
Scalable Computing: Practice and Experience

Volume 18, Number 2, pp. 151–160. http://www.scpe.org

DOI 10.12694/scpe.v18i2.1287
ISSN 1895-1767
c⃝ 2017 SCPE

TOWARDS HPC-EMBEDDED.

CASE STUDY: KALRAY AND MESSAGE-PASSING ON NOC

PEDRO VALERO-LARA∗, EZHILMATHI KRISHNASAMY†, AND JOHAN JANSSON ‡

Abstract. Today one of the most important challenges in HPC is the development of computers with a low power consumption.
In this context, recently, new embedded many-core systems have emerged. One of them is Kalray. Unlike other many-core
architectures, Kalray is not a co-processor (self-hosted). One interesting feature of the Kalray architecture is the Network on Chip
(NoC) connection. Habitually, the communication in many-core architectures is carried out via shared memory. However, in Kalray,
the communication among processing elements can also be via Message-Passing on the NoC. One of the main motivations of this
work is to present the main constraints to deal with the Kalray architecture. In particular, we focused on memory management
and communication. We assess the use of NoC and shared memory on Kalray. Unlike shared memory, the implementation of
Message-Passing on NoC is not transparent from programmer point of view. The synchronization among processing elements and
NoC is other of the challenges to deal with in the Karlay processor. Although the synchronization using Message-Passing is more
complex and consuming time than using shared memory, we obtain an overall speedup close to 6 when using Message-Passing
on NoC with respect to the use of shared memory. Additionally, we have measured the power consumption of both approaches.
Despite of being faster, the use of NoC presents a higher power consumption with respect to the approach that exploits shared
memory. This additional consumption in Watts is about a 50%. However, the reduction in time by using NoC has an important
impact on the overall power consumption as well.

Key words: Karlay, Embedded Architectures, High Performance Computing, Jacobi Method, OpenMP, Power Measurements.

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Advanced strategies for the efficient implementation of computationally intensive nu-
merical methods have a strong interest in industrial and academic community. In the last decade, we have lived
a spectacular growth in the use of many-core architectures for HPC applications [8, 14, 15, 9, 10]. However, the
appearance of other (low-power consumption) embedded many-core architectures such as Kalray [1] has created
new challenges and opportunities for performance optimization in multiple applications. In this work, we have
explored some of these new opportunities towards a supercomputing on a chip era.

Kalray integrates its own OS and is not in need of a co-processor as in the case of other many-core proces-
sors [4, 1]. In Karlay, highly expensive memory transfers from host main memory to co-processor memory are
not necessary, as in other architectures, such as NVIDIA GPUs [13] or Inel MIC [12]. Besides, this architecture
offers the possibility to communicate each of the processing elements via a Network on Chip (NoC) connection
composed by links and routers [4, 1]. Kalray has been previously used for video encoding and Monte Carlo
applications [2]. However, these works lack information of how to implement these applications and what are
the most efficient programming strategies and architectonic features to deal with our embedded processor. The
NoCs have been recently used as a level in-between the computing cores and shared memory [5, 17, 7]. The
NoCs in these systems can be configurable depending on the particular needs of the applications. However,
the NoC in Kalray is completely different. In Kalray, there are two different and independent inter-connectors,
one bus which connects each of the processing elements to shared memory and one NoC which connects the
different processing elements (clusters) among them.

We have chosen as a test case a widely known and extended problem, that is Jacobi method [16]. The main
motivation of this work is twofold. While, on one hand, this work presents the main challenges to deal with the
Kalray architecture. On the other hand, we present two different approaches to implement the communication
among the different processing elements of our Kalray processor, one based on using shared memory and other
based on using a Network on Chip, which works as interconnection among the set of processing cores. We
detail and analyze deeply each of the approaches, presenting theirs advantages and disadvantages. Moreover,
we include measurements for power consumption in both approaches.

∗Barcelona Supercomputing Center, Spain. (pedro.valero@bsc.es).
†Basque Center for Applied Mathematics (BCAM), Bilbao, Spain (ekrishnasamy@bcamath.org.)
‡Basque Center for Applied Mathematics (BCAM), Bilbao, Spain, and KTH Royal Institute of Technology, Stockholm, Sweden

(jjansson@bcamath.org).

151

152 P. Valero-Lara, E. Krishnasamy, J. Jansson

Fig. 2.1. Kalray MPPA many-core (left) and compute cluster (righ) architecture [2].

This paper is structured as follows. Section 2 briefly introduces the main features of the architecture at
hand, Kalray. Then, we detail the techniques performed for an efficient implementation of the Jacobi method
on Kalray processor in Section 3. Finally, In Section 4, it is carried out the performance analysis of the proposed
techniques in terms of consuming time, speed-up and power consumption. At the end of this work, we outline
some conclusions.

2. Kalray Architecture. Kalray architecture [2] is an embedded many-core processor. It integrates 288
cores on a single 28 nm CMOS chip with a low power consumption per operation. We have 256 cores divided
into 16 clusters which are composed by 16+1 cores each. 4 quad-core I/O subsystems (1 core per cluster)
are located at the periphery of the processing array (Figure 2.1-left). They are used as DDR controller for
accessing to up to 64GB of external DDR3-1600. These subsystems control a 8-lane Gen3 PCI Express for a
total peak throughput of 16GB/s full duplex. The 16 compute clusters and the 4 I/O subsystems are connected
by two explicitly addressed Network on Chip (NoC) with bi-directional links, one for data and the other for
control [2, 3]. NoC traffic does not interfere with the memory buses of the underlying I/O subsystem or compute
cluster. The NoC is implemented following a 2-D torus topology.

The compute cluster (Figure 2.1-right) is the basic processing unit of our architecture [2]. Each cluster
contains 16 processing cores (C0, C1, C2, . . . , C15 in Figure 2.1-right) and one resource management (Syst.
Core in Figure 2.1-right) core, a shared memory, a direct memory access (DMA) controller, a Debug & System
Unit (DSU), and two routers, one for data (D-NoC) and one for control (C-NoC). The DMA is responsible to
transfer data among shared and the NoC with a total throughput of 3.2GB/s in full duplex. The shared memory
compromises 2MB organized in 16 parallel banks, and with a bandwidth of 38.4 GB/s. The DSU supports the
debug and diagnosis of the compute cluster.

Each processing or resource management core is a 5-way VLIW processor with two arithmetic and logic
units, a multiply-accumulate & floating point unit, a load/store unit, and a branch & control unit [2]. It enables
up to 800MFLOPS at 400MHz, which supposes almost 13 GFLOPS per cluster and almost 205GFLOPS in total
by using the 16 clusters. These five execution units are connected to a shared register file which allows 11 reads
and 4 writes per cycle. Each core is connected to two (data & instruction) separate 2-way associate caches
(8KB each).

Kalray provides a software development kit, a GNU C/C++ & GDB development tool for compilation
and debugging. Two programming models are currently supported. A high level programming model based
on data-flow C language called

∑
C [6], where programmers do not care about communication, only data

dependencies must be expressed. The other programming model supported is a POSIX-Level programming
model [4, 1]. It distributes on I/O subsystems the sub-processes to be executed on the compute clusters and
pass arguments through the traditional argc, argv, and environ variables. Inside compute clusters, classic
shared memory programming models such as POSIX threads or OpenMP pragmas are supported to exploit
more than one processing core. Specific IPC takes advantage of the NoC connection. Unlike

∑
C, the POSIX-

Towards HPC-Embedded. Kalray and Message-Passing on NoC 153

Algorithm 1 Jacobi OpenMP Algorithm.

1: jacobi(A,Anew,NX,NY)
2: float err;
3: #pragma omp parallel for
4: for int i = 1 → NY − 1 do

5: for int j = 1 → NX − 1 do

6: Anew[i ∗NX + j] = 0.25 ∗ (A[i ∗NX + (j − 1)] +A[i ∗NX + (j + 1)]
7: +A[(i− 1) ∗NX + j] +A[(i+ 1) ∗NX + j]);
8: err = maxf(err, fabs(Anew[i ∗NX + j]−A[i ∗NX + j]));
9: end for

10: end for

11: #pragma omp parallel for
12: for int i = 1 → NY − 1 do

13: for int j = 1 → NY − 1 do

14: A[i ∗NX + j] = Anew[i ∗NX + j];
15: end for

16: end for

Level programming model presents more important challenges from programmer side, however it allows us to
have more control on hardware and optimize both, communication and computation. In the present work, the
authors have followed the programming model based on POSIX.

3. Jacobi Method Implementation on Kalray. We have chosen as test case the Jacobi method [16].
This is a good example, which allows us to study and evaluate different strategies for communication. The
parallelization is implemented following a coarse-grained distribution of (adjacent) rows across all cores. This
implementation is relatively straightforward using a few OpenMP pragmas on the loops that iterate over the
rows of our matrix (see Algorithm 1).

One of the most important challenges in Kalray is the communication and memory management. To
address the particular features of Kalray architecture, we use the Operating System called NodeOs [1], provided
by Kalray. NodeOs implements the Asymmetric Multi-Processing (AMP) model. AMP takes advantage of the
asymmetry found in the clusters between the Resource Management Core (RMC) and the Processing Element
Cores (PEC). RMC runs the operating system (kernel and NoC routines) on the set of RM (single-core). PEC
are dedicated to run user threads, one thread per PEC. PEC can also call functions, such as syscall that are in
need of OS support, which are received and compute by RMC. When a PEC executes a syscall call, it sends
an event and it is locked until it receives an event from the RMC. This process is necessary to know that the
syscall has been processed. Data and parameters are exchanged using shared memory. We have two codes, one
executed by RMC (IO code) and other (cluster code) executed by PECs. The work is distributed following a
master/slave model that is well suited to Kalray architecture. The IO code is the master. It is in charge of
launching the code and sending data to be computed by slaves. Finally they wait for the final results. Otherwise,
the cluster code are the slaves. They wait for data to be computed and send results to IO cluster.

The POSIX-Level programming model of Kalray (NodeOs) allows us to implement the communication
among different clusters in two different ways. While shared memory (accessible by all clusters) is used for the
communication in the first approach (SM), in the second approach (NoC), we use channels (links) and routers.
For sake of clarify, we include several algorithms in which we detail the main steps of each of the approaches.
Algorithms 2 and 3 illustrate the IO and cluster pseudocodes for the SM approach and Algorithms 4 and 5 for
the NoC approach respectively.

The communication is implemented by using some specific objects and functions provided by NodeOS. Next,
we explain each of these objects and functions. The transfers from/to global/local memory are implemented via
portals. These portals must be initialized using specific paths (one path per cluster) as A portal in Algorithm 2.
Then, they must be opened (mppa open) and synchronized (mppa ioctl) before transferring (mppa pwrite in
Algorithm 2 and mppa aio read in Algorithm 3) data from/to global/local memory. The slaves are launched
from master via mppa spawn which include parameters and name of the function/s to be computed by cluster/s.

154 P. Valero-Lara, E. Krishnasamy, J. Jansson

Algorithm 2 Shared Memory I/O pseudocode.

1: const char ∗ cluster executable = ”mainCLUSTER”;
2: static float A[SIZE]; static float Anew[SIZE];
3: int mainIO(int argc , char ∗ argv[])
4: long long dummy = 0; long long match = −(1 << CLUSTER COUNT);
5: const char ∗ root sync = ”/mppa/sync/128 : 1”;
6: const char ∗A portal = ”/mppa/portal/”CLUSTER RANGE” : 1”;
7: const char ∗Anew portal = ”/mppa/portal/128 : 3”;
8: //−−OPENING FILES−−//
9: int root sync fd = mppa open(root sync,O RDONLY);

10: int A portal fd = mppa open(A portal, O WRONLY);
11: int Anew portal fd = mppa open(Anew portal, O RDONLY);
12: //−−PREPARE FOR RESULT−−//
13: status| = mppa ioctl(root sync fd,MPPA RX SET MATCH,match);
14: mppa aiocb t Anew portal aiocb[1] = {MPPA AIOCB INITIALIZER

15: (Anew portal fd, Anew, sizeof(Anew[0]) ∗ SIZE)};
16: mppa aiocb set trigger(Anew portal aiocb, CLUSTER COUNT);
17: status| = mppa aio read(Anew portal aiocb);
18: //−−LAUNCHING SLAVES−−//
19: char arg0[10], arg1[10];
20: const char ∗ argv[] = arg0, root sync,A portal, Anew portal, 0;
21: for int rank = 1 → CLUSTER COUNT do

22: sprintf(arg0, ”%d”, rank);
23: status| = mppa spawn(rank,NULL, cluster executable, argv, 0);
24: end for

25: // Wait for the cluster portals to be initialized.
26: status| = mppa read(root sync fd,&dummy, sizeof(dummy));
27: // Distribute slices of array A over the clusters.
28: for int rank = 0 → CLUSTER COUNT do

29: status| = mppa ioctl(A portal fd,MPPA TX SET RX RANK, rank);
30: status| = mppa pwrite(A portal fd, (A+ rank ∗ SIZE LOCAL)− (NX LOCAL ∗ 2),
31: sizeof(float) ∗ SIZE LOCAL, 0);
32: end for

33: // Wait for the cluster contributions to arrive in array |Anew|.
34: status| = mppa aio wait(Anew portal aiocb);
35: return status < 0;

The communication among cluster via links (NoC) is implemented by using of channel. Similar to the use of
portals, channels must be initialized using one path per channel (see C0 to C1 channel in Algorithm 2).

On the other hand, the synchronization is implemented by using of sync. They are used to guarantee that
some resources are ready to be used or cluster are ready to start computing (for instance, see mppa ioctl in
Algorithm 2, 3, 4 and 5).

In order to minimize the number of transfers among main and local memory (SM approach) as well as
among clusters through links (NoC approach), the matrix is divided into rectangular sub-blocks (Figures 3.1
and 3.2). In particular, the distribution of the workload and communication implemented in the NoC approach
avoid multi-level routing, connecting each of the cluster with its adjacent clusters via a direct link.

Although, the ghost cells strategy is usually used for communication in distributed memory systems [11],
we have used this strategy in Kalray processor to avoid race conditions among each of the sub-blocks assigned
to each clusters. The use of ghost cells consists of replicating the borders of all immediate neighbors blocks.
These ghost cells are not updated locally, but provide stencil values when updating the borders of local blocks.
Every ghost cell is a duplicate of a piece of memory located in neighbors nodes. To clarify, Figures 3.1 and 3.2
illustrate a simple scheme for our interpretation of the ghost cell strategy applied to both approaches, SM and
NoC, respectively.

Towards HPC-Embedded. Kalray and Message-Passing on NoC 155

Algorithm 3 Shared Memory CLUSTER pseudocode.

1: int mainCLUSTER(int argc, char ∗ argv[])
2: int i, j, status, rank = atoi(argv[0]);
3: const char ∗ root sync = argv[1], ∗A portal = argv[2], ∗Anew portal = argv[3];
4: float A[SIZE LOCAL], Anew[SIZE LOCAL]; long long slice offset;
5: slice offset = sizeof(float) ∗ (CHUNK ∗NX LOCAL+
6: ((rank − 1) ∗ (CHUNK − 1) ∗NX LOCAL));
7: // Each cluster contributes a different bit to the root sync mask.
8: long long mask = (long long)1 << rank;
9: //−−OPENING PORTAL−−//

10: int root sync fd = mppa open(root sync,O WRONLY);
11: int A portal fd = mppa open(A portal, O RDONLY);
12: int Anew portal fd = mppa open(Anew portal, O WRONLY);
13: //−−PREPARE FOR INPUT−−//
14: mppa aiocb tA portal aiocb[1] =
15: MPPA AIOCB INITIALIZER(A portal fd,A, sizeof(A));
16: status| = mppa aio read(A portal aiocb);
17: //−−UNLOCK MASTER−−//
18: status| = mppa write(root sync fd,&mask, sizeof(mask));
19: // Wait for notification of remote writes to local arrays |A|.
20: status| = mppa aio wait(A portal aiocb);
21: //−− JACOBIANCOMPUTE−−//
22: jacobi(A,Anew,NX LOCAL,NY LOCAL);
23: // Contribute back local array Anew into the portal of master array Anew.
24: status| = mppa pwrite(Anew portal fd,&Anew[NX LOCAL],
25: sizeof(Anew)− sizeof(float) ∗ 2 ∗NX LOCAL, slice offset);
26: mppa exit((status < 0)); return 0;

Figure 3.1 graphically illustrates the strategy followed by the SM approach. It consists of dividing the
matrix into equal blocks which are sent from main memory to local memory. To avoid race condition, each of
the blocks includes 2 additional rows (gray and white rows in Figure 3.1) which correspond to the upper and
lower adjacent rows of the block. These additional rows work as ghost-cell, which are only used in local memory.
The blocks transferred from local memory to global memory (Figure 3.1-right) do not include these additional
rows (ghost rows).

Fig. 3.1. Master (Global Memory) ↔ Slave (Local Memory) Communication.

Otherwise the communication among global and local memory is not necessary in the NoC approach. The
master (IO code) is only used for synchronizing. The synchronization is necessary at the beginning and at the
end of each Master code. I/O core and the rest of cores in each of the clusters must be also synchronized. In
particular the synchronization between IO core and computing cores (I/O− > C1 sync section in Algorithm 5)

156 P. Valero-Lara, E. Krishnasamy, J. Jansson

Algorithm 4 NoC I/O pseudocode.

1: const char ∗ global sync = ”/mppa/sync/128 : 1”;
2: const char ∗ IO to C0 sync = ”/mppa/sync/0 : 2”; . . .
3: const char ∗ C0 to C1 channel = ”/mppa/channel/1 : 1/0 : 1”; . . .
4: static const char ∗ exe[CLUSTER COUNT] = {”mainCLUSTER0”,
5: ”mainCLUSTER1”, . . .};
6: int mainIO(int argc, const char ∗ argv[])
7: // Global sync.
8: int ret, global sync fd = mppa open(global sync,O RDONLY);
9: long long match = −(1 << CLUSTER COUNT);

10: mppa ioctl(global sync fd,MPPA RX SET MATCH,match));
11: //−−IO TO C# SYNC−−//
12: int IO to C0 sync fd = mppa open(IO to C0 sync,O WRONLY);
13: int IO to C1 sync fd = mppa open(IO to C1 sync,O WRONLY); . . .
14: //−−LAUNCHING SLAVES−−//
15: for int i = 0 → CLUSTER COUNT do

16: mppa spawn(i, NULL, exe[i], argv, 0);
17: end for

18: // Wait for other clusters to be ready.
19: mppa read(global sync fd,NULL, 8);
20: // Write into I/O− > C# sync to unlock C# cluster.
21: mask = 1;mppa write(IO to C0 sync fd,&mask, sizeof(mask));
22: mppa write(IO to C1 sync fd,&mask, sizeof(mask)); . . .
23: //−−WAITING TO THE END OF CLUTERS EXECUTION−−//
24: for int i = 0 → CLUSTER COUNT do

25: ret = mppa waitpid(i,&status, 0);mppa exit(ret);
26: end for

is necessary to guarantee that there are no cluster reading into channels before the corresponding cluster has
opened the channel. After computing the Jacobi method in each of the clusters, some rows of the local blocks
must be transferred to/from adjacent clusters. The first row computed (white upper row C1 in Figure 3.2) must
be transferred to the upper adjacent cluster (C0) to be stored in the last row. Also, the last row computed
(gray lower row C1 in Figure 3.2) must be transfered to the lower adjacent cluster (C2) to be stored in the first
row. This pattern must be carried out in all clusters except the first and last clusters where a lower number of
data-transfers is necessary.

C0

C1

C2

C2(White)−>C1(Black)

C0(Black)−>C1(White)

C1(Black)−>C2(White)

C1(White)−>C0(Black)

Fig. 3.2. Pipeline (Bus) Communication.

4. Performance Study. In this section, we analyze deeply both approaches, SM and NoC, focusing on
communication, synchronization and computing separately. In order to find/focus on the performance of both
approaches, we have used a relatively small problem which can be fully stored in local memory.

Towards HPC-Embedded. Kalray and Message-Passing on NoC 157

Algorithm 5 NoC CLUSTER pseudocode

1: int mainCLUSTER1(int argc, char ∗ argv[])
2: float A[SIZE LOCAL], Anew[SIZE LOCAL];
3: // Open all the resources needed for transfers.
4: //Global sync.
5: int global sync fd = mppa open(global sync,O WRONLY);
6: // C1− > C2 channel.
7: int channel0 fd = mppa open(C1 to C2 channel, O WRONLY);
8: // C2− > C1 channel.
9: int channel1 fd = mppa open(C2 to C1 channel, O RDONLY);

10: // C1− > C0 channel.
11: int channel2 fd = mppa open(C1 to C0 channel, O WRONLY);
12: // C0− > C1 channel.
13: int channel3 fd = mppa open(C0 to C1 channel, O RDONLY);
14: // I/O− > C1 sync.
15: int IO to C1 sync fd = mppa open(IO to C1 sync,O RDONLY);
16: long long match = −(1 << 1/ ∗ We sync only with I/O cluster ∗ /);
17: mppa ioctl(IO to C1 sync fd,MPPA RX SET MATCH,match)
18: // Write into global sync to unlock I/O cluster.
19: long long mask = 1 << mppa getpid();
20: mppa write(global sync fd,&mask, sizeof(mask))
21: //−−WAIT FOR IO TO C1 SYNC−−//
22: mppa read(IO to C1 sync fd,NULL, 8);
23: //−−CLUSTERS COMMUNICATION−−//
24: // Write data for cluster 0.
25: mppa write(channel0 fd,&A[NX LOCAL ∗ (NY LOCAL− 2)], sizeof(float) ∗NX LOCAL);
26: // Read data from C0.
27: mppa read(channel1 fd,A, sizeof(float) ∗NX LOCAL);
28: // Read data from C2.
29: mppa write(channel2 fd,&A[NX LOCAL], sizeof(float) ∗NX LOCAL);
30: // Write data for cluster 2.
31: mppa read(channel3 fd,&A[NX LOCAL ∗ (NY LOCAL− 1)], sizeof(float) ∗NX LOCAL);
32: mppa exit(0);

Next we present the commands used to compile and launch both approaches: Compiling lines:
k1− gcc −O3 −std = c99 −mos = rtems io.c −o io app −lmppaipc
k1− gcc −O3 −std = c99 −fopenmp −mos = nodeos cluster.c −o cluster −lmppaipc
k1− create−multibinary −− cluster cluster −− boot = io app −T multibin
Launching line:
k1− jtag − runner −−multibinary multibin −− exec−multibin = IODDR0 : io app

The communication among I/O and computing cores in the NoC approach is more complex and it is in
need of a higher number of synchronizations. This causes a higher execution time with respect to the SM

approach, being almost 2.5× bigger (Figures 4.1 and 4.2). Note that we use a different vertical scaling in
each of the graphics illustrated in Figures 4.1 and 4.2. Despite of the overhead caused by a higher number of
synchronizations, the use of the NoC interconnection makes the NoC approach (Figure 4.2) about 55× faster
than the SM approach.

As expected the time consumed for computing the Jacobi method is equivalent in both approaches. The
time consumed by synchronization, communication and computing in the NoC approach is more balanced than
in the SM approach. This can be beneficial for future improvements, such as asynchronous communication.

Finally, we analyse the performance in terms of GFLOPS. First, we compute the theoretical FLOPS for the
Jacobi computation. The variant used in this study performs six flops per update (Algorithm 1). Therefore,
the theoretical FLOPS is equal to the elements of our matrix multiplied by six.

158 P. Valero-Lara, E. Krishnasamy, J. Jansson

 0

 5

 10

 15

 20

 25

Jacobian

G
lobal->Local

Local->G
lobal

Sync.

Total

 T
im

e
 (

m
s
)

Fig. 4.1. Time consumption for the SM approach.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Jacobian

1x-C
om

m
.

4x-C
om

m
.

1x-Sync.

4x-Sync.

Total

 T
im

e
 (

m
s
)

Fig. 4.2. Time consumption for the NoC approach.

In order to evaluate the overhead of each of the strategies, first, we show the GFLOPS achieved by the Jacobi
computation without the influence of the synchronization and communication (see Jacobian in Figure 4.3). It
achieves almost the peak of performance of our platform (GFLOPS-Peak in Figure 4.3). The computation of
the Jacobian method is exactly the same in both approaches (SM and NoC). Next, we include the overhead
of the communication. Although both approaches present a fall in performance when taking into account the
time consumed by the communication, the fall shown by the NoC approach is not so dramatic as the overhead
suffered by the SM approach (Figure 4.3).

The software development kit provided by Kalray allow us to measure the power consumption of our ap-
plications. This is done via this command:

k1− power −− k1− jtag − runner −−multibinary multibin −− exec−multibin = IODDR0 : io app

Executing our binary using k1-power we obtain the power achieved in terms of Watts. The average power
achieved by the NoC approach is about 8.508W , while the SM approach achieves an average of 5.778W in every
execution. This is almost a 50% more power when executing the NoC approach. However, the reduction in

Towards HPC-Embedded. Kalray and Message-Passing on NoC 159

 0

 50

 100

 150

 200

 250

G
FLO

PS-Peak

Jacobian

N
oC

SM

 G
F

L
O

P
S

Fig. 4.3. GFLOPS achieved by both approaches.

execution time obtained by the NoC approach has an important impact on the overall power consumed. Joules
are computed by following the next expression:

Joules = Watts× T ime

obtaining an overall consumption about 0.0047J and 0.16J for the NoC and the SM approaches respectively.
This is a 96% less of power consumed by the NoC approach.

5. Conclusions and Future Work. Embedded many-core architectures such as Kalray have emerged as
a new HPC platform to deal with the problem of the excessive power consumption.

In this work, we have presented two different approaches to implement the communication among the
processing elements of the Kalray architecture. Both approaches implement a ghost-cell strategy to avoid race
conditions among the different blocks assigned to each of the processing elements (clusters). This strategy has
been adapted to the particular features of our embedded processor and approaches, SM and NoC, to minimize
the number of transfers.

Although the communication via shared memory is more habitual and easier to implement on many-core
architectures, the particular features of the Kalray architecture, in particular the communication via Message-
Passing on NoC connection, offers a much faster alternative. Although, the use of NoC consumes more power,
the reduction in time makes this approach more efficient in terms of power consumption.

We plan to investigate other problems and more efficient strategies for memory management and data
distribution, such as the overlapping of communication and computing via asynchronous transfers. In particular,
the NoC approach could take advantage of the asynchronous communication as the time consumed by its major
steps is balanced.

Acknowledgments. This research has been supported by EU-FET grant EUNISON 308874, the Basque
Excellence Research Center (BERC 2014-2017) program by the Basque Government, the projects founded by the
Spanish Ministry of Economy and Competitiveness (MINECO): BCAM Severo Ochoa accreditation SEV-2013-
0323, MTM2013-40824 and TIN2015-65316-P. We acknowledge Research Center in Real-TIme & Embedded
Computing Systes - CISTER for the provided resources.

REFERENCES

[1] S. A. Kalray. Mppa accesscore posix progamming reference manual. 2013.
[2] B. Dupont de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne, P. Guironnet de Massas, F. Jacquet,

S. Jones, N. Morey Chaisemartin, F. Riss, and T. Strudel. A clustered manycore processor architecture for embedded

160 P. Valero-Lara, E. Krishnasamy, J. Jansson

and accelerated applications. In IEEE High Performance Extreme Computing Conference, HPEC 2013, Waltham, MA,
USA, September 10-12, 2013, pages 1–6, 2013.

[3] B. Dupont de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti. Guaranteed services of the noc of a manycore processor.
In Proceedings of the 2014 International Workshop on Network on Chip Architectures, NoCArc ’14, Cambridge, United
Kingdom, December 13-14, 2014, pages 11–16, 2014.

[4] B. Dupont de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager. Time-critical computing on a single-chip massively
parallel processor. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
March 24-28, 2014, pages 1–6, 2014.

[5] M. Dev Gomony, B. Akesson, and K. Goossens. Coupling tdm noc and dram controller for cost and performance opti-
mization of real-time systems. In 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pages 1–6,
March 2014.

[6] T. Goubier, R. Sirdey, S. Louise, and V. David. Σc: A programming model and language for embedded manycores. In
Algorithms and Architectures for Parallel Processing - 11th International Conference, ICA3PP, Melbourne, Australia,
October 24-26, 2011, Proceedings, Part I, pages 385–394, 2011.

[7] M. Monchiero, G. Palermo, C. Silvano, and O. Villa. Exploration of distributed shared memory architectures for
noc-based multiprocessors. Journal of Systems Architecture, 53(10):719 – 732, 2007. Embedded Computer Systems:
Architectures, Modeling, and Simulation.

[8] P. Valero, J.L. Sánchez, D. Cazorla, and E. Arias. A gpu-based implementation of the mrf algorithm in itk package.
The Journal of Supercomputing, 58(3):403–410, 2011.

[9] P. Valero-Lara. Accelerating solid–fluid interaction based on the immersed boundary method on multicore and gpu archi-
tectures. The Journal of Supercomputing, 70(2):799–815, 2014.

[10] P. Valero-Lara, F.D. Igual, M. Prieto-Mat́ıas, A. Pinelli, and J. Favier. Accelerating fluid–solid simulations (lattice-
boltzmann & immersed-boundary) on heterogeneous architectures. Journal of Computational Science, 10:249–261, 2015.

[11] P. Valero-Lara and J. Jansson. LBM-HPC an open-source tool for fluid simulations. case study: Unified parallel C
(UPC-PGAS). In Cluster Computing (CLUSTER), 2015 IEEE International Conference on, pages 318–321. IEEE, 2015.

[12] P. Valero-Lara, P. Nookala, F.L. Pelayo, J. Jansson, S. Dimitropoulos, and I. Raicu. Many-task computing on
many-core architectures. Scalable Computing: Practice and Experience, 17(1):32–46, 2016.

[13] P. Valero-Lara and F.L. Pelayo. Full-overlapped concurrent kernels. In Architecture of Computing Systems. Proceedings,
ARCS 2015-The 28th International Conference on, pages 1–8. VDE, 2015.

[14] P. Valero-Lara, A. Pinelli, J. Favier, and M. Prieto-Matias. Block tridiagonal solvers on heterogeneous architectures.
In Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications,
ISPA ’12, pages 609–616, Washington, DC, USA, 2012. IEEE Computer Society.

[15] P. Valero-Lara, A. Pinelli, and M. Prieto-Matias. Fast finite difference poisson solvers on heterogeneous architectures.
Computer Physics Communications, 185(4):1265 – 1272, 2014.

[16] D. M. Young. Iterative solution of large linear systems. 2003. Unabridged republication of the 1971 edition [Academic Press,
New York-London, MR 305568].

[17] H. Zhao, O. Jang, W. Ding, Y. Zhang, M. Kandemir, and M.J. Irwin. A hybrid noc design for cache coherence opti-
mization for chip multiprocessors. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12, pages
834–842, New York, NY, USA, 2012. ACM.

Edited by: Dana Petcu
Received: Dec 16, 2016
Accepted: Mar 26, 2017

