
Scalable Computing: Practice and Experience

Volume 17, Number 4, pp. 271–283. http://www.scpe.org

DOI 10.12694/scpe.v17i4.1200
ISSN 1895-1767
c⃝ 2016 SCPE

SLA-BASED SECURE CLOUD APPLICATION DEVELOPMENT

VALENTINA CASOLA∗, ALESSANDRA DE BENEDICTIS†, MASSIMILIANO RAK‡, AND UMBERTO VILLANO§

Abstract. The perception of lack of control over resources deployed in the cloud may represent one of the critical factors for an
organization to decide to cloudify or not its own services. The flat security features offered by commercial cloud providers to every
customer, from simple practitioners to managers of huge amounts of sensitive data and services, is an additional problem. In recent
years, the concept of Security Service Level Agreements (Security SLAs) is assuming a key role for the secure provisioning of cloud
resources and services. This paper illustrates how to develop cloud applications that deliver services covered by Security SLAs by
means of the services and tools provided by the SPECS framework, developed in the context of the SPECS (Secure Provisioning
of Cloud Services based on SLA Management) European Project. The whole (SPECS) application’s life cycle is dealt with, in
order to give a comprehensive view of the different parties involved and of the processes needed to offer security guarantees on
top of cloud services. The discussed development process is exemplified by means of a real-world case study consisting in a cloud
application offering a secure web container service.

Key words: Secure cloud applications, Security Service Level Agreements, Automatic Enforcement of Security

AMS subject classifications. 68M14, 68Q85

1. Introduction. Nowadays, the adoption of the cloud computing paradigm is steadily spreading. The
final step to convince the skeptics is the provision of solid security solutions for cloud applications and data. As
a matter of fact, cloud resources are not permanently assigned to users and are not under the control of user
software; they are just acquired on-demand. This is perceived as a security loss by some users, accustomed to
have full control over all the resources involved in service delivery.

In the case of public clouds, the lack of full user control over resources is not the only security issue.
Currently Cloud Service Providers (CSPs), who are the actual owners of the physical computing, storage and
network resources hosted in their huge data centers, administer security according to common best-practice
rules. Independently of the type of Cloud Service Customer (CSCs), they provide exactly the same security
features. Most often, these features are simply the best they can offer. The very basic security guarantees offered
are undoubtedly sufficient for a private computing practitioner, but surely not adequate for small enterprises or
for publicly funded organizations managing, for example, healthcare and Personal Information (PI) data to be
protected with specific security and privacy requirements.

The real problem is that security has a non-negligible cost, and so CSPs have no interest in offering such
features to every CSC. To differentiate security features on a customer-by-customer basis is difficult, if not
unfeasible. Currently there is actually a gap between CSCs, which look for “tailored” security features, possibly
offered on-demand and as-a-service, exactly as other cloud resources, and CSPs, which offer security as-a-whole,
integrated in the cloud services and transparently granted in the same way for all customers.

We deem that Security Service Level Agreements (SLAs) can play a key role for cloud security assessment, as
they allow to declare clearly the security level granted by providers to customers, as well as the constraints posed
to both parties (providers and customers). However, despite the strong interest recently shown in Security SLAs
in the context of both academical research and industry and government-driven initiatives, their widespread
adoption is not yet a reality. In 2011, ENISA published a report analyzing the use of security parameters
in Cloud SLAs (mostly focused on the EC public sector) [1]. The report pointed out that, although security
was considered by most respondents as a top concern, existing SLAs addressed only availability and other
performance-related parameters, while security-related parameters were not taken into account. Since then the
situation has not changed significantly, and Security SLAs are still far from being adopted by existing CSPs.

The framework developed in the context of the SPECS project [2] aims to promote the adoption of Security
SLAs, by making it possible to develop applications offering cloud services controlled by such contracts. With

∗DIETI, University of Naples Federico II, Napoli, Italy (casolav@unina.it)
†DIETI, University of Naples Federico II, Napoli, Italy (alessandra.debenedictis@unina.it)
‡DIII, Second University of Naples, Aversa, Italy (massiliano.rak@unina2.it)
§DING, University of Sannio, Benevento, Italy (villano@unisannio.it)

271



272 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Fig. 2.1. Overview of the SPECS solution

SPECS, every cloud service is covered by a Security SLA that specifies the security grants offered, to be nego-
tiated before cloud service delivery. Security features are automatically implemented by the SPECS framework
according to the agreed SLA, and can be continuously monitored to verify that the SLA terms are actually
respected.

The development of secure cloud applications by exploiting the SPECS framework was sketched in a previous
paper [33]. In this paper, we provide a more comprehensive view of the SPECS applications’ life cycle and discuss
some of the tools that were developed to support it. Our exposition will go on as follows. In Sect. 2, we briefly
introduce the SPECS framework and in Sect. 3 we describe the adopted Security SLA model. Sect. 4 illustrates
the complete life cycle of a SPECS application, by discussing the methodology and tools adopted to enable the
provisioning of secure cloud services based on SLAs. Sect. 5 discusses the introduced process with respect to
a concrete example. Finally, Sect. 6 presents some related work and Sect. 7 reports our conclusions and plans
for future work.

2. The SPECS framework. The SPECS project aims at designing and implementing a framework for
the management of the whole Service Level Agreement life cycle, intended to build applications (SPECS appli-
cations) whose security features are stated in and granted by a Security SLA [3, 4].

The SPECS framework provides techniques and tools for: a) enabling user-centric negotiation of security
parameters to be included in a Security SLA; b) enforcing an agreed Security SLA by automatically putting
in place all security features needed to meet user requirements; c) monitoring in real-time the fulfillment of
Security SLAs and notifying both users and CSPs of possible violations; d) reacting and adapting in real-time
to fluctuations in the provided level of security (e.g., by applying proper countermeasures in case of an SLA
violation).

As represented in Fig.2.1, the SPECS operation scenario involves four main parties:

• A Customer of the cloud services, offered by SPECS and covered by Security SLAs;
• The SPECS Owner, a provider of cloud services covered by Security SLAs;
• An (External) CSP, an independent (typically public) cloud service provider, which is unaware of
the SLAs and offers just basic cloud resources and infrastructural services;

• A Developer, a cloud service partner that supports the SPECS Owner in the development and delivery
of security-enhanced cloud services.

The Customer negotiates his/her security requirements with the SPECS Owner, who acts as a broker by
acquiring resources from External CSPs and by reconfiguring/enriching them in order to fulfill the Customer’s
requests. This is accomplished by the activation and configuration of suitable software mechanisms and tools,
provided in an as-a-service mode by SPECS. These mechanisms are automatically enforced on top of acquired
resources, according to what has been agreed in a Security SLA. In the above process, the security-enhanced



SLA-based Secure Cloud Application Development 273

services are delivered to end-users by a SPECS application, developed and deployed by exploiting the SPECS
framework services, depicted in Fig. 2.2.

Fig. 2.2. The SPECS framework

A SPECS application orchestrates the SPECS Core services dedicated to SLA Negotiation, Enforcement
and Monitoring, respectively, to provide the desired service (referred to as “Target Service”) to the SPECS
Customer (i.e., to the End-user). The Core services run on top of the SPECS Platform, which provides all the
functionalities related to the management of Security SLA life cycle and needed to enable the communication
among Core modules. In addition to this functionalities, referred to as “SLA Platform services”, the SPECS
Platform also provides support for developing, deploying, running and managing all SPECS services and related
components [4]. These services are referred to as “Enabling Platform services”.

3. The Security SLA model. As discussed in the previous section, the SPECS approach for Security-

as-a-Service provisioning relies upon the idea that each cloud service is covered by a Security SLA, specifying
related security-oriented terms and conditions, and that the cloud service delivery is controlled by the Security
SLA life cycle. The Security SLA life cycle adopted in SPECS founds on and extends current standards on cloud
SLAs (WS-Agreement [5], ISO19086 [6]) and consists of five phases: Negotiation, Implementation, Monitoring,
Remediation and Renegotiation.

During the Negotiation phase, a cloud service customer and a cloud service provider carry out a (possibly)
iterative process aimed at finding an agreement that defines their relationship as regards the delivery of a
service. During the Implementation, the CSP provisions and operates the cloud service, but also sets up the
processes needed for the management and monitoring of the cloud service, the report of possible failures and
the claim of remedies. After the implementation of an SLA, the Monitoring phase takes place, where the service
is continuously monitored to verify whether the SLA terms are respected. The Monitoring phase has also the
responsibility of preventing, when possible, the violations, by rising alerts in presence of specific events. Alerts
can be managed, during the Remediation phase, by reconfiguring the service while preserving the agreement, in
order to avoid actual violations. If any SLA violation occurs, the cloud service customer may be entitled to a
remedy (Remediation phase), which may take different forms, such as refunds on charges, free services or other
forms of compensation. Finally, at any moment after implementation, either the cloud service customer or the
cloud service provider may require a Re-negotiation of the SLA, aimed at changing any of its terms. The life
cycle discussed above makes it possible to control cloud services according to SLA phases (and states). The
interested readers are referred to [7] for a deeper analysis of the SLA life cycle and the description of a REST
API for its management developed within the SPECS project, and to [8] for an illustration of some of the tools
used in SPECS to monitor the SLA during the execution of a cloud service.

The negotiation, enforcement and monitoring of security-related terms are enabled by the adoption of a



274 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Fig. 3.1. The SPECS Security SLA model

novel Security SLA model, introduced in [32], which extends the WS-Agreement standard to include security
concepts by taking into account both the End-user requirements and the technical offers from the providers’
point of view.

The SPECS Security SLA model is depicted in Fig. 3.1, which shows more in general the SPECS domain

model. In accordance with the WSAG standard, a Security SLA is compliant with a template (Security SLA

Template). The template summarizes the available (and negotiable) offers and is used as a guideline during the
negotiation of a Target Service. The whole process of the Target Service acquisition is managed by a SPECS

Application, which is configured based on the template.
As depicted in Figure 3.1, a Security SLA (and the related template) consists of a declarative part and

a measurable part. The former includes all the concepts that describe the service being delivered, both in
functional and in non-functional terms. In particular, it reports the information regarding:

• the cloud resources used to build the Target Service. Note that, in SPECS, only Infrastructure-as-a-
Service (IaaS) cloud resources are used (i.e., Virtual Machines, VMs), and the Target Service is built
by properly deploying and configuring software components on the acquired VMs. For this reason, the
SLA must contain the reference to the considered Resource Provider(s), and the related offered VMs;

• the Security Capabilities [9] offered/required on top of the service covered by the agreement, each
defined in terms of related security controls belonging to a Security Control Framework (NIST’s Con-
trol Framework [9] and Cloud Security Alliance’s Cloud Control Matrix [10] are currently supported);

• the Security Metrics that can be used to enforce (i.e., configure) and monitor different aspects of the
declared security capabilities. Security metrics are specified in the SPECS Security Metric Catalogue

and used to define security-related guarantees.
The measurable part of a Security SLA includes the specification of the guarantees expressed on the Target

Service, represented by a set of Service Level Objectives (SLOs) built on top of the security metrics declared
above. During negotiation, through the SPECS application, the End-user selects a subset of the available
security capabilities, chooses the metrics of interest and defines SLOs on top of them.

The enforcement of security capabilities and the monitoring of related security metrics (as specified in the
SLOs) is performed by software tools called Security Mechanisms: they are selected, deployed and configured
during the Implementation phase. The Service Manager maintains all the information associated with available
security mechanisms that are needed to automate their deployment and execution together with the Target
Services.

4. Life cycle of a SPECS application. As discussed, a SPECS application enables an End-user to
acquire an up-and-running secure cloud service after a negotiation process based on a pre-defined Security SLA
template. The cloud service is delivered with specific security guarantees, which can be verified by the End-user



SLA-based Secure Cloud Application Development 275

through monitoring functionalities, also made available by the SPECS platform.
In [33] we briefly illustrated the process of developing a SPECS application. In this paper, we aim at

providing a more comprehensive view of the SPECS applications’ life cycle that, at current state, is more
mature and is supported by several tools. Like for any application, the SPECS application life cycle consists
of three phases, i.e., (i) development, (ii) deployment, and (iii) execution. The actors involved in the first two
phases are the SPECS Owner, who acquires the SPECS framework and uses it to offer secure services to his/her
End-users, and the developer, at the service of the SPECS Owner, who is responsible for the implementation
of the software tools needed to build secure services. The execution phase involves the interaction between the
application and the End-users during the negotiation, enforcement and monitoring phases.

In the following, we discuss in detail the SPECS application’s life cycle, with the aim of providing the reader
with a deep understanding of the steps and tools needed to deliver secure services based on Security SLAs.

4.1. Development of a SPECS application. In order to support the development process, the SPECS
framework provides a default SPECS application in the form of servlets for Apache Tomcat, which includes
the basic functionalities to orchestrate the SPECS core services and enable the negotiation, enforcement and
monitoring of an SLA, independently of the service to offer. To provide a specific Target Service, the developer
must customize the default application by configuring a set of additional services that implement both the
functionalities (e.g., a web container service, a database service) and the security features that the SPECS
Owner is willing to offer. In order to automatize the deployment of such mechanisms, SPECS uses a cloud
automation technology, represented by the Chef deployment solution [12], which automates the process of
building, deploying, and managing software over ICT infrastructures. With Chef, it is possible to automate
the deployment and configuration of a given software component on a resource such as a VM by specifying the
operations to perform inside a recipe. Recipes are collected in cookbooks and stored in a Chef Server, which is
responsible for launching their execution on specific nodes (hosting a Chef Client) in order to configure them.
The SPECS Enforcement module includes a Chef Server, which is responsible for the set-up, at run time and
based on an SLA, of all the software components needed to deliver a negotiated cloud service along with required
security and monitoring mechanisms. Hence, customizing the SPECS default application implies supplying to
the Enforcement module the needed cookbooks for each mechanism to support, and providing it with all the
information needed to automatically configure the mechanism during the SLA implementation phase (i.e., the
mechanism descriptor, described later).

Fig. 4.1. SPECS application development process

The whole development process is depicted in Fig. 4.1. It consists in the following steps:
1. Cloud Service Definition: the developer identifies the functionalities that should be offered by the

application (e.g., web containers, databases) and implements (or retrieves, if already available) the
software mechanisms that provide them as-a-service. Moreover, for these mechanisms, the developer
prepares related cookbooks.

2. Security Mechanisms Definition: the developer identifies the security capabilities that should be
offered by the application over the cloud services defined at the previous step, and implements (or
retrieves, if already available) the related security mechanisms. Afterward, the developer prepares the
mechanisms’ cookbooks. Moreover, for each mechanism, the developer has to prepare a mechanism

descriptor that specifies:
• the granted security capabilities (and related security controls);
• the enforceable/monitorable security metrics (and related measurements, representing the actual
parameters gathered to check the identified metrics);



276 V,. Casola, A. De Benedictis, M. Rak, U. Villano

• the monitoring events associated with reported measurements, used by the Enforcement module
(Diagnosis component) to detect violations or alerts related to an SLA;

• the mechanism’s metadata, which includes information on the software components implementing
the mechanism and on respective deployment constraints (e.g., incompatibility or dependency of
software components implementing the mechanism, used during the mechanism’s deployment).

This information is used during the whole SLA life-cycle, since it enables to negotiate capabilities, select
available metrics, configure and monitor related mechanisms and detect and manage related alerts or
violations.

3. Security SLA Template Preparation: once all the mechanisms needed to build the target cloud
service have been defined and set-up, the developer prepares an SLA template, compliant with the
model discussed in Sect. 3, which summarizes all available features.

It is worth noticing that the SPECS application development mainly focuses on the development of ad-hoc
Chef cookbooks for the security mechanisms to be offered. When cookbooks are already available (there are
many archives of already-developed cookbooks), the only additional work consists in the preparation of the
metadata and SLA templates used to automate the SLA implementation.

4.2. Deployment of a SPECS application. The deployment of a SPECS application is performed
through the SPECS Platform Interface, publicly available at [34]. The functionalities available to the SPECS
Owner by means of the Platform Interface are reported in the Use Case diagram of Fig. 4.2.

Fig. 4.2. SPECS Owner use case diagram

By selecting the “SPECS Services management” tab (see Fig. 4.3), the application allows the SPECS
Owner to manage all the available (secure) services, along with related capabilities and security mechanisms.
As discussed before, each Security Service is identified by an SLA template, prepared by the developer during
the application development phase. At deployment time, the SPECS Owner must provide the template to
the Negotiation module via the interface offered by the dashboard. It will be used during negotiation for the
generation of the SLA Offers and during enforcement for the configuration of the Monitoring module based
on included SLOs. Moreover, at deployment time, the SPECS Owner has to provide the Enforcement module
with the cookbooks previously prepared for all supported mechanisms and with related artifacts. Finally, the
SPECS Owner has to make available the mechanisms’ descriptors to the SLA Platform, in order to enable their
automatic deployment and configuration based on an SLA.

4.3. Execution of a SPECS application. A running SPECS application comes in form of a wizard that
enables the End-user to negotiate, implement and monitor an SLA (cf. Fig. 4.4).

First, the negotiation wizard allows the End-user to select the security capabilities to activate. Related to
these capabilities, the subsequent steps require the selection of the security metrics of interest and the definition



SLA-based Secure Cloud Application Development 277

Fig. 4.3. SPECS platform interface

Fig. 4.4. End-user use case diagram

of the SLOs. Currently the negotiation focuses only on the SPECS-supported Security SLOs. However, it is
possible to extend it to other non-functional SLOs. At the end of this process, the End-user can formally accept
the SLA (i.e., sign it) and proceed with its implementation.

During implementation, the SPECS application orchestrates the Enforcement module’s services to acquire
the needed resources from external providers and to configure them with (i) the security mechanisms that
implement the security capabilities included in the SLA and with (ii) the monitoring systems able to monitor
the metrics reported there.

After the implementation, the SPECS application provides the End-user with a monitoring dashboard,



278 V,. Casola, A. De Benedictis, M. Rak, U. Villano

through which he can verify the values of the metrics and check the correct fulfillment of the SLA.
In the following section, we will illustrate the above discussed process with respect to a concrete application

offering a secure web container.

5. A secure web container service. As an example of cloud service that may be enhanced through
SPECS, let us consider a web container solution. An example of such a solution is Amazon AWS Elastic
Beanstalk [35], which allows to quickly deploy and manage applications in the AWS cloud infrastructure.
This solution, which is very complex indeed, provides support for different programming languages and web
containers, and comes with dedicated security management tools developed by Amazon.

When considering smaller providers, it is reasonable to suppose that they would offer more simple platforms
for web applications management, with very limited security features. A web developer targeting such providers
but with specific security requirements should get on all the responsibility of managing them by developing and
integrating ad-hoc software tools inside his/her applications.

It should be noticed that, at the state of the art, existing appliances offer predefined services (for example, a
pre-configured web server), but checking and comparing the security features offered by different CSPs is not an
easy task. The web developer has to (i) manually find the security features provided by each CSP, (ii) evaluate
and compare existing offers, (iii) apply a suitable configuration, if not natively supported, and (iv) implement
a monitoring solution to verify at runtime the respect of the security features.

The SPECS ecosystem provides a turnkey solution to the above issues, as it (i) offers a single interface
to choose among multiple offerings on multiple providers, (ii) enables the web developer to specify explicitly
the needed security capabilities on the target web container, (iii) automatically configures the VMs in order
to enforce the security controls requested, (iv) offers a set of security metrics to monitor the respect of the
security features requested, (v) enables continuous monitoring of the security metrics negotiated, and (vi) can
automatically remediate to (some of the) alerts and violations that may occur to the SLA associated to the web
container.

Below we will present the development of the secure web container as a SPECS application, following the
steps dealt with in the previous section.

5.1. Cloud Service Definition. The main goal of this case study is to deliver web containers that an
end-user can acquire by negotiating his/her desired security features. To this aim, we developed a mechanism
named WebContainerPool (WEBPOOL) that not only provides the web container as a cloud service but also
offers some basic security-hardening features on top of it. In particular, the mechanism allows to acquire a pool
of virtual machines and to configure them with several replicas of the web container with different software
solutions (e.g., Apache Tomcat, NGINX, Jetty), in order to ensure resiliency to failures through sw diversity
and redundancy. Moreover, the mechanism enables to configure such replicas each with a different software
solution, and to randomize the handling of incoming requests among the available replicas.

In practice, the WebContainerPool mechanism has been developed as a security mechanism, but it is
mandatory for the set-up of the web container service delivered by the application. The information related to
the mechanism has been included in the WEBPOOL mechanism descriptor, which specifies:

• the capability provided (Web Resilience),
• the metrics associated ((i) LevelofRedundancy and (ii) LevelofDiversity),
• the monitoring events that can be detected by the Monitoring module and handled by the Enforcement
module for remediation activities (e.g., a web container replica is down),

• the actions to perform to prevent and manage violations (e.g., acquire and configure a new machine),
and

• the mechanisms’ metadata including the software components that implement it (i.e., Apache and Ngnix
web containers and a load balancer based on HAProxy) and their deployment contraints (e.g., the load
balancer must be hosted by a separate machine).

The Chef cookbook associated to the WebContainerPool mechanism can be used also independently of the
SPECS framework and is available at [36]. It is worth pointing out that, if the aim is to apply the same process
to a different cloud service (e.g., a Secure CMS), it is first necessary to develop a Cloud service cookbook
dedicated to offer the CMS, and later on to select the security mechanisms that can be offered for it, possibly
developing custom ones.



SLA-based Secure Cloud Application Development 279

5.2. Security Mechanisms Definition. The proposed service (web container), as outlined above, relies
on (a pool of) virtual machines, hosting synchronized web servers. The service offers some integrated security
features (redundancy and diversity), but a lot of additional security capabilities can be provided. In SPECS,
three main security mechanisms are already available to enhance the web container service:

• TLS: it is a preconfigured TLS server, configured according to security best practices.
• SVA (Software Vulnerability Assessment): it regularly performs vulnerability assessment over
the virtual machines, through software version checking and penetration tests.

• DoSprotection: it consists of a solution for denial of service attacks detection and mitigation based
on the OSSEC tool.

The main role of the developer is to select the mechanisms to be provided together with the WEBPOOL
mechanism from the catalogue of available security mechanisms (mantained by the SPECS Service Manager).
If the developer is interested in offering additional security mechanisms, and/or in enforcing security metrics
and capabilities not yet supported in SPECS, he has to implement the mechanism by releasing related artifacts,
to prepare a mechanism’s descriptor in the proper format and to develop a cookbook for it. Let us assume that
the SVA and DoSprotection mechanisms are to be offered. The main information related to these mechanisms is
provided in Table 5.1 and in Table 5.2, which respectively report the security controls and the metrics associated
with them, these can be offered and guaranteed in the SLA. Moreover, Table 5.1 reports also the information
that the WEBPOOL mechanism is required for the set-up of the service, while the others are optional. Table
5.2 reports the measurable information associated with the three mechanisms that will be offered in the SLA
during the negotiation phase. For the sake of brevity, we do not report here all the information included in the
mechanisms’ descriptors. The interested reader is referred to the SPECS Bitbucket repository [15] for all the
details.

Table 5.1

Definition of the capabilities to offer with the web container

ID Name Description Req. Controls

WEBPOOL
Web
Resilience

Capability of surviving to
security incidents involving a
web server, by implementing
proper strategies aimed at
preserving business continuity,
achieved through redundancy
and diversity

yes

CONTINGENCY PLAN - CP-2

HETEROGENEITY - SC-29

DISTRIBUTED PROCESSING AND STORAGE
- SC-36

DENIAL OF SERVICE PROTECTION - SC-5

OSSEC

DOS
Detection
and
Mitigation

Capability of detecting and
reacting to security attacks
aimed at disrupting a system’s
availability

no

DENIAL OF SERVICE PROTECTION - SC-5

DENIAL OF SERVICE PROTECTION - SC-5(3)

CONTINUOUS MONITORING - CA-7

INFORMATION SYSTEM MONITORING - SI-4

SVA

Software
Vulnerability
Assessment

Capability of detecting and
mitigating vulnerabilities no

CONTINUOUS MONITORING - CA-7

CONTINUOUS MONITORING — TREND
ANALYSES - CA-7(3)

PENETRATION TESTING - CA-8

VULNERABILITY SCANNING - RA-5

VULNERABILITY SCANNING — UPDATE BY
FREQUENCY - RA-5(1)

5.3. Security SLA Template Preparation. This is the main developer task, as it summarizes all the
possible offers to the End-user. Once the template is available, the SPECS application execution is fully
automated. WS-Agreement templates are written according to the SLA model proposed in Section 3, following
the WS-Agreement schema and the SPECS security extensions. The XML schema corresponding to our Security
SLA model is available at [13], while the complete SLA template for the SPECS Web Container application is
available at [37].

5.4. Application deployment. To complete the deployment of the case study application, the security
mechanisms and the template have to be deployed.



280 V,. Casola, A. De Benedictis, M. Rak, U. Villano

Table 5.2

Definition of the security metrics associated with the mechanisms

Name Unit Value

Type

Metric

Type

Description

Level of Redundancy n/a integer Quantitative/
Ratio

Number of replicas of a software component that are set-up
and kept active during system operation

Level of Diversity n/a integer Quantitative/
Ratio

Number of different versions of a software component that
are set-up and kept active at the same time during system
operation

Scanning Frequency -
Basic scan

hours integer Quantitative/
Ratio

Frequency of the basic software vulnerability scanning.

Age of scanning report
- Basic scan

hours integer Quantitative/
Ratio

Age of the scanning report (basic scan)

Vulnerability list avail-
ability

n/a yes/no Qualitative/
Nominal

Availability of the vulnerability list

Scanners availability n/a yes/no Qualitative/
Nominal

Availability of the installed scanners

List Update Frequency hours integer Quantitative/
Ratio

Frequency of updates of the list of known/disclosed vulnera-
bilities from OVAL/NVD databases

Age of vulnerability list hours integer Quantitative/
Ratio

Age of the vulnerability list

Vulnerability reposi-
tory availability

n/a yes/no Qualitative/
Nominal

Availability of the vulnerability repository

Scanning Frequency -
Extended Scan

hours integer Quantitative/
Ratio

Frequency of the extended software vulnerability scanning.
Scanning is performed with two scanners and both scanning
reports are joint

Age of scanning report
- Extended Scan

hours integer Quantitative/
Ratio

Age of the scanning report (extended scan)

Up Report Frequency hours integer Quantitative/
Ratio

Frequency of checks for updates and upgrades of vulnerable
installed libraries.

Age of the update/up-
grade report

hours integer Quantitative/
Ratio

Age of the update/upgrade report

Availability of the
scanning report

n/a yes/no Qualitative/
Nominal

Availability of the scanning report

Availability of the up-
date/upgrade report

n/a yes/no Qualitative/
Nominal

Availability of the update/upgrade report

Penetration Testing
Activated

n/a yes/no Qualitative/
Nominal

Activation of the penetration testing activity

DDoS Attack Detec-
tion Scan Frequency

hours integer Quantitative/
Ratio

Frequency of the dDoS attack report generation

Age of dDoS report hours integer Quant/Ratio Age of the dDoS attack scanning report

As said, this operation is accomplished by the SPECS Owner through the Platform Interface and entails
that:

• All cookbooks of the chosen security mechanisms are added to the Chef repository associated to SPECS
implementation component.

• All cookbook metadata are made available on the SLA Platform, which offers a simple REST API to
upload such data and check them.

• The application template is uploaded to the Negotiation module.
The above example is available online as demonstrator application at [14].

6. Related Work. The large adoption of cloud computing solutions in a wide variety of domains opens
several security issues: customers must often face the loss of control over their data and have to trust that
their applications are securely executed on providers’ resources. As pointed out in [16], many ad hoc security
solutions have been proposed to cope with these issues, but they are often not portable and even not useful in
different contexts.



SLA-based Secure Cloud Application Development 281

Recent approaches are trying to address security problems from the start, i.e., at application design time,
since it is hard (and ineffective sometimes) to add security features to an existing application a posteriori.
Mohammadi et al. are working on the development of applications that can provide trustworthiness (the
assurance that the system will perform as expected [17]) by design [18, 19]. The idea is to design the software
in a way so that there will be mechanisms to ensure, evaluate and monitor trustworthiness, relying on reusable
development process building blocks, consisting of method descriptions (guidelines, patterns and check-lists)
ensuring that the right mechanisms are put in place to ensure trustworthiness.

However, as discussed previously in this paper, effective solutions exist that enable to profitably enhance
the level of security of a cloud application by adopting a Security-as-a-service approach. In particular, the FP7-
ICT Programme project SPECS addressed cloud security and proposed an open source development framework
and a running platform dedicated to offer Security-as-a-Service using an SLA-based approach, by enabling
negotiation, continuous monitoring and enforcement of security [3, 4].

As said, SPECS strongly relies upon Security SLAs. The definition of Service Level Agreement is an active
topic for standardization bodies, because they are at the interface between cloud user needs and the services
and features that cloud service providers (CSPs) are able to offer. The European Commission has set up a
dedicated Working Group (CSIG-SLA) to cope with the definition and usage of SLAs, whose first result was a
guideline for standardization bodies; a more advanced state of SLA standardization is offered by ISO 19086 [6],
which proposes a standard for SLAs in clouds. However, standards for the definition of the security terms in
an SLA are still lacking, even if there is currently a lot of ongoing work by dedicated groups (as the CSIG itself
and the CSCC SLA group [20]) and research projects (see CUMULUS [21], A4Cloud [22], and SPECS [3]) on
the topic.

Despite the strong impact that the introduction of Security SLAs may have on providers’ profit, the main
commercial IaaS providers (Amazon, Rackspace, GoGRID, etc.) currently still do not offer negotiable Security
SLAs (see [28] for a survey of the SLAs offered by commercial cloud providers).

Regarding the configuration of security requirements specified through SLA documents, a few proposal exist.
Karjoth et al. [29] introduce the concept of Service-Oriented Assurance (SOAS). SOAS adds security providing
assurances (an assurance is a statement about the properties of a component or service) as part of the SLA
negotiation process. Smith et al. [30] present a WS-Agreement approach for a fine-grained security configuration
mechanism to allow an optimization of application performance based on specific security requirements. Brandic
et al. [31] present advanced QoS methods for meta-negotiations and SLA-mappings in Grid workflows.

7. Conclusions and Future Work. In this paper, we illustrated a solution to develop cloud applications
offering secure services covered by Security SLAs. The proposed solution relies upon a framework of services
and tools released in the context of the SPECS EU Project and founds on the adoption of a novel Security SLA
model, based on WS-Agreement standard and compliant with current standards and guidelines provided by the
NIST and by CSA.

The paper provided a detailed discussion of the methodology followed in SPECS to build secure cloud
applications and of the tools introduced and leveraged to support their life cycle. The discussion was also
supported by the application of the proposed methodology to a real-world case study, for which a prototype
implementation is available.

Our plans for future research include the development of new security mechanisms to enhance existing cloud
services and the support for a wider set of cloud service types (at current state, only storage and web container
services are considered). Moreover, we plan to include more sophisticated functionalities in the SPECS default
application, such as the reasoning on the security level associated with different SLA offers, in order to enable
customers to make a selection among different possible offers.

The SPECS applications may be deployed and offered by Cloud Service Providers, in order to define and
agree on SLAs with their customers, but even by third-party providers that can act as brokers of services to
enrich security capabilities of larger providers. This last delivery model may open new business opportunities,
especially in those contexts (i.e., public sectors) where security represents the key factor to decide to cloudify a
service.

Acknowledgments. This work has been partially supported by the FP7-ICT-2013-10-610795 (SPECS).



282 V,. Casola, A. De Benedictis, M. Rak, U. Villano

REFERENCES

[1] M. Dekker and G. Hogben, Survey and analysis of security parameters in cloud SLAs across the european public sector,
Technical report. European Network and Information Security Agency, 2011.

[2] SPECS Consortium, SPECS Project Web Site. [Online]. Available: http://www.specs-project.eu
[3] M. Rak, N. Suri, J. Luna, D. Petcu, V. Casola, and U. Villano, Security as a service using an SLA-based approach via

SPECS, in Proc. of the 2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom
2013), 2013, pp. 1–6.

[4] V. Casola, A. De Benedictis, M. Rak, and U. Villano, Preliminary design of a platform-as-a-service to provide security
in cloud, in Proc. of the 4th International Conference on Cloud Computing and Services Science (CLOSER 2014), 2014,
pp. 752–757.

[5] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and

M. Xu, Web services agreement specification (WS-Agreement), The Global Grid Forum (GGF), 2004.
[6] International Organization for Standardization, ISO/IEC NP 19086-1. Information Technology – Cloud Computing

– Service Level Agreement (SLA) Framework and Technology – Part 1: Overview and Concepts, 2014.
[7] A. De Benedictis, M. Rak, M. Turtur, and U. Villano, REST-based SLA Management for Cloud Applications, in Proc.

of the 2015 IEEE 24th International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE 2015), 2015, pp. 93–98.

[8] V. Casola, A. De Benedictis, and M. Rak, Security monitoring in the cloud: an SLA-based approach, in Proc. of the 2015
10th International Conference on Availability, Reliability and Security (ARES 2015), 2015, pp.749–755.

[9] NIST, NIST Special Publication 800-53 Revision 4: Security and Privacy Controls for Federal Information Systems and
Organizations, 2013.

[10] Cloud Security Alliance, Cloud Control Matrix v3.0, https://cloudsecurityalliance.org/download/cloud-controls-matrix-
v3/

[11] NIST, NIST Special Publication 500-307 Draft: Cloud Computing Service Metrics Description, 2015.
[12] Chef, Chef Tool Web Site. [Online]. Available: http://www.chef.io/chef/
[13] SPECS Consortium, SPECS Security SLA Model. [Online]. Available: http://www.specs-project.eu/schema
[14] SPECS Consortium, SPECS Web Container Demo Application. [Online]. Available: http://apps.specs-project.eu/specs-

app-webcontainer-demo CCM/
[15] SPECS Consortium, SPECS Bitbucket Repository. [Online]. Available: https://bitbucket.org/specs-team/
[16] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, From security to assurance in the cloud: a survey, in ACM Computer

Survey, vol. 48, no. 1, pp. 2:1–2:50, Jul. 2015.
[17] A. Aviienis, J.-C. Laprie, B. Randell, and C. Landwehr, Basic concepts and taxonomy of dependable and secure com-

puting, in IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.
[18] F. Di Cerbo, P. Bisson, A. Hartman, S. Keller, P. Meland, M. Moffie, N. Mohammadi, S. Paulus, and S. Short,

Towards trustworthiness assurance in the cloud, in Cyber Security and Privacy, ser. Communications in Computer and
Information Science, M. Felici, Ed. Springer Berlin Heidelberg, 2013, vol. 182, pp. 3–15.

[19] N. Mohammadi, T. Bandyszak, S. Paulus, P. Meland, T. Weyer, and K. Pohl, Extending software development method-
ologies to support trustworthiness-by-design, in Proc. of the CAiSE 2015 Forum co-located with 27th International Con-
ference on Advanced Information Systems Engineering (CAiSE 2015), 2015, pp. 213–220.

[20] CSCC, The CSCC practical guide to cloud service level agreements, Technical report, 2012. [Online]. Available:
http://www.cloudstandardscustomercouncil.org/webSLA-download.htm

[21] A. Pannetrat, G. Hogben, S. Katopodis, G. Spanoudakis, and C. Cazorla, D2.1: Security-aware SLA specification
language and cloud security dependency model. Technical report, Certification Infrastructure for Multi-Layer Cloud
Services (CUMULUS), 2013.

[22] S. Pearson, Toward accountability in the cloud, in Internet Computing, IEEE, vol. 15, no. 4, pp. 64–69, July 2011.
[23] Contrail Consortium, Contrail Project Web Site. [Online]. Available: http://www.contrail-project.eu
[24] mOSAIC Consortium, mOSAIC Project Web Site. [Online]. Available: http://www.mosaic-cloud.eu
[25] Optimis Consortium, Optimis Project Web Site. [Online]. Available: http://www.optimis-project.eu
[26] PaaSage Consortium, PaaSage Project Web Site. [Online]. Available: http://www.paasage.eu
[27] R. Kübert, G. Katsaros, and T. Wang, A RESTful implementation of the WS-Agreement specification, in Proceedings of

the Second International Workshop on RESTful Design (WS-REST ’11) ACM, 2011, pp. 67–72.
[28] L. Wu and R. Buyya, Service Level Agreement (SLA) in Utility Computing Systems, in Performance and Dependability in

Service Computing: Concepts, Techniques and Research Directions, IGI Global, USA, 2011, pp. 1–25.
[29] G. Karjoth, B. Pfitzmann, M. Schunter, and M. Waidner, Service-oriented assurance, comprehensive security by explicit

assurances, in Quality of Protection, ser. Advances in Information Security, D. Gollmann, F. Massacci, and A. Yaut-
siukhin, Eds., vol. 23. Springer US, 2006, pp. 13–24.

[30] M. Smith, M. Schmidt, N. Fallenbeck, C. Schridde, and B. Freisleben, Optimising Security Configurations with Service
Level Agreements, in Proc. of the 7th International Conference on Optimization: Techniques and Applications (ICOTA
2007).IEEE Press, 2007, pp. 367–381.

[31] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya, Advanced QoS methods for Grid workflows based on
meta-negotiations and SLA-mappings, in Proc. of the 2008 Third Workshop on Workflows in Support of LargeScale
Science, 2008, pp. 1–10.

[32] V. Casola, A. De Benedictis, M. Rak, J. Modic, and M. Erascu, Automatically enforcing Security SLAs in the Cloud,
in IEEE Transactions on Services Computing, 2016, PrePrints: doi:10.1109/TSC.2016.2540630.



SLA-based Secure Cloud Application Development 283

[33] V. Casola, A. De Benedictis, M. Rak and U. Villano, SLA-Based Secure Cloud Application Development: The SPECS
Framework, in Proc. of the 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2015, pp. 337–344.

[34] SPECS Consortium, The SPECS Platform Interface. [Online]. Available: http://apps.specs-project.eu:8080/platform-
interface/.

[35] Amazon, Amazon AWS Elastic Beanstalk Home Page. [Online]. Available: https://aws.amazon.com/it/documentation/elas-
tic-beanstalk/.

[36] SPECS Consortium, The WEBPOOL mechanism cookbook. [Online]. Available: https://bitbucket.org/specs-team/specs-
mechanism-enforcement-webpool.

[37] SPECS Consortium, The SPECS Secure Web Container Application Template. [Online]. Available: https://
bitbucket.org/specs-team/specs-utility-xml-sla-framework.

Edited by: Dana Petcu
Received: May 10, 2016
Accepted: July 17, 2016


