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PVL: PARALLELIZATION AND VECTORIZATION OF AFFINE PERFECTLY

NESTED-LOOPS CONSIDERING DATA LOCALITY ON SHORT-VECTOR MULTICORE

PROCESSORS USING INTRINSIC VECTORIZATION
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Abstract. There is an urgent need for high-performance computations. Cores and Single Instruction Multiple Data (SIMD)
units are important resources of modern architectures to speed up the execution of programs. Also, the importance of the data
locality cannot be neglected in computations. Using cores, SIMD units, and data locality simultaneously is critical to gain peak
performance of the architecture. But, there are a few research efforts trying to consider these three resources at the same time.
There is a challenge in choosing loops which could be whether run on SIMD units or cores for vectorization and parallelization,
respectively. This paper proposes an approach, named PVL, for parallelization and vectorization of nested loops considering data
locality based on the polyhedral model on short-vector multicore processors. More precisely, PVL, tries to satisfy dependences in
the middle levels of nested loop (the levels between outermost and innermost levels) while trying to move dependence-free loops to
the outermost and innermost position in order to parallelize and vectorize them, respectively. The experimental results show that
the proposed approach, PVL, is significantly effective compared to the other approaches.
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1. Introduction.

1.1. Motivation. Since the computers have become publicly available, the demand for more increasingly
speed has not vanished. However, it becomes more difficult to speed up the processors by increasing the
frequency. Two major problems with speeding up the processors are overheating and power consumption [1, 2].
One of the proposed solutions to these barriers is multicore architecture. Nowadays, there is a growing trend in
processor industry towards multicore processors. This trend has involved two different areas: (1) ordinary users
and (2) supercomputers. Presently, typical users can get better response time in CPU-intensive applications
due to improved multitasking with the help of multicore processors. The appearance of multicore architecture
also has brought the supercomputing area into a new era. In fact, multicore processors have already been widely
used in parallel computing. Lei et al. [2], in 2007 reported that more than 20% of supercomputers processors
are multicore processors, but in the last report of Top500 supercomputer list published in November 2016,
there is no supercomputer with single core processor. In other words, 100% of processors of supercomputers are
multicore processors [3]. These facts accentuate the importance of effective use of multiple cores.

Besides executing different instructions on multiple processing units simultaneously, namely parallelism, an
alternative approach has been proposed which employs certain instructions called vector instructions [4]. Vector
instructions would initiate an element-wise operation on two vector quantities in vector registers which could
be loaded from memory in a single operation; these machines are called vector machines [5]. Since the late
90’s, specialized processing units called Single Instruction Multiple Data (SIMD) extensions have been included
in the instruction set architecture (ISA) of processors to exploit a similar kind of data parallelism as vector
machines [6]. However, since the width of these vector instructions is relatively small, they are also called short-
vectors [7]. But due to the growing demand for speed, the width of vector-SIMD instruction sets is constantly
increasing (for example, 128 bits in SSE [8], 256 bits in AVX [9] and 512 bits in LRBni [10]). According to
Cebrian et al. [11], in addition to the performance, vectorizing using short-vectors has also a great impact on
energy efficiency. These highlights the significance of the effective use of SIMD vectors. The problem gets more
complicated when both parallelization and vectorization are considered together.

1.2. The problem. Today, computations from complex scientific computations such as signal and image
processing demand high-performance computing to be solved faster. These problems are characterized by long
running computations with spending most of their running time in nested loops. Due to the long consumed
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time in the loops, they are privileged candidates for parallel execution on both kinds of mentioned process-
ing resources: (1) multiple cores and (2) vector-SIMD. In order to fulfill the computing needs of scientific
computations, it is essential to use both multiple cores and vector-SIMD effectively.

Listing 1

The general form of the perfectly nested loops

for(i1 = L1; i1 <= U1; i1+ = T1){
for(i2 = L2; i2 <= U2; i2+ = T2){

...
for(in = Ln; in <= Un; in+ = Tn){

S1: A[f1(i1, i2, ..., in), f2(i1, i2, ..., in), ..., fm(i1, i2, ..., in)] = ...
S2: ... = A[g1(i1, i2, ..., in), g2(i1, i2, ..., in), ..., gm(i1, i2, ..., in)]

}
...

}
}

Listing 1, illustrates the general form of an n-dimensional perfectly nested loop with loop indices i1, i2, ..., in
from the outermost to the innermost loop respectively. Each loop with index k, in the loop nest has a lower
bound Lk, an upper bound Uk and a loop step of Tk. The body of the innermost loop in perfect loop nest
contains some statements that usually have some arithmetic calculation on arrays. The subscript of arrays is
an affine function (f, g) of loop indices [5].

In this paper, we consider the problem of parallelization and vectorization of perfectly nested loops with
dependences on modern architecture with cores and short-SIMD. With respect to the different sources for
parallel execution including multiple cores and vector-SIMD, there are two kinds of loops: (a) loops that do
not carry any dependences, that is, parallel loops which can be executed without any problem in different
cores, (b) loops that do carry dependences, that is, this loops have to be executed serially. Among two different
approaches for parallel execution namely cores and vector-SIMD, later one requires more constraints than cores.
In addition to not having dependence carried by the loop, in order to vectorize them effectively without any
overhead it is better the data to be contiguous in the memory. So, a few factors must be considered to run a
nested loop on modern architectures with two different sources for parallel execution including multiple cores
and vector-SIMD:

1. Multiple cores are used for coarse-grained parallelism, so having parallel loop at outermost level of
nested loop is required to get better performance. In case the parallel loop is not in the outermost
position, we have to move candidate parallel loop to the outermost level if possible;

2. In order to use vector-SIMD to execute different iterations of a loop in parallel, it is better the data
accessed by that loop be contiguous in the memory; in arrays, if it is row-major in memory, the
contiguous data is the data in the last dimension of the array, that is, rightmost subscript in the arrays.
Else, the contiguous data is the ones in the first dimension of the array, that is, leftmost subscript
in the arrays (so contiguous data can be packed in vector registers and can be operated on by vector
instructions);

3. Loops have to be dependence-free since our focus is on loops for executing in multiple cores or vector-
SIMD.

A number of transformations have to be applied to the original loop nests to change the execution order
such that the transformed loop nest can be parallelizable and vectorizable simultaneously. For our purpose, we
have used loop strip-mining and loop interchange transformations. However, the application of a transformation
on a loop nest is legal if it preserves the original data dependences in the loop nest. Polyhedral model is a
powerful abstraction model that can be used to model loop nests, so transformations on each loop nest can
be easily expressed. Also, the legality of transformation can be verified easily [12]. We have used Integer
Linear Programming (ILP) with an objective function and a built-in legality checking constraints to obtain
transformation. With this transformation, we try to move the best candidate vectorizable loop to the innermost
position and the best candidate parallelizable loop to the outermost position. However, there are some loop
nests that do not have one of these parallelizable/vectorizable candidate loops simultaneously. In this case, we
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perform a loop strip-mining transformation before using ILP. For further description see Sec. 3. After having a
parallel loop at the outermost position and vector loop at the innermost position, we generate intrinsic vector
codes for the innermost vector loop and its statements.

1.3. Contributions. The main contributions of this paper are as follows:
• We propose a unified approach for parallelizing and vectorizing perfectly nested loops simultaneously
with respect to the data locality.

• We use ILP with an objective function to get a proper transformation in order to parallelize, vectorize,
and improve data locality of the given nested loop at the same time.

• To vectorize innermost vectorizable loop, we propose to generate intrinsic vector code from binary
expression tree of the statements inside the loop body.

1.4. Paper outline. The remaining sections of this paper are organized as follows: after introduction,
Sec. 2 includes mathematical basic concepts and a brief review of some related works. Section 3 includes the
proposed approach. Section 4 includes evaluation and experimental results. Finally, Sec. 5 is dedicated to the
conclusions.

2. Polyhedral Model and Related Work. In this section, after introducing required concepts for the
polyhedral model, related works are presented.

2.1. Polyhedral Model. An important part of parallelizing/optimizing compilers is the transformation
of programs. In this paper, by program transformation we mean loop-restructuring transformation since we
focus on the loops. In order to apply transformations on loops easily and effectively, the abstract representation
model of the loops is required. Polyhedral model is a powerful and flexible mathematical framework used for
representing programs. It is based on a linear algebraic representation of programs [1, 13]. However, not all
loops can be represented by polyhedral model except static control parts (SCoPs) [13, 14]. A SCoP is defined
as a maximal set of consecutive statements, where loop bounds and conditionals are affine functions of the
surrounding loop indices and parameters. The majority of scientific and engineering calculation kernels belongs
to this class or can be re-expressed as SCoP [12].

The polyhedral model has four basic components to represent loops: (1) the iteration domain, (2) the access
function, (3) dependence polyhedral and (4) the transformation.

The iteration domain is used to represent the dynamic instances of each statement in the loop body
using a system of affine inequalities. The system of affine inequalities is derived from loop bounds enclosing
the statement. Each derived inequality has to be expressed in the Ax + b ≥ 0 form and iteration domain of a

statement is expressed in the D = {−→x |−→x ∈ Zn, A−→x +
−→
b ≥

−→
0 } form where −→x = (x1, x2, ..., xn)

T is the iteration
vector representing a loop nest with depth n and xk is the kth loop index in the loop nest. The possible value
for each loop index is an integer, so each entry of the iteration vector is the member of Z.

For instance, in Listing 2 , the iteration vector is −→x = (i, j)T and the iteration domain of statement S is
DS = {(i, j)|0 ≤ i ≤ N, 0 ≤ j ≤ M} and its matrix form is as (2.1).

Listing 2

The convolution kernel

for(i = 0; i <= N ; i++){
for(j = 0; j <= M ; j ++){

S: y[i] = y[i] + b[j]× x[i+ j]
}

}

DS =









1 0
−1 0
0 1
0 −1









(

i
j

)

+









0
N
0
M









≥
−→
0 (2.1)

The access function is used to represent an access from each statement within loop nest to the data space.
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There is an instance of memory reference for each point in the iteration domain of some statement like S. Each
instance of memory reference accesses a cell of array A that is shown by access function FS

A (−→x S).

The dependence polyhedral is used to represent the data dependences in the loop nest. There is a data
dependence between statements S1 and S2 if and only if both statements refer to the same memory location (that
is the same cell of array) and at least one of them is a write, the statement that executes first is the source and
the statement that executes later is the sink. The dependence polyhedral is essential in parallelizing/optimizing
loops since they determine the transformations that preserve the meaning of the program and it models the
dependences in the program using a set of equalities and inequalities. For example dependence polyhedral for
Listing 2 is DS,S = {(i, j, i′, j′)|0 ≤ i ≤ N, 0 ≤ j ≤ M, 0 ≤ i′ ≤ N, 0 ≤ j′ ≤ M, i = i′} and its matrix form is as
(2.2).

DS,S =





























1 0 1 0
1 0 0 0
−1 0 0 0
0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1
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≥
−→
0

(2.2)

The transformations in the polyhedral model are used to change the iteration order of original loop
nests. A program transformation in the polyhedral model is represented by a function that determines the
logical order of statement instances based on surrounding loop indices of the corresponding statement, called
scheduling function [14, 15].

Loop transformations have been applied to improve instruction scheduling, register use and cache locality
and also to expose parallelism [16]. There are a lot of transformations such as loop reversal, loop interchange,
loop distribution, strip-mining and so on. Because some loop transformations only reorder the iterations of a loop
nest these are categorized into one group named Iteration-reordering transformations such as loop interchange
and strip-mining; in addition to iteration-reordering some other loop transformations also reorder statements,
statement instances and/or the operations within a statement such as loop distribution [16].

Some loop transformations can be represented using a scheduling matrix Θ. For example in loop iterators
(

i
j

)

of a 2-d loop nest, the loop interchange transformation can be shown by Θ

(

i
j

)

=

[

0 1
1 0

](

i
j

)

and loop

reversal transformation can be represented by Θ

(

i
j

)

=

[

−1 0
0 1

](

i
j

)

. Because the final aim of transformation

stage in this work is to expose hidden parallelism as a coarse-grained parallelization as well as a fine-grain
vectorization, the most useful transformations are the strip-mining and the loop interchange; however loop
strip-mining cannot be represented as a matrix.

Loop strip-mining is a transformation that can be applied to single loops and it has been applied successfully
in kernels to run on vector machine platforms [16, 17] and since in short-vector multicore processors architecture
there are also vector registers with the short length, loop strip-mining can be also applied. Listing 3 shows the
loop strip-mined version of Listing 2. P in Listing 3 is the number of available cores.
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Listing 3

The strip-mined convolution kernel

k=ceil(N/P);
for(I = 0; I <= N ; I+ = k){

for(i = I; i <= min(I + k − 1, N); i++){
for(j = 0; j <= M ; j ++){

S: y[i] = y[i] + b[j]× x[i+ j];
}

}
}

2.2. Legality of Transformations in Polyhedral Model. In order to parallelize/vectorize loops during
the process of loop transformation, the semantic of the program should not change, that is, transformed program
should generate the same outputs with the same order as the original program; otherwise, the transformation
is not legal. In order to have a legal transformation, it must satisfy (preserve) dependences in the program.
There are four kinds of data dependences: input-dependence, true-dependence, anti-dependence and output-
dependence [5]. However, violating the input-dependence does not affect the meaning of a program.

Given data dependence e between statements S and T , dependence e is said to be satisfied if for all pairs of

dependent instances ⟨
−→
XS ,

−→
XT ⟩ the source is executed before the sink. In other words, the schedule of the source

instance is smaller than the schedule of the sink instance, i.e., if Θ represents the scheduling of statements, for

all pairs of dependent instances: Θ(
−→
XS) < Θ(

−→
XT ) and for statements the schedule of source statement, S, is

smaller than the schedule of sink statement T : Θ(S) < Θ(T ). Applying a transformation Θ on a program is
legal if and only if (2.3) holds.

∀e ∈ E∀⟨
−→
XS ,

−→
XT ⟩ ∈ DS,TΘT (

−→
XT )−ΘS(

−→
XS) ≥ 0 (2.3)

where DS,T is dependence polyhedral of statements S and T .

2.3. Related Work. Parallelization and vectorization are two important techniques to execute different
iterations of loops simultaneously. However, most of the previous works have considered only one of them; while
in order to get better performance, parallelization and vectorization have to be considered together since modern
processors support both types of parallelization. Generally, works in loop optimization can be categorized into
three different fields: improving data locality with loop transformations, loop tiling, and data transformations.

Data locality is a very important factor in improving the performance of the programs and especially loops
[18, 19]. One of the important methods to deal with data locality is loop transformation such as loop fusion and
loop distribution and others. Naci in 2007 [20] tried to improve data locality of loops with loop transformations.
Ozturk in 2011 [21] presented a method based on constraint satisfaction problem (CSP) to handle data locality
and parallelizing of loop nests. Parsa et al. [22] proposed a method to expose coarse-grain parallelism by
reusing data to execute loops on multicore processors. They tried to find a scheduling function for nested loops
using a polyhedral model that makes iterations of outer loops independent and consequently parallel. To find
such a transformation (scheduling function), they tried to satisfy dependences in inner loops. Doing so, the
reuse distance of the data is reduced. It is notable to mention that making outer loops dependence-free and
moving dependencies to inner loops has achieved just by the only main idea: to satisfy dependencies at inner
loops. To use vector-SIMD units of processors, the innermost loops have to be dependence-free, that is, either
the innermost loop does not carry any dependences or if it carries some dependences, then another candidate
dependence-free loop should be moved to the innermost position if it is legal. However with their idea, they
make the innermost loops to carry dependencies and as a result, they miss vectorization chance. Not only they
have not considered the important technique of vectorization, but also their idea inhibits any next vectorization.

Tiling is a vital technique to gain both data locality and coarse-grained parallelization of loop nests [23, 24].
Parsa et al. [25] presented a genetic algorithm (GA) to tile the iteration space of the nested loops with more
than three dimensions. They tiled the iteration space in a way that each individual tile can be executed on
different processors simultaneously. Since the size and the shape of tiles are uniform, they just consider a tile
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in iteration space as a chromosome in GA. This method has some advantages including having no restrictions
on loop dimensions and also after tiling, nested-loops can be executed in parallel. However, vectorization is not
considered in this work. Krishnamoorthy et al. in 2007 [26] presented a method to tile loops for eliminating
pipelined start and drained finish of the tiles. With this method in addition to improving data locality and
gaining coarse-grained parallelization, they addressed the problem of unbalanced execution of tiles in multi-core
systems. Bondhugula et al. in 2008 [27] proposed an iteration space tiling method based on polyhedral to
execute on multicore processors. In this work, they presented a cost model to obtain parallelization and data
locality at the same time. The aims of this tiling are minimization of communications and increasing data reuse
in each processor. The advantage of this work is that it can be used on loops with any dimensions and the
disadvantages of this work are the delays of pipelined start-up and drain of tiles and also vectorization has not
been considered in this work. Bandishti et al. in 2012 [28] presented a new tiling method. This method was
replaced traditional parallelopiped tiling in Pluto compiler.

Data layout transformation is another technique that has been using for preparing loops both to enable
vectorization and also for improving data locality in the new architectures [29, 30]. Lu in 2009 [31] presented a
data layout transformation method for optimizing data locality in multi-processor architecture of Non-Uniform
Cache Architecture (NUMA). Jang et al. in 2010 [32] presented a mathematical model for acquiring access
patterns of data and then computing the most proper data transformation in order to vectorize loops.

A number of the works have addressed the problem of parallelization and vectorization of the programs,
however, they either focused on a very special kind of CPU like iPSC-VX or they tried to parallelize or vectorize
a special programs only. These works are reviewed in the following section.

Krechel et al. [33] investigated parallelization and vectorization strategies for the solution of large tridi-
agonal linear systems on MIMID computers which have vector processors. In their experiments, they try to
minimize communication on message-based computing systems and maximize the parallelism. In particular,
they presented a distribution of large tridiagonal systems across different processes on iPSC2-VX architecture.
Aykanat et al. [34] implemented Conjugate Gradient algorithm for exploiting both parallelization and vectoriza-
tion on iPSC-VX/d2 architectures with 2-dimensional hypercube and used it to solve large sparse linear systems
of equation. They achieve efficient parallelization by reducing communications and overlapping computations
on the vector processor with internode communication. Crawford et al. [35] proposed a vectorization and
parallelization approach for the application of the adiabatically-adjusting principal axes hyperspherical(APH)
Hamiltonian used in time-dependent quantum reactive scattering calculations. They separate Hamiltonians for
APH coordinates into its constituent parts and vectorize these to speedup computations required in matrix
multiplications and then parallelize.

3. The Proposed Approach. In this section, we propose an approach for parallelizing and vectorizing
perfectly nested loops with dependences on modern architecture with cores and short-SIMD.

There are two different cases in the original loop nest that have been dealt with in the proposed method.
In the first case, the original loop nest has more than one dependence-free loop one of whose has contiguous
data in the memory and in the second case the original loop nest has just one dependence-free loop whose data
is contiguous in the memory. In the first case, employing loop strip-mining is not required and it is sufficient to
use loop interchange transformation to move parallel/vector loop to proper positions.

Listing 4

The summation kernel, C=A+B

for(j = 0; j <= N ; j ++){
for(i = 0; i <= M ; i++){

S: C[i, j] = A[i, j] +B[i, j]
}

}

For example the loop nest in Listing 4 has two dependence-free loops but because the arrays are stored in
row-major, in order to enable vectorization, loop with j index has to be moved to the innermost position
(Listing 5).
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Listing 5

The loop interchanged summation kernel, C=A+B

for(i = 0; i <= M ; i++){
for(j = 0; j <= N ; j ++){

S: C[i, j] = A[i, j] +B[i, j]
}

}

However, in the second case where there is just one dependence free loop, the usage of loop strip-mining is
unavoidable to have both parallel and vector loops. For example in order to parallelize and vectorize the loop
nest in Listing 2, since there is just one dependence-free loop, using loop strip mine with step sizes k on loop i
results two dependence-free loops I, and i (Listing 3) that loop i can be vectorized. In order to vectorize loop
i, it has to be moved to the innermost position by a proper transformation.

In addition to the cores and short-vectors, the data locality has a significant effect on the execution time of
the programs. So, besides parallelization and vectorization, we try to find a transformation that has improved
data locality according to the storage layout of the array whether it is row-major or column-major. In this
order, we have used an ILP-based method to obtain proper transformation.

3.1. ILP formulation. In this section, a new ILP based method, PVL, is proposed to obtain proper loop
interchange transformation that enables coarse-grained parallelism and fine-grained vectorization. Generally,
when formulating a problem in ILP, there is an objective function we want to maximize/minimize and some
constraints with respect to which the objective function has to be satisfied.

It has been shown [5] that cores are best suited to coarse-grained computations in new short-vector multicore
architectures and the computations of outer loops are more coarse-grained than inner loops in loop nests. Hence,
in the loop nest, it is better to move the parallel loop to the outermost position- that is, the outer the loop,
the more coarse-grained the computations. On the other hand, parallelism is fine-grained in the short-vectors.
Loops with contiguous data which are in the innermost position can be executed in short-vectors.

3.1.1. Formulating Objective Function. Loop interchange transformation is a square matrix n × n
which n is the dimension of the original loop nest and it can be represented as a matrix in which entries belong
to {0, 1}, such that there is just a single one in each row as well as each column; the original scheduling of
strip-mined convolution is as (3.1) where the iteration order of strip-mined convolution would not change by
this transformation.

Θ =





1 0 0
0 1 0
0 0 1



 (3.1)

Having just a single one in each row in loop interchange transformation, it can be formulated as a constraint
in ILP (3.2).

|dimensions|
∑

i=1

ci = 1 (3.2)

To obtain proper transformation using proposed ILP based method, transformation Θ will be produced row
by row. For a three-dimensional loop, each row of Θ in general, is denoted by (ci, cj , ck) such that each entry
has a value. Hence, in order to get proper values of ci, cj , and ck, the objective function of ILP has to be a
function of row’s entries such that it satisfies parallelization, vectorization, and data locality in the transformed
loop nest. In order to create the objective function, it is required to notice the behavior of the transformation
matrix. For a three-dimensional loop nest, given loop interchange transformation Θ is composed of three rows:

Θ =





c1i c1j c1k
c2i c2j c2k
c3i c3j c3k







74 Y. Seyfari, S. Lotfi, J. Karimpour

Table 3.1

Creating the objective function for a sample 3-dimensional loop

coefficients ci cj ck
P 1

3

1

3

1

3

V 1

3

1

3
3

l1
1

3

2

3

3

3

l2
1

3

2

3

3

3

l3
1

3

2

3

3

3

L =
∑

li
3

3

6

3

9

3

P + V + L 5

3

8

3

19

3

n× (P + V + L) 5 8 19
objective function min5ci + 8cj + 19ck

In this transformation, each row is dedicated to a loop through loop nest, and each column is representing
the position of the corresponding loop (row) in the loop nest, that is, if the first row of Θ is (0, 1, 0), it denotes
that the position of the first loop in transformed loop nest would be the second position. As explained so
far, with respect to the final aim of parallelization and vectorization at the same time in the loop nest, it is
required that first row and last row of the transformation Θ show the parallel and the vector loops, respectively.
However, since in the proposed method transformation Θ is obtained row by row from the outermost row to
the innermost row, it is clear that the parallel loop has to be selected at first and the vector loop has to be
selected at last. In the following transformation Θ, the row denoting parallel loop is highlighted as green (box
with dashed line) and the row denoting vector loop is highlighted as blue (box with dotted line).

With these explanations, in the objective function of the proposed method the priority of the parallel loop
is selected as the highest and the priority of vector loop is selected as the lowest. In the other hand, loop nests
may have some loops neither parallelizable nor vectorizable; these loops are the loops with dependence and
transformation Θ is legal if it satisfies all dependences in the loop nest. Since the first and last rows represent
parallel and vector loops respectively, so dependences have to be satisfied in the middle rows highlighted as red
(box with solid line) in the transformation, so the priority of loops with dependence is mid. By middle rows we
mean the rows of the transformation Θ that are between the first and the last rows. Because the formulated
ILP problem in Sec. 3.1.1 is a minimization problem, the loops with the highest priority (parallel loops) have
smallest coefficients and similarly the loops with the lowest priority (vector loops) have the highest coefficient.
Hence, the objective function of sample three-dimensional loop nest in Listing 6 is created according to the
Table 3.1.

Listing 6

Sample 3d-loop

for(k = 0; k <= 100; k ++){
for(j = 0; j <= 100; j ++){

for(i = 0; i <= 100; i++){
S: A[i, j, k] = A[i, j, k] +B[i, j, k];

}
}

}

In this loop nest, there are three parameters to make up an objective function: data locality, parallel, and
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vector which are described as follows:
Data locality in this paper means whether the arrays are stored in the memory as row-major or column-

major. There is a row (i.e. l1, l2, ...) in the table for each reference. The final locality, L, is defined as
L =

∑

li. Values of each li in the table is computed as follows: if arrays are stored as row-major in the memory,
li,j = j

dimensionloop
, where lij is the value in column cj of row li. If arrays are stored as column-major in

the memory, li,j =
dimensionloop−j+1

dimensionloop
. In this example, it is assumed that the arrays are stored as row-major.

So, the first row of data locality, l1, is for the first reference in the statement within loop nest i.e. A[i, j, k]
(left-hand-side). The values of this row are 1

3
, 2

3
, and 3

3
. In this example dimensionloop = 3 and because the

loop index i is the first subscript in the reference, so its value is 1

3
, and so on.

Parallel parameter denotes the loops which its iterations can be executed in parallel. Values of this row in
the table belong to {n, 1

n
} where n is the number of dimensions. The presence of n means that the iterations of

the corresponding loop can not be executed in parallel, and the presence of 1

n
means that the iterations of the

corresponding loop can be executed in parallel. In Listing 6, iterations of all loops can be executed in parallel,
so the values of all entries of this row are 1

n
.

Vector parameter denotes the loops with contiguous data which do not carry any dependence. Values
of this row in the table belong to {n, 1

n
}, where n is the number of dimensions. The presence of n means

that the corresponding loop can be vectorized and the presence of 1

n
means that the corresponding loop is not

vectorizable. In this example, the loop with index k can be vectorized. So in the table, vector parameter of this
loop is 1

3
(here n = 3) and other loops are 3.

Finally, the parameters of Table 3.1 is used as n × (P + V + L) to obtain the objective function, where n
is the number of dimensions and P , V , and L are parallel, vector and locality parameters, respectively.

3.1.2. Automatically Getting Objective Function from Data Dependences. In order to automat-
ically obtain objective function from data dependences, Algorithm 1 is proposed. As explained in the Sec.
3.1.1, the loops that could be executed in parallel will be run in the cores, because the formulated ILP problem
in the previous section is minimization, in step 1 the algorithm gives the lowest coefficient 1

n
for all of them,

denoting that one of these loops should be scheduled first. The loops that could be vectorized will be run in the
short-vectors within each core, so the algorithm gives the highest value n for them, denoting that one of these
loops should be scheduled last, where n is the number of dimensions. The arrays storage layout is used in the
algorithm to have better data locality. In step 2, the objective function is get by P + V +L and since all terms
of objective function have denominator n, the final objective function is get by n × (P + V + L) which omits
denominators.

3.2. Formulating Constraints. In the following subsections, constraints of the problem are formulated
for ILP

3.2.1. Legality of Transformation. One of the benefits of using polyhedral model is that legality of
the obtaining transformation can be verified with a built-in set of constraints obtained from Rel. 2.3 [36].
To create the set of semantic-preserving constraints using Rel. 2.3, for each dependence that is for every
dependent statements S and T , the obtained legality constraint from (2.3) is (3.3) and in the case of non-
uniform dependences, the obtained nonlinear constraint is converted to linear using Farkas lemma [1, 22, 37].

ΘT (
−→
XT )−ΘS(

−→
XS) ≥ 0 (3.3)

3.2.2. Linearly independence rows. After obtaining the transformation Θ, it is required to be applied

on the original polyhedron A−→x +
−→
b ≥

−→
0 defining the original loop nest. Scattering function leading to the

target index −→y = Θ−→x , the polyhedron of the transformed loop nest is defined by (3.4) [12, 15].

(AΘ−1)−→y +
−→
b ≥

−→
0 (3.4)

The transformation Θ is used as inverted (Θ−1) in the polyhedron of the transformed iteration space,
relation (3.4), so it is required to be invertible. On the other hand, transformation Θ is obtained row by row, so
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Algorithm 1 Automatically obtain objective function for ILP

Input: Data Dependence Matrix
Output: Objective Function

Step1: //for each loop in the loop nest fill the parallel and vector parameters of
//Objective Table (OT), Table 3.1 in the paper
n=number of dimensions
for loop index i=1 to number of dimensions do

//parallel
if (loop Li carries any dependences) then

OT [′parallel′, i] = n;
else

OT [′parallel′, i] = 1

n
;

end if

//vector
if (loop Li does not carry any dependences AND Loop index of Li has contiguous data in the memory)

then

OT [′vector′, i] = n;
else

OT [′vector′, i] = 1

n
;

end if

end for

//locality
for each reference within loop nest do

for loop index i=1 to number of dimensions do
if arrays are stored as row-major in the memory then

OT [′locality′, i]+ = j
dimensionloop

if this loop index, i, is the jth subscript of the array

else

OT [′locality′, i]+ = dimensiondata−j+1

dimensionloop
if this loop index, i, is the jth subscript of the array

end if

end for

end for

Step 2:

for loop index i=1 to number of dimensions do
for each of the parameters (parallel, vector, and locality) do

coefficient of the loop Li in the objective function, coefficienti =
n× (OT [′parallel′, i] +OT [′vector′, i] +OT [′locality′, i]);

end for

end for

in order to Θ be invertible, its rows have to be linearly independent. To this order, in the process of obtaining
Θ, after obtaining each row a new constraint is added to the set of the constraints of ILP formulation of new
row by (3.5) that ensures the solutions are linearly independent [1, 38, 39].

Θ⊥
S = I −ΘT

S (ΘSΘ
T
S )

−1ΘS (3.5)

∀i,Θi⊥
S θ∗S ≥ 0 ∧

∑

i

Θi⊥
S θ∗S ≥ 1 (3.6)
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In (3.5) and (3.6), ΘS is the obtained transformation for statement S so far, ΘT
S is the transposition of ΘS ,

I is the identity matrix and θ∗S is the next row to be found for statement S.

3.3. The Proposed Algorithm. Algorithm 2 is proposed to obtain the transformation used to parallelize
and vectorize nested loops simultaneously. In the first step, if there is not enough dependence-free loop for both
parallelization and vectorization, loop strip-mining transformation will be applied to have enough dependence-
free loops for both parallelization and vectorization. The constraints of ILP will be built in the steps 2 and 3.
In step 2, the loop interchange constraint will be built e.g. for a three-dimensional loop the loop interchange
constraint is as Rel. 3.2. In step 3, legality constraints will be built according to the data dependences of the
given loop nest using Rel. 3.3. The transformation matrix Θ (T in the algorithm) will be found in step 4. Step
4 is used in this algorithm to obtain objective function for each row in the transformation matrix Θ. In this
step, after finding each row of the transformation matrix, the linearly independence constraint is added to the
constraints set using Rels. 3.5 and 3.6.

Algorithm 2 PVL algorithm

Input: Data Dependence Graph (DDG), Dependence polyhedron (DS,T ) for each edge in DDG
Output: Transformation matrix T

Step 1:

if (there is not enough dependence-free loop) then
Apply loop strip-mining

end if

Step 2: //build loop interchange constraint

Add
∑

i=|dimensions|

ci = 1 to constraints-set

Step 3: //build legality constraints
for (each dependence e in DDG) do

Build legality constraints LCe and add to constraints-set
if (e is nonuniform) then

Apply Farkas lemma and get linearized constraints
end if

end for

Step 4: //obtain transformation matrix T using ILP formulation
for (each dimensions of original loop nest) do

//objective function:
obj fun = Get new objective function using Algorithm 1 (input:D)
r = ILP-SOLVE(obj fun, constraints-set)
Add row r to T
Eliminate satisfied dependences from D
Add linearly independent constraints to constraint-set

end for

3.4. Intrinsic Vector Code Generation. After applying the obtained transformation to the original
loop nest. OpenMP is used to parallelize the outermost parallel loop and the following intrinsic vectorization
approach is used for vectorizing the innermost vector loop. In this approach after determining loop index of the
innermost loop, a binary expression tree is created for each statement within the body of the innermost loop.
The binary expression tree is traversed as post order and for each leaf of the tree, an intrinsic load code and
for each non-leaf node of the tree corresponding intrinsic vector operation are generated. In order to vectorize
inner most vectorizable loop nest i, we want all operations as SIMD. Consider statement y[i]=y[i]+b[j]×x[i+j],
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Fig. 3.1. The binary expression tree of y[i] = y[i]+b[j]×x[i+j]

two states are possible. In the first state, the subscript of reference in the statement contains loop index i,
such as y[i] in this statement. In this state, the intrinsic vector load will load four contiguous elements y[i],
y[i+1], y[i+2] and y[i+3] of array y. In the second state, the subscript of reference in the statement does not
contain loop index i, such as b[j] in this statement. In this state, the corresponding register vector will load
the same element b[j] four times (b[j], b[j], b[j], and b[j]). For example if the statement of the innermost loop
is y[i]=y[i]+b[j]×x[i+j] and the loop index of the innermost loop is i, binary expression tree and corresponding
intrinsic vector codes are as Fig. 3.1 and Listing 7, respectively. If the current statement within loop nest
requires more vector registers than available vector registers in the underlying architecture, then we split that
statement into some sub-statements and store result of each sub-statement in a temporary vector register than
gather all temporary vector registers in order to make up the result of that statement.

Listing 7

Intrinsic vector code of Fig. 3.1

m128 y4= mm loadu ps(&y[i]);
m128 b4= mm set1 ps(b[j]);
m128 x4= mm loadu ps(&x[i+j]);

y4 = mm add ps( mm mul ps(b4, x4), y4);
mm storeu ps(&y[i], y4);

3.5. Example. In this section, Algorithm 1 and Algorithm 2 are used step by step in order to obtain a
proper transformation for following loop nest, which upper bound of loops, N, is divisible by four:

Listing 8

Example loop nest

for(i = 1; i < N ; i++){
for(j = 1; j < N ; j ++){

for(k = 0; k < N ; k ++){
for(l = 0; l < N ; l ++){

S: A[i, j, k, l] = A[i− 1, j − 1, k, l] +B[i− 1, j − 1, k, l];
}

}
}

}

The iteration domain polyhedron for statement S within the loop nest is:

DS = {(i, j, k, l)|1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1, 0 ≤ l ≤ N − 1}

The dependence polyhedron for flow dependence (RAW: read after write) from the write at A[i, j, k, l] to
the read at A[i− 1, j − 1, k, l] for any two iterations, I = (i, j, k, l) and I ′ = (i′, j′, k′, l′) is:

DS,S = {(i, j, k, l, i′, j′, k′, l′)|1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1, 0 ≤ k ≤ N − 1, 0 ≤ l ≤ N − 1,

1 ≤ i′ ≤ N − 1, 1 ≤ j′ ≤ N − 1, 0 ≤ k′ ≤ N − 1, 0 ≤ l′ ≤ N − 1,

i′ = i− 1, j′ = j − 1, k′ = k, l′ = l}
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Table 3.2

Creating the objective function for the first row of the transformation matrix for the example loop nest

coefficients ci cj ck cl
P 4 4 1

4

1

4

V 1

4

1

4

1

4
4

l1
1

4

2

4

3

4

4

4

l2
1

4

2

4

3

4

4

4

l3
1

4

2

4

3

4

4

4

L =
∑

li
3

4

6

4

9

4

12

4

P + V + L 4 + 1

4
+ 3

4
4 + 1

4
+ 6

4

1

4
+ 1

4
+ 9

4

1

4
+ 4 + 12

4

n× (P + V + L) 20 23 11 29
objective function min 20ci + 23cj + 11ck + 29cl

Because this loop nest has two loops with independent iterations, so Step1 of the Algorithm 2 is not required.
The loop interchange constraint for this loop nest using Rel. 3.2 is:

ci + cj + ck + cl = 1

and the legality constraints for this dependence using Rel. 3.3 is as follows:

(ci, cj , ck, cl)× (i, j, k, l)T − (ci, cj , ck, cl)× (i′, j′, k′, l′)T ≥ 0

(ci, cj , ck, cl)× (i, j, k, l)T − (ci, cj , ck, cl)× (i− 1, j − 1, k, l)T ≥ 0

ci + cj ≥ 0

Now the constraints of ILP are determined. The objective function of the ILP is created according to
the Table 3.2. In this table, because the loops i and j carry dependence, the corresponding values for these
loops in row P (parallel parameter) are n and because the iterations of the loops k and l are independent the
corresponding values for these loops in row P are 1/n, which n is number of dimensions (n = 4). The values of
row V (vector parameter) corresponding with loops i and j are 1/n means they are not vectorizable because of
the dependence and the value of loop k is 1/n denoting that although iterations of this loop are independent
but the data corresponding with this loop in the arrays are not contiguous. Hence, the loop k is not preferred
to be vectorized. The value of the loop l is n, denotes that this loop is preferred to be vectorized (which n is the
number of dimensions, here n = 4). The locality parameter is the aggregation of the lis, the locality status of
each reference within the statement of the loop nest. Since in this example data layout is row-major, for each
reference the locality is calculated based on j

dimensionloop
, where j denotes that this loop index is jth subscript

in the reference from the left. The final objective function is min20ci+23cj +11ck +29cl. So, the ILP problem
for the first row of the transformation matrix is as follows:

min 20ci + 23cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci + cj ≥ 0;
(3) ci ≥ 0;
(4) cj ≥ 0;
(5) ck ≥ 0;
(6) cl ≥ 0;

The coefficients (ci, cj , ck, cl) of the first row of the transformation matrix obtained by solving above ILP
problem is (0, 0, 1, 0). This row of transformation matrix determines the position of the loop k. Since the RAW
dependence is not carried by this loop, after finding the position of this loop, the dependence graph does not
change so the objective function for the next row will not change. However, the linear independence constraint
will enforce ck = 0 for the next row of the transformation matrix. To obtain the next row of the transformation
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Table 3.3

Creating the objective function for the third row of the transformation matrix for the example loop nest

coefficients ci cj ck cl
P 4 1

4

1

4

1

4

V 1

4

1

4

1

4
4

l1
1

4

2

4

3

4

4

4

l2
1

4

2

4

3

4

4

4

l3
1

4

2

4

3

4

4

4

L =
∑

li
3

4

6

4

9

4

12

4

P + V + L 4 + 1

4
+ 3

4

1

4
+ 1

4
+ 6

4

1

4
+ 1

4
+ 9

4

1

4
+ 4 + 12

4

n× (P + V + L) 20 8 11 29
objective function min20ci + 8cj + 11ck + 29cl

matrix, the linear independence constraint is added to the constraints set according to the Rels. 3.5 and 3.6:

Θ⊥
S =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









hence, the linear independence constraint ci + cj + cl ≥ 1 should be added to the constraints set.
The ILP formulation for obtaining the second row of the transformation matrix is as follows:

min 20ci + 23cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci + cj ≥ 0;
(3) ci ≥ 0;
(4) cj ≥ 0;
(5) ck ≥ 0;
(6) cl ≥ 0;
(7) ci + cj + cl ≥ 1;

The solution of the above ILP problem gives (1, 0, 0, 0) for the coefficients (ci, cj , ck, cl) of the second row
of the transformation matrix. This row of transformation matrix determines the position of the loop i. To
obtain the next solution for the third row, linear independence constraint cj + cl ≥ 1 should be added to the
constraints set. Because the RAW dependence is carried by this loop, after finding the position of this loop,
this dependence will be satisfied and therefore will be removed from the dependence graph and constraints set
(ci + cj ≥ 0). So, the objective function for the next row will change as Table 3.3. The positions of the loops
i and k are determined already. Therefore, because of linear independence constraint the values of coefficients
corresponding with the loops i and k in the next rows will be zero. Hence, their columns in the Table 3.3
will not have any effects on the solution of the next row. So, we do not change the values of these columns in
Table 3.3.

The ILP formulation for obtaining the third row of the transformation matrix is as follows:

min 20ci + 8cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci ≥ 0;
(3) cj ≥ 0;
(4) ck ≥ 0;
(5) cl ≥ 0;
(7) cj + cl ≥ 1;

The solution of the above ILP problem gives (0, 1, 0, 0) for the coefficients (ci, cj , ck, cl) of the third row of
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the transformation matrix. This row of transformation matrix determines the position of the loop j. To obtain
the next solution for the fourth row, linear independence constraint cl ≥ 1 should be added to the constraints
set. Because after finding the third row of the transformation matrix the dependence graph does not change,
so the objective function for the next row will not change.

The ILP formulation for obtaining the fourth row of the transformation matrix is as follows:

min 20ci + 8cj + 11ck + 29cl s.t.
(1) ci + cj + ck + cl = 1;
(2) ci ≥ 0;
(3) cj ≥ 0;
(4) ck ≥ 0;
(5) cl ≥ 0;
(7) cl ≥ 1;

The solution of the above ILP problem gives (0, 0, 0, 1) for the coefficients (ci, cj , ck, cl) of the fourth row
of the transformation matrix. Therefore, the final transformation matrix is as follows:

Θ =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1









Applying the transformation matrix Θ to the original loop nest moves the loop k to the outermost position as
a coarse-grained parallel loop and the loop l to the innermost position as a fine-grained vector loop. Listing 9
shows the resultant final loop nest after generating intrinsic vector code for the statement within the loop.

Listing 9

Final output code for example loop nest

#pragma omp parallel for schedule(static)
for(k = 0; k < N ; k ++){

for(i = 1; i < N ; i++){
for(j = 1; j < N ; j ++){

for(l = 0; l < N ; l+ = 4){
m128 a41= mm loadu ps(&A[i−1, j−1, k, l]);
m128 b4= mm loadu ps(B[i−1, j−1, k, l]);
m128 a42 = mm add ps(a41, b4);
mm storeu ps(&A[i, j, k, l], a42);

}
}

}
}

The final output code of PVL for one-dimensional convolution (Listing 2) is also represented in Listing 10.

4. Evaluation and Experimental Results. The effectiveness of the proposed method was experimen-
tally evaluated using execution on a hardware platform. The effectiveness of the proposed method was first
demonstrated using a set containing the benchmarks that usually have used in the field of parallelizing com-
pilers. In order to further study the effectiveness of the proposed method, another set of loop nests containing
four synthetic benchmarks are used. Each synthetic benchmark is designed to demonstrate the effectiveness
of the proposed method in a special case out of four cases that cover the majority of loop nests in scientific
computations. Each benchmark was run 10 times and the average execution time of 10 runs is reported in the
tables and figures. We compare the performance of the proposed method with the original programs and also
with previous state-of-the-art methods. The execution time test was evaluated using GCC 4.9.2.
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Listing 10

Final output code for one-dimensional convolution

int k=ceil(n/p);
int m=0;
#pragma omp parallel for schedule(static)
for (int I=0; I<n; I+=k){

m=min(I+k−1, n);
for (int j = 0; j<n; j++){

for(int i=I; i<m; i+=4){
m128 y4= mm loadu ps(&y[i]);
m128 b4= mm set1 ps(b[j]);
m128 x4= mm loadu ps(&x[i+j]);

y4 = mm add ps( mm mul ps(b4, x4), y4);
mm storeu ps(&y[i], y4);

}
}

}

4.1. Experimental Setup.

Hardware. The execution time tests were performed on two dual and quad core systems. Dual core
system is an Intel Dual Core CPU E2200 with a 2.20GHz frequency, 32KB L1 cache, 1024KB shared L2 cache,
3GBs RAM, and running Linux Ubuntu 12.04 and quad core system is an Intel Core2 Quad CPU Q6600 with
a 2.40GHz frequency, 32KB L1 cache, two 4096KB L2 caches, 2GBs RAM and running Linux Ubuntu 12.04.
CPU programs were compiled using GCC 4.9.2 with the ’-march=native -mtune=native -O3’ optimization flags
in order to generate the best code for underlying architecture.

Benchmarks. To test the effectiveness of the proposed parallelization and vectorization technique, we
use four data-intensive real benchmarks: matrix multiplication, one-dimensional convolution, two-dimensional
convolution, and Sobel filter. Matrix multiplication is the core mechanism in linear algebra applications such
as image processing, and physical or economic simulations, and improving it can be very useful in real life
applications. Both one and two-dimensional convolutions are very regular in Digital Signal Processing (DSP)
field and finally, Sobel filter is an application of two-dimensional convolution. The another set contains four
synthetic benchmarks covering four cases that are usual in the scientific applications. Table 4.3 demonstrate each
case and the synthetic benchmark covering it. This set of benchmarks is listed in Table 4.1. All the benchmarks
use single precision floating point operations. Table 4.2 shows problem sizes used in the benchmarks. All array
sizes used in the benchmarks were set to be significantly larger than last level cache of the hardware platform.

4.2. Experimental Results. For the given problem sizes in the Table 4.2, the parallelized and vectorized
codes are generated by the PVL method. The experimental evaluations in the follow show that, as theoretically

Table 4.1

The set two of benchmarks consisting four different synthetic benchmarks
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Table 4.2

The Problem sizes used in benchmarks

Real Benchmarks Problem size Synthetic Benchmarks Problem size
Convolution 1d 8192 B1 512
Convolution 2d 2048× 2048 B2 16777216

Sobel 4096× 4096 B3 1024× 1024
Matmul 768× 768 B4 8192× 8192

Table 4.3

Demonstration of the synthetic benchmarks

Benchmark Dimensions Has dependence? Description
B1 3 Yes A 3-d perfectly nested loop that carries a dependence.
B2 1 No A 1-d loop nest that does not carry any dependences.
B3 3 Yes A 3-d perfectly nested loop that carries a dependence.
B4 2 Yes A 2-d perfectly nested loop that carries a dependence.

expected, when benchmarks are parallelized and vectorized using PVL method, because the PVL attempts to
use both cores and SIMD short vectors to execute the benchmark, the execution time of the benchmarks reduce
significantly. As a result of using all available resources of the platform, the PVL could approach to the peak
performance of the underlying platform. Figures 4.1 and 4.2 show the gained speed up through the proposed
approach over the sequential execution of the original programs on both systems. The average speedup of the
proposed method on two and four threads (cores) is about 6.56 and 9.17, respectively. As it is clear in the
proposed method, the speedup is achieved not only by multiple cores, but (1) through parallelization using
multiple cores and (2) vectorization using short-vectors within each core and also (3) trying to optimize data
locality to reduce cache miss. Hence, the gained speedup usually is more than number of cores.

Figure 4.3 shows the execution time of the sequential, Pluto [40], Parsa et al. [22] method, and PVL
(proposed method) on both sets of benchmarks on two and four cores systems. We compiled the sequential
program and output of mentioned three methods using GCC compiler. Figures 4.3 (a) and 4.3 (c) are the
execution time of the real benchmarks on two cores and four cores systems, respectively. Figures 4.3 (b) and
4.3 (d) are the execution time of the synthetic benchmarks on two cores and four cores systems, respectively.
In all benchmarks, execution time of the PVL (proposed method) is much faster than the others.

4.3. Execution with -O3 flag. The underlying hardware architecture of the proposed method and both
compared methods are modern multi-core architectures with given sources for parallel and vector executions:
cores and short-vectors. However, both compared methods are giving priority to the cores and postponing
vectorization. We claim that in order to have best execution time, both cores and short-vectors have to be
given enough importance. So, we try to find loop transformation proper for both cores and short-vectors at the
same time. In order to demonstrate our claim, we have compared the proposed method with two main research
of the filed in two different scenarios: (1) at first, we have executed the results of the compared methods
without any changes on the given hardware. In this scenario both of the compared methods have used only
cores for execution of the benchmarks (Fig. 4.1 shows the execution times related to the this case), and (2) in
order to also use short-vectors as a postponed transformation (exactly as the original intention of the compared
methods), after getting results of compared methods, auto vectorization of the GCC compiler have enabled by
using -O3 flag. -O3 flag of GCC not only enables auto vectorization but also it enables the highest level of safe
optimizations in the compiler. By this way, both cores and short-vectors are used.

Figure 4.4 shows execution time of the real benchmarks with -O3 flag enabled. As it is obvious, again our
proposed method is far superior to sequential, Pluto and Parsa et al. methods which are optimized by -O3
flag. In all four scenarios of both real and synthetic benchmarks, the execution time of the proposed method is
less than the other methods. So, the experiments demonstrate that the PVL applies both parallelization and
vectorization better than others. Also, experiments support the claim that both cores and short-vectors have
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Fig. 4.1. Speedup of PVL (the proposed method) over sequential programs on Intel Dual Core CPU E2200 @ 2.20GHz CPU.

Fig. 4.2. Speedup of PVL (the proposed method) over sequential programs on Intel Core2 Quad CPU Q6600 @ 2.40GHz CPU.

to be given enough importance and also transforming schema of the PVL for modern multicore architectures is
better that Pluto, and Parsa et al. approach.

Figure 4.5 shows the speedup of the Pluto, Parsa et al. approach, and the PVL over sequential programs on
two different systems with/without -O3 flag of the GCC compiler. In both sets of real and synthetic benchmarks,
the speedup of the PVL is higher than the speed up of the Pluto, and Parsa et al. method. The average of
the achieved speedup for the PVL (proposed method), Pluto, and Parsa et al. method over sequential in two
systems with/without -O3 flag is as Table 4.4.

Figure 4.6 shows the improvement in execution time of the PVL (proposed method) over Pluto, and Parsa
et al. method. Average improvement percentage in execution time of PVL over Pluto, and Parsa et al. method
is as Table 4.5.

5. Conclusion. This paper discusses the idea of parallelizing and vectorizing nested loops on multicore
architectures. Because executing loops on cores and on SIMD units demand different necessities, at first, we
have described these characteristics and then, our proposed method tries to find proper loop transformation
using polyhedral model in order to achieve three objectives: (1) parallelize proper dependences-free loop in
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Fig. 4.3. Execution time of the sequential program, Pluto, the Parsa et al. method and the PVL (proposed method) on Intel
Dual Core CPU E2200 @ 2.20GHz and Intel Core2 Quad CPU Q6600 @ 2.40GHz systems. (a) Execution of benchmarks set
one on Intel Dual Core CPU E2200 @ 2.20GHz system, (b) Execution of benchmarks set two on Intel Dual Core CPU E2200 @
2.20GHz system, (c) Execution of benchmarks set one on Intel Core2 Quad CPU Q6600 @ 2.40GHz system, and (d) Execution
of benchmarks set two on Intel Core2 Quad CPU Q6600 @ 2.40GHz system

Table 4.4

The average speedup achieved by different methods

PVL (proposed method) Pluto Parsa et al. method
E2200 without -O3 6.7 2.0 1.3
E2200 with -O3 8.2 3.2 1.3
Q6600 without -O3 9.2 3.5 1.9
Q6600 with -O3 8.9 4.6 1.8

Table 4.5

The average improvement in execution time over Pluto, and Parsa et al. method

Improvement over Pluto(%) Improvement over Parsa et al. method (%)
E2200 without -O3 63.6 68.6
E2200 with -O3 61.3 64.8
Q6600 without -O3 57.8 68.8
Q6600 with -O3 52.3 62.7
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Fig. 4.4. Execution time of the sequential program, Pluto, the Parsa et al. method, and the PVL (proposed method) on Intel
Dual Core CPU E2200 @ 2.20GHz and Intel Core2 Quad CPU Q6600 @ 2.40GHz systems with -O3 flag enabled. (a) Execution
of benchmarks set one on Intel Dual Core CPU E2200 @ 2.20GHz system with -O flag enalbed, (b) Execution of benchmarks set
two on Intel Dual Core CPU E2200 @ 2.20GHz system with -O3 flag enabled, (c) Execution of benchmarks set one on Intel Core2
Quad CPU Q6600 @ 2.40GHz system with -O3 flag enabled, and (d) Execution of benchmarks set two on Intel Core2 Quad CPU
Q6600 @ 2.40GHz system with -O3 flag enabled

the cores, (2) vectorize dependence-free loop which has contiguous data in the memory in the short-vectors
within each core, and (3) improve data locality of the loops. After applying the transformation to the loop
nest, intrinsic vector codes are generated to the innermost vectorizable loop using the proposed approach. Since
data dependences are unavoidable in programs and they have to be satisfied as long as we want to preserve the
semantic of programs, while looking for proper transformation using proposed method, we try to satisfy data
dependences in the middle loops, as much as possible.

Finally, to achieve the peak performance of different hardware architectures, concentrating on both cores
(outer parallelization) and data locality is not sufficient. Nowadays, widely available vector units are critical
to achieving this peak performance in modern architectures. Thus, the vectorization stage should not be left
to the post-transformation stage and it should be used simultaneously beside outer parallelization and data
locality improvements. Although the result of the proposed method is significantly better than the state-of-the-
art compiler Pluto and also the result of Parsa et al. [22], the result can be improved further by using cache
configurations of the underlying system, loop tiling, and considering temporal locality.

Acknowledgments. We would thank Nasrin Nasrabadi and Ali A. Noroozi for their precious helps.
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Fig. 4.5. Speedup of Pluto, the Parsa et al. method and the PVL (proposed method) over sequential program on two core and
4 core systems. (a) Intel Dual Core CPU E2200 @ 2.20GHz system without -O3 flag, (b) Intel Dual Core CPU E2200 @ 2.20GHz
system with -O3 flag enabled, (c) Intel Core2 Quad CPU Q6600 @ 2.40GHz system without -O3 flag, and (d) Intel Core2 Quad
CPU Q6600 @ 2.40GHz system with -O3 flag enabled
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