-Merge components during the simulation). So the Orchestrator has just
the role of routing the message to the Splitter instances. We aim at improving the Orchestrator model in
the future.

The Splitter, Merger and Worker models behave in a similar way, receiving and forwarding the messages
from/to the internal queues accordingly to the described bag-of-tasks pattern. The Merger process, after collect-
ing all the intermediate job Result messages, sends a job Result message to a special simulator component,
the report generator, which gathers the results and produces the final simulation reports.

The computational resources consumed by our core components (i.e., Orchestrator, Splitter, Merger
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Listing 1. The Queue Simulation Process

public class Queue extends i t . un i sann io . ing . p e r f l a b . j ade s . core . Process {
private Mailbox inputMailbox ;
private Mailbox outputMailbox ;

public Queue ( S t r ing name , double beta0 , double beta1 , double beta2 ) {
super (name ) ;
inputMailbox = new Mailbox (name + ” inputMailbox ” ) ;
outputMailbox = new Mailbox (name + ”outputMailbox” ) ;

}

public void send ( Object m) {
inputMailbox . send (m) ;

}

public void run ( ) {
while ( true ) {

int msgSize = ( In t eg e r ) inputMailbox . r e c e i v e ( ) ;
int msgInQueue = inputMailbox . msg in queue ()+1;
hold ( beta2 ∗ msgSize + beta1 ∗ msgInQueue + beta0 ) ;
outputMailbox . send ( msgSize ) ;

}
}

public Object r e c e i v e ( ) {
return outputMailbox . r e c e i v e ( ) ;

}

}

and Worker processes) are taken into account by means of a component that simulates CPU resource sharing.
At simulation start-up it is necessary to provide the actual number of available virtual CPUs (vCPUs) and the
allocation to vCPUs of the framework components involved in a run.

The response time of the queues (i.e., the time needed to notify a message to a process, once it has been
published on the queue) is modeled as a function of the number of queued messages and of the dimension of the
messages (according to the iLDS model [44]). Listing 1 shows the code of the process simulating the behavior
of the communication queues.

The simulation model sketched in Figure 4.1 can be coded as illustrated in Listing 2. The proposed listing
shows only the code fragment in charge of building the simulation application. For brevity’s sake we have
replaced the actual parameters used for object creation with the placeholder <parameters>. It is worth
pointing out how closely the simulation code resembles the structure of the bag-of-tasks application.

As previously pointed out, even if the actual framework behavior strictly depends on the specific algorithm
to be implemented, in any case the core bag-of-tasks components receive messages from queues and forward
them to other queues, consuming a suitable amount of CPU time. Starting from this consideration, we can
fully describe a bag-of-tasks instance by means of two sets of parameters.

The application instance parameters represent the values under the control of the framework user. They
describe the application and the BOT framework configuration to be simulated, as follows:

• virtual CPUs (vCPU N): vCPUs available to the mOSAIC platform;
• vCPU time slice (vCPU SLICE): vCPU scheduler preemption time;
• workers (WORKERS): number of Worker instances;
• splitters (SPLITTERS): number of Splitter instances;
• jobs (JOBS): number of jobs generated and submitted;
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Listing 2. The Application Model Simulation Process

public void run ( ) {
F i l t e rC l oud l e t o r che s t r a t o r , s p l i t t e r , merger , workers [ ] ;
double setupTime = 0 . 0 ;
hold ( setupTime ) ;

Queue gwQueue=new Queue ( ”gwQueue” , <parameters> ) ;
Queue f romOrches t ra to rToSp l i t t e r=new Queue ( ” orchToSpl i t ” ,<parameters >);
Queue fromSplitterToWorker=new Queue ( ”SplitToWork”,<parameters >);
Queue fromWorkerToMerger=new Queue ( ”workToMerge” , <parameters >);

double orchestratorHoldTime =
Double . valueOf (myProp . getProperty ( ” r e c e i v e f r om ht tp ove rhead ” ) ) ;

o r c h e s t r a t o r = new F i l t e rC l oud l e t ( ” o r c h e s t r a t o r c l o u d l e t ” ,
orchestratorHoldTime , gwQueue , f romOrches t ra to rToSp l i t t e r ) ;

double sp l i t t e rHo ldTime =
Double . valueOf (myProp . getProperty ( ” s i n g l e s p l i t o v e r h e a d ” ) ) ;

s p l i t t e r = new S p l i t t e r ( ” s p l i t t e r c l o u d l e t ” ,
sp l i t terHoldTime , f romOrches t ratorToSp l i t t e r , fromSplitterToWorker ) ;

add (gwQueue ) ;
add ( f romOrches t ra to rToSp l i t t e r ) ;
add ( fromSplitterToWorker ) ;
add ( fromWorkerToMerger ) ;
add ( outQUeue ) ;
add ( o r ch e s t r a t o r ) ;
add ( s p l i t t e r ) ;

int workers num = Int eg e r . valueOf (myProp . getProperty ( ”workers ” ) ) ;
workers = new F i l t e rC l oud l e t [ workers num ] ;
double workerThinkTime =

Double . valueOf (myProp . getProperty ( ”worker th inkt ime ” ) ) ;

for ( int i =0 ; i < workers num ; i++ ){
workers [ i ] = new F i l t e rC l oud l e t ( ”worker ”+i ,

workerThinkTime , fromSplitterToWorker , fromWorkerToMerger ) ;
add ( workers [ i ] ) ;

}

double mergerHoldTime =
Double . valueOf (myProp . getProperty ( ” s ing l e merge ove rhead ” ) ) ;

merger = new Merger ( ”merge r c l oud l e t ” ,
mergerHoldTime , fromWorkerToMerger , outQUeue ) ;

add (merger ) ;

// c r ea t e j o b s
int j obs = In t eg e r . valueOf (myProp . getProperty ( ” jobs ” ) ) ;
double j ob s f r equency =

Double . parseDouble (myProp . getProperty ( ” s end f r equence ” ) ) ;
int ta sk s = In t eg e r . valueOf (myProp . getProperty ( ” ta sk s ” ) ) ;

for ( int i =0 ; i < j obs ; i++ ){
gwQueue . send (new Message ( S t r ing . valueOf ( i )+” ”+task s ) ) ;

hold ( j ob s f r equency ) ;
}

}
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• send job frequence (SEND FREQ): job send rate;
• tasks (TASKS): number of tasks generated by the Splitter;
• worker overhead (WORK TIME): estimate of the vCPU time required by a Worker to process a
Task;

• allocation map: allocation matrix describing the allocation of the framework processes to the available
vCPUs.

The framework tuning parameters are used to model a specific framework instance, taking into account
the overhead introduced by the framework itself, by the platform and by any underlying software layer. After
they have been estimated for a framework instance, they will not vary across different simulation runs. In the
following subsection we will describe a methodology for the evaluation of such values. The parameters are:

• HTTP overhead (HTTP OH): the communication delay introduced by an HTTP communication
channel;

• Orchestrator overhead (ORCH OH): the orchestrator overhead (vCPU time) introduced to process
each submitted job and to forward the descriptor to the Splitter;

• Splitter overhead (SPLIT OH): overhead introduced (vCPU time) to execute a single split operation,
to create and to forward a Task;

• Merger overhead (MERGE OH): overhead (vCPU time) introduced to execute a single merge oper-
ation;

• Job Descriptor message (JOB MSG SIZE): size of the Job Descriptor messages;
• Result message (RESULT MSG SIZE): size of the Result messages;
• Task message (TASK MSG SIZE): size of the Task messages;
• HTTP channel: beta0, beta1, beta2 parameters (see Listing 1) to model the HTTP channel;
• bag-of-tasks queues: beta0, beta1, beta2 parameters to model the framework internal queues.

4.2. Tuning of Algorithm-dependent Components. The above presented simulation model is com-
pletely independent of the algorithm implemented in the bag-of-tasks application. The specific characterics of
the application affect the model only as far as the number and dimension of messages the Splitter generates,
the Worker(s) elaborates and the Merger joins together are concerned. Moreover, they affect the amount of
CPU time required by each of the above components to perform its own actions.

The first set of information (number and dimension of messages generated) is usually dependent only on
the problem data dimension, and so is known beforehand, when the simulation takes place. On the other hand,
the CPU time needed for each elaboration needs to be estimated. Moreover, the times spent in the other
bag-of-tasks framework components (queues, storages, orchestrator) need to be evaluated taking into account
the type and number of resources leased from the cloud that will be used to execute the application.

In order to estimate the time behavior of the above mentioned components we use an approach based on the
execution of ad-hoc benchmarks, which run using the benchmarking framework integrated in mOSAIC API [8].
The methodology used is thoroughly dealt with in paper [14]. Following this approach, we develop dedicated
benchmark application for each specific component of the application; the mOSAIC framework automates
the process of their execution. Benchmarks for the basic components, namely queue Servers and KV stores,
are offered by the mOSAIC framework out-of-the-box. The corresponding benchmarking micro-applications
are organized as shown in Figure 4.2. We have developed similar benchmarking applications for the core
components of our bag-of-tasks framework (Splitter, Worker and Merger, Orchestrator). The execution of
such applications, automated by the framework, makes it possible to collect response times in a single csv file,
from which, using regression models, it is possible to find the value of the timing parameters to be used for
simulation.

5. Early Prediction Development Methodology. Program performance simulation is an interesting
matter, but it becomes a fundamental technique if it can be adopted at the very early development stages,
before the complete development and deployment of an actual application. The use of performance prediction
as an integral part of a parallel program development methodology (performance debugging) has turned out to
be particularly efficient if performance prediction tools are used at an early stage of the software life cycle (i.e.,
before a complete the implementation has been devised) [6, 7]. The idea is to exploit a partially implemented
program design to obtain performance data before the complete software implementation. This allows a sort of
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Fig. 4.2. The Queue Benchmark mOSAIC Application

performance-driven parallel program design, where algorithm choices can be evaluated and possibly compared
very early in the development process.

The “classical” method to obtain early performance data before code finalization is to resort to prototypes,
i.e., to skeletons of code where some of the computations interleaved between communications are not fully
specified, and are represented for simulation purposes by delays equal to the expected time that will be spent
in the actual code (for details, please refer to the above cited [6, 7]). In fact, most of the times the specification
and the use of code prototypes for simulation purposes is not a simple and error-proof procedure. In the case of
BOT code, developed within the proposed framework, instead, the adoption of a “fixed” execution model not
only lends itself to a direct construction of a simulation model, as shown in the previous section, but leads to a
very simple and well-defined performance prediction development methodology.

This methodology can be directly integrated in the BOT application life cycle (Figure 5.1), and it is made
out of the following steps:

1. Identify the Split/Work/Merge Algorithms: the developer has to rethink of his/her algorithm
in order to identify the role of the core bag-of-tasks components. This is not a complex task, because
the BOT paradigm is usually close to the behavior of most common applications. In this phase the
developer starts writing and rethinking his/her own code.

2. Prepare the set of data to be compared: concurrently with algorithm development, the developer
identifies the way in which the application will be used in the future, i.e., how many requests will be
served and how the work will be split among workers. This activity can be conducted concurrently
with development, so that it is possible to adapt splitting and merging algorithms in order to reduce
the execution costs in future, on the basis of the simulation predictions.

3. Execute the benchmarks and collect the results: the benchmark applications are launched in the
target mOSAIC cloud platform, i.e., in the same environment where the final code will be executed.
This makes it possible to obtain performance figures for every component on the actual execution

platform. It should be noted that, if the application is not fully developed, the developer will only
run the benchmarks for the core components. The CPU time requirements of not-fully developed code
can be estimated by means of static software analysis. Of course, this is likely to affect adversely the
prediction accuracy.

4. Obtain a performance prediction by executing the simulation model: the simulation model
can be executed with multiple synthetic workloads, using the parameters estimated as described in the
previous steps, obtaining performance predictions for different scenarios of interest.

5. Cost evaluation: the response times of the application, possibly under several different configuration
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Fig. 5.1. The Phases of the Early Prediction Methodology

options, can be “projected” on the cloud offerings of multiple providers, considering alternative pricing
plans. The objective here is to find the application execution cost under any reasonable configuration.

6. Cloud resource configuration: the output of the previous step makes it possible for the developer
to compare providers, pricing plans and configuration options. Here the developer may choose to trade
off performance for reduced cost of leased resources, or to focus on performance at the expense of a
higher cost of computing resources.

Following such approach, the developer is able to predict the performance and resource usage (and related
costs) from the early development stages of his/her cloud application. It is worth pointing out that the pro-
posed procedure does not require the complete set of cloud resources corresponding to the chosen run-time
configuration to find predicted response times. In other words, it is possible to build the model and to obtain
by benchmarking the performance figures of every system component on a small-scale virtual machine config-
uration. Then, it is possible to obtain by simulation the overall application response time on a much larger
machine configuration. This option will be discussed in detail in the example presented in Section 7.

6. Validation of Simulation Results. As outlined in the previous sections, the framework we propose is
composed of (i) the cloud BOT development framework, which enables the developer to run applications on cloud
environment, (ii) the simulation framework, which enables the developer to predict application performance even
in the early development stages and (iii) the benchmark applications, which are used to evaluate the timing
parameters for simulation.

The first step needed to evaluate the feasibility of the proposed approach is to validate the (small-scale) per-
formance results obtained by simulation. A more comprehensive performance prediction and analysis example,
including cost evaluation and comparisons, will be presented in the next Section.

In order to validate the approach, we run benchmark applications on the target VMs to gather the timing
parameters for the simulation environment, using a minimal set of resources. Then we compare a real application
with its simulation, varying both the workload and the amount of resources assigned to the application run.

6.1. Measurement of Timing Parameters. Our BOT framework makes it possible to obtain appli-
cations that are completely independent of the real environment on which it will run. The number and the
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characteristics of cloud resources leased for execution only affect performance. We capture the characteristics
of the actual execution environment through a set of benchmarks, whose results produce the timing parameters
successively used for simulation.

For our tests, we have deployed the mOSAIC platform on Virtual Machines (VM) leased from the Amazon
Web Services (AWS) infrastructure. The characteristics of the acquired VMs are shown in Table 6.1. Running
our benchmark suite, we obtained the values in Table 6.2.

Table 6.1

AWS VM instance details

Parameter Value
instance type c1.medium
vCPU 2
RAM 1.7 GB
storage 350 GB
network performance moderate

Table 6.2

Testbed timing parameters

Parameter Name Value
HTTP OH 50 ms
ORCH OH 10 ms
SPLIT OH 5 ms
MERGE OH 5 ms

HTTP CHANNEL beta0 1500
HTTP CHANNEL beta1 0.500
HTTP CHANNEL beta2 0.010
BOT QUEUES beta0 65
BOT QUEUES beta1 0.003
BOT QUEUES beta2 0.001

6.2. Simulation Validation Varying the Workload. We have developed a skeletal BOT application,
where the work method in the Worker class is able to process a given load, expressed in MFLOPS and obtained
as a parameter from the task description. The Splitter and Merger do not actually perform splitting/merging,
but just activate Workers and collect response times, respectively. We submitted the same workload both to the
skeletal application running in the real execution environment and to the simulator, comparing the measured
and predicted completion times. For our tests, we used the workloads briefly described in Table 6.3, which
are representative of light (WORK TIME=15 ms) and medium-heavy (WORK TIME=200 ms) load for the
workers. To vary dynamically the number of tasks, we used a pseudo-random uniform distribution.

Figure 6.1 shows on the x-axis the job number (30 jobs are submitted, according to Table 6.3) and on
the y-axis its completion time. The completion time associated to job #30 is the total completion time for the
whole burst of 30 jobs. The simulation results are summarized in Table 6.4, where is also reported the estimated
vCPU usage.

Summarizing the results shown in Figure 6.1, for Test 1 (WORK TIME=15 ms) we measured a completion
time of 512 ms versus a predicted one of 551 ms, with a relative error of 7.61% (considering also intermediate
jobs completion times, the error ranges from a minimum of 0.77% to a maximum of 28.57%). For Test 2
(WORK TIME=200 ms) we measured a completion time of 1383 ms against a predicted of 1134 ms, with a
relative error of about 18% (considering intermediate jobs, the error ranges from 4.37% to 18.62%).

In both cases the simulation offers good predictive capacities. Moreover, even at this stage (no actual
application developed) it offers interesting information about resource usage. The vCPU usage in Test 1 (the
one with lower WORK TIME) is very low, as most of execution time is spent in communications. This is a
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Table 6.3

Workload for Test 1 and 2

parameter value
vCPU 2
JOBS 30

SEND FREQ 1 s
TASKS uniform(100,400)

WORK TIME 15 ms; 200 ms
WORKERS 4
SPLITTERS 2

TASK MSG SIZE 400 B
JOB MSG SIZE 20 B

RESULT MSG SIZE 20 B

Fig. 6.1. Comparison between skeletal application and simulated completion times

relevant hint for the developer of real code, who can tune its implementation so as to obtain a coarser task
granularity and hence a more efficient balance of computing and communication.

6.3. Simulation Validation Varying the Resources Used. In the following we compare the perfor-
mance of the skeletal application executed on real resources to the one obtained by simulation, using a variable
number of workers for the real and the simulated run. It should be noted that a higher number of vCPUs
is clearly necessary for the execution of these tests on real resources. On the other hand, if we assume to
lease additional vCPUs on AWS of the same type used in the previous test, we can use once again the timing
parameters in Table 6.2. So the simulation of a larger-scale run does not involve additional leasing costs. Only
the allocation matrix in the simulator configuration file has to be updated.

We submitted the workload described in Table 6.5 to the synthetic application, varying the number of
workers and comparing it to the real measurements on the skeletal application. The test outcome matches the
results proposed in [15], where we evaluated the framework overhead.

Table 6.6 shows the simulation results compared to the actual figures obtained through the real execution
of the synthetic application. It should be noted that the simulation output offers the same information on
scalability as tests on real hardware (presented previously in [15]). This is a proof of the simulation ability of
to catch and to reproduce the behavior of the real system. This ability can be fruitfully exploited to avoid
expensive executions on real resources.
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Table 6.4

Test simulation results

Metric Test 1 Test 2
Completion Time 551 1134

Tasks sent 7354 7354
vCPU1 usage 0.29% 0.99%
vCPU2 usage 0.04% 0.99%

Table 6.5

Workload for Worker Scalability Test

parameter value
vCPU 4
JOBS 10

SEND FREQ 1 s
TASKS 30

WORK TIME 100 ms
WORKERS 1 to 5
SPLITTERS 1

TASK MSG SIZE 20 B
JOB MSG SIZE 20 B

RESULT MSG SIZE 20 B

7. Cost/Performance Analysis by Early Prediction. The goal of this paper is not to provide ultimate
performance measurements for real-world applications. Our objective is just to evaluate the feasibility of the
proposed approach, i.e., the development of scientific code on the top of a cloud-aware programming framework,
exploiting early performance prediction techniques for making cost/performance trade-offs.

As mentioned before, the main advantage of the adoption of simulation is that it enables us to make
predictions of performance (and related costs) even when complete code and/or resources are not available.
Assuming that the simulation results are sufficiently accurate, as in the example of the previous section, it
is possible to test different cloud resource configurations/options at no additional cloud leasing cost. The
evaluations thus obtained, as early as at application development time, can help developers to make the choice
most fit for their needs.

7.1. Application Configuration Optimization. The simulator helps to drive application development
and deployment, predicting the effect of different configurations and of the amount of computing resources used.
It should be noted that resorting to real measurements to support development and configuration choices is
inefficient and expensive. Furthermore, real measurements require the availability of (at least) a code skeleton,
whose construction is likely to be cumbersome. A possible option to perform predictions and comparisons would
be the use of an analytic model of the application. However, the construction of an analytic model requires
an in-depth knowledge of the performance behavior of system and application. All things considered, the most
simple solution is the use of the general-purpose simulation model presented in Section 4, which makes it is
possible to obtain reasonably-accurate evaluations in a simple and straightforward way.

The objective of the following case study is to use performance and cost prediction to support the choice of
an optimal number optimal number of vCPU for the workload shown in Table 7.1. This is very different from
the workloads of Tables 6.3 and 6.5, since there just one huge job (and not a stream of small successive jobs)
made out of many tasks (100,000) with long work time (3000 ms). The investigation is conducted for a number
of vCPUs ranging from 1 to 20, assuming to map a worker on each vCPU.

The use of the same AWS instances as in the previous section (see Table 6.1) and hence of the same timing
parameters (Table 6.2) made it possible to run all the required simulations on a PC in few minutes, without
leasing resources from the cloud. The obtained completion times are shown in Table 7.2. Taking into account
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Table 6.6

Scalability: Real and Simulated Response times

Number of Workers Real App Response Time Simulated Time (s)
1 84 94
2 44 49
3 31 35
4 30 33
5 30 33

Table 7.1

Case study workload

parameter value
vCPU 1,2,4,8,16, 20
JOBS 1

SEND FREQ N/A
TASKS 100000

WORK TIME 3000 ms
WORKERS 2,4,8
SPLITTERS 1

TASK MSG SIZE 20 B
JOB MSG SIZE 20 B

RESULT MSG SIZE 20 B

that the C1 medium instances are priced at 0.130/hour1, it is possible to plot response time and running cost
as shown in Figure 7.1. Without entering for brevity’s sake into the detail of the comparison between different
providers, type of instances and pricing plans, the proposed figure makes it possible to observe that for more of
8 vCPUs the cost rises without any significant performance increase. In these conditions, the most reasonable
choice is probably the use of 4 or 8 vCPUs for workers.

The presented trends can be obtained at early application development stage, since the process requires,
in essence, only to predict the computational load to process each task. On the contrary, the other parameters
represent design choices.

8. Conclusions and Future Work. The aim of the work described in this paper is to propose an approach
that integrates the development of scientific application on top of a cloud platform and its performance prediction
through a dedicated simulation environment.

To obtain this integration, on one hand we have built a development framework, currently specialized for
the bag-of-task paradigm, which exploits the API and the components provided by the mOSAIC platform.
On the other, we have developed a set of simulation components for JADES. These simulation components
correspond one-to-one to the mOSAIC components for the BOT framework. Besides presenting the approach,
we have discussed the outcome of our preliminary performance tests used to evaluate the simulation accuracy.

In our tests, we offered some examples of usage under different workloads and using different amount of
resources, in order to show how it will be possible for a developer to predict the behavior of is application, its
completion time and the associated cloud resource leasing cost without running it on (paid) cloud resources,
but simply using the associated simulation environment.

Our future research work will focus on the extensive testing of the framework and simulation components,
by collecting measurements on real-world scientific codes running in private and commercial cloud environments.
We also plan to implement alternative frameworks for additional programming paradigms.

1Price checked on 10/6/2015: on-demand pricing plan, US East (North Virginia) data center.
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Table 7.2

Completion times vs. number of workers

# Workers Completion Time (h)
1 83472,32278
2 41793,99694
4 20885,73444
8 10461,88806
12 7396,314722
16 6503,216667
20 6139,974722

Fig. 7.1. Completion time and cost vs. number of vCPUs
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