

### REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES

#### ANITHA MODI, PRIYANKA SHARMA, DEEPTI SARASWAT <sup>‡</sup> AND RACHANA MEHTA<sup>§</sup>

**Abstract.** The agriculture sector is subjected to constant challenge of yield deficit due to rising population, improper resource management and shrinking agricultural land. Advance yield estimates help in systematic planning to reduce such losses. However, prediction of accurate estimates is still an open challenge due to geographical diversity, crop diversity & crop area. Recently non-destructive approach has gained attention due to its robustness and provides easy availability of data from heterogeneous resources compared to its counterpart; destructive approach which is computational, resource intensive and hence less utilized. This paper conducts a detailed study on utilization of non-destructive approach to estimate yield taking into account, input feature, and methodology. We consider five major observations namely, data acquisition, pre-processing techniques, features, methodology, and result. Moreover, we summarize analysis of each observation, extract most prominent technique, the adopted methods, and finally recommends integration of different models that can be explored to improve accuracy.

Key words: Crop yield estimation, vegetation indices, counting, regression, segmentation, machine learning, deep learning

1. Introduction. Steep population growth has led to a rise in food demand over the last few decades. Undernourished and hunger counts have been consistently increasing as per FAO statistics [1]. Major agendas of the FAO included improving the quality and quantity and minimizing the losses of agricultural produce. Fig. 1.1(a) depicts the ratio of crop production to the population from the year 2015 to 2020, which shows an increasing trend, while crop production is not increasing as per yield requirement [2]. Fig. 1.1(b) depicts the year-wise production of major crops viz. Soyabean, Maize, Wheat and Rice [3]. Production losses and wastage is estimated to be about 600 million tons worldwide [4].

Accurate and advanced crop yield estimates are required for planning and gap analysis. This task involved obtaining potential and actual yield data of a particular crop. Potential yield  $y_P$  is obtained when a crop is grown in an ideal condition with optimal nutrient supply and an adapted environment without any stress [5]. Actual yield  $y_A$  is obtained when the crop is subjected to realistic conditions. The difference between potential and actual yield gap  $\delta y_G$  as shown in Equation 1.1.

$$\delta y_G = y_P - y_A \tag{1.1}$$

Destructive and non-destructive approaches were adopted to obtain actual yield value, which is still an open challenge. It depends on factors like regional crop cultivation techniques, climatic conditions, meteorological, physiological, growth factors, quality of the crop, etc. Several such factors were identified and categorized into qualitative and quantitative factors. Agrometeorological data like irrigation, soil data, climate, and soil nutrients were majorly incorporated into yield estimation models. Factors such as VI, LAI, and phenotype evapotranspiration were accommodated into quantitative data-oriented estimation models. There was a need to gather accurate agrometeorological data. Country-wise, meteorological and agricultural departments contributed to this task. These RS data obtained from the specialized sensor were also made available. The availability of diverse data led to various model designs ranging from traditional CCE to modern AI-based models. The survey focuses on the non-destructive approach adopted to calculate the yield  $y_A$ .

<sup>\*</sup>CSE Department, Nirma University(16extvphde159@nirmauni.ac.in).

<sup>&</sup>lt;sup>†</sup>Samyak Infotech, Ahmedabad, India. (drpriyankasharma.ai@gmail.com).

<sup>&</sup>lt;sup>‡</sup>CSE Department, Nirma University(deepti.saraswata@nirmauni.ac.in).

<sup>&</sup>lt;sup>§</sup>CSE Department, Nirma University(rachana.mehta@nirmauni.ac.in).

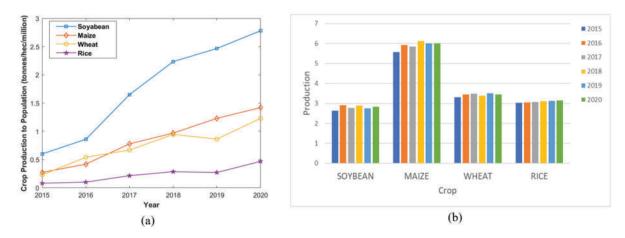


Fig. 1.1: (a) Crop production versus population (b) Year-wise crop production

| Ref       | Summary                                            | Data     Model       A     B     C     D     1     2     3 |              |              | əl           |              |              |              |              |              |
|-----------|----------------------------------------------------|------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| nei       | Summary                                            | Α                                                          | В            | С            | D            | 1            | 2            | 3            | 4            | 5            |
| [6]       | RS with regression to estimate yield               |                                                            | $\checkmark$ | $\checkmark$ |              |              | $\checkmark$ |              | $\checkmark$ |              |
| [7]       | ML algorithms along with RS data                   |                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |              | $\checkmark$ |
| [8]       | Brief overview of ML yield model                   | $\checkmark$                                               |              |              |              |              |              | $\checkmark$ | $\checkmark$ |              |
| [8]       | Discussed ML & RS integration                      |                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |              |
| [10]      | ML applicability in yield estimation with climatic |                                                            | $\checkmark$ | $\checkmark$ |              |              |              |              | $\checkmark$ |              |
|           | parameters as input                                |                                                            |              |              |              |              |              |              |              |              |
| [12]      | Summarized statistical and simulation models       |                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |              |
| [13]      | DL and counting based model                        | $\checkmark$                                               |              |              |              |              |              | $\checkmark$ |              | $\checkmark$ |
| [14]      | A combination of ML and DL algorithms with ma-     |                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ |
|           | jor focus on ML                                    |                                                            |              |              |              |              |              |              |              |              |
| [15]      | DL and image-based yield                           | $\checkmark$                                               |              |              |              |              |              |              |              | $\checkmark$ |
| [16]      | ML with specific focus on palm oil yield           |                                                            | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ |              |
| Our paper |                                                    | $\checkmark$                                               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Table 1.1: Comparative study of yield estimation surveys with our survey

1.1. Scope of the survey. This section covers a summary of the existing review articles about yield estimation. Johnson *et al.*, considered popular ML models with ANN and regression, BP-ANN [6]. Chivasa *et al.*, conducted similar studies [7], using meteorological & environmental data and suggested to include RS data into ML model. Liakos *et al.*, reviewed application of ML into agricultural sector [8]. Chlingaryan *et al.* further explored RS with ML, stating the need for a feature-rich dataset and advanced ML algorithms [9]. Elavarasan and Vincent studied environment and climate data. They studied the applicability of unsupervised and supervised ML algorithms with climatic parameters [10]. Kamilaris & Prenafeta-Boldu explored DL architectures, and their applicability to sub-areas of precision agriculture was stated [11]. Brasso summarized statistical, and simulation models and Liu [12]. Fruit detection and localization using the counting technique to estimate was reviewed by Koirala *et al.*, [13]. Counting-based techniques was also studied by Maheswari *et al.*[15], Agrometeorological and RS by-products as input features was surveyed by Van Klompenburg *et al.*, [14]. Rashid *et al.* reviewed ML-based models along with their advantage and disadvantage [16] for palm oil prediction. A brief comparative study and our scope are summarized in Table 1.1

**1.2.** Contribution of the Survey. In this survey, a systematic review of yield estimation is presented. The entire paper collection is segregated into five different models based on the input data and methods. We

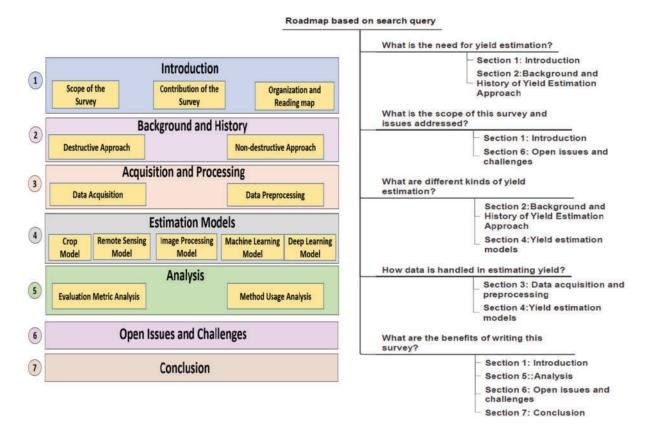


Fig. 1.2: (a): Organisation and reading map of the survey (b): Query based reading map

have highlighted the open issues and challenges faced in this research area. In line with the above statements, the major contributions made in our survey are enlisted as follows.

- A detailed description of data acquisition, preprocessing and taxonomy with comprehensive coverage of numeric and non-numeric data.
- Categorized each paper based on the input feature and the method and covered the growth of this field from traditional destructive approaches to modern non-destructive approaches.
- Presented overview of standard analysis to verify the results with their usage summary with the count. This provides an insight into the choice of evaluation metric and would aid in model designing.
- We have addressed research challenges and concluded with solution insights into open issues and challenges.

1.3. Organization and Reading Map. Standard sources such as Google Scholar, Scopus, ScienceDirect, SpringerLink and Web of Science were looked for papers. Data acquisition, preprocessing, input type, method and result analysis were significant observations that were used for selection. Based on these observations, the papers were grouped into five models: CM, RS, IP, ML and DL. Further, it was observed that the critical input features of one model were integrated into other models to obtain better results which is a significant inclusion in our survey.

A reading map consisting of the paper's complete visual layout and a query-based reading map to address readers' crucial questions is shown in Fig. 1.2. Table 1.2 list the abbreviations used in our survey.

2. Background and History of Yield Estimation Approach. Based on sampling schemes adopted, the approach is categorized into destructive and non-destructive approaches [17]. Different models were designed

| Abbrev. | Meaning                               | Abbrev. | Meaning                                 |
|---------|---------------------------------------|---------|-----------------------------------------|
| AI      | Artificial Intelligence               | NDVI    | Normalized Difference Vegetation In-    |
|         |                                       |         | dex                                     |
| ANN     | Artificial Neural Network             | NOAA    | National Oceanic and Atmospheric Ad-    |
|         |                                       |         | ministration                            |
| AVHRR   | Advanced Very High Resolution Ra-     | NRMSE   | Normalized Root Mean Square Error       |
|         | diometer                              |         |                                         |
| BP-ANN  | Back Propagation Artificial Neural    | RMSE    | Root Mean Square Error                  |
|         | Network                               |         |                                         |
| CCE     | Crop Cutting Experiment               | ROI     | Region of Interest                      |
| CM      | Crop Model                            | RRMSE   | Relative Root Mean Square Error         |
| CP-ANN  | Counter Propagation Artificial Neural | RS      | Remote Sensing                          |
|         | Networks                              |         |                                         |
| DL      | Deep Learning                         | RS      | Remote Sensing                          |
| DVI     | Difference Vegetation Index           | RVI     | Ratio Vegetation Index                  |
| EVI     | Enhanced Vegetation Index             | SKN     | Supervised Kohonen Networks             |
| FAO     | Food and Agriculture Organization     | SMLR    | Stepwise Multiple Linear Regression     |
| GI      | Greenness Index                       | SNN     | Semiparametric Neural Network           |
| HRV     | High Resolution Vertical              | SPOT    | French: Satellite Pour l'Observation de |
|         |                                       |         | la Terre                                |
| IP      | Image Processing                      | TCI     | Temperature Condition Index             |
| LAI     | Leaf Area Index                       | VCI     | Vegetation Condition Index              |
| MAE     | Mean Absolute Error                   | VHI     | Vegetation Health Indices               |
| MAPE    | Mean Absolute Percentage Error        | VI      | Vegetation Indices                      |
| ML      | Machine Learning                      | WDRVI   | Wide Dynamic Range Vegetation Index     |
| MODIS   | Moderate Resolution Imaging Spectro-  | WHR     | Weighted Histogram Regression           |
|         | radiometer                            |         |                                         |
| NAIP    | National Agriculture Imagery Program  | WOFOST  | WOrld FOod STudies                      |

Table 1.2: Abbreviations used in the survey

and experimented with for each approach, as shown in Fig. 1.3. Each model used a subset of data gathered from heterogeneous sources. Researchers have explored several methods ranging from traditional field surveys, and CCE [18] to modern DL [82] to provide a solution. A detailed discussion of these models and the methods adopted in each model is covered in the subsequent sections.

2.1. Destructive approach. The destructive approach means clearing a portion of the field for sampling or harvesting the crop to obtain estimates. The approach is further segregated into the pre-harvest and post-harvest models. Pre-harvest model provides yield estimates before actual harvest, such as CCE. A physical field examination with a collection of samples for analysis is done in CCE [20]. Yield is estimated and extrapolated to the entire crop region during sample analysis as illustrated in Fig. 1.3. Yield details are obtained from market records post-harvest. Both methods provide accurate estimates. However, this approach is resource intensive. A considerable workforce and micro-level planning are required for CCE site identification and market surveys. Site visits and market surveys in the post-harvest method are difficult due to inherent variations in market structure, geographical diversity, and biodiversity [21]. Further, estimates are available at the later stage or after harvest, which affects the planning. Hence, the destructive approach is less used and is not covered in our survey.

2.2. Non-destructive approach. Several visual and analytical models were designed and studied using data from heterogeneous sources such as past yield data, environmental, meteorological, physiological and visual data. This approach provided advanced estimates without undergoing any destructive process such as harvesting, hence the non-destructive method. Non-destructive offers advanced estimates without experiencing time-consuming market surveys, CCE site identification and experimentation at a macro level. But is highly

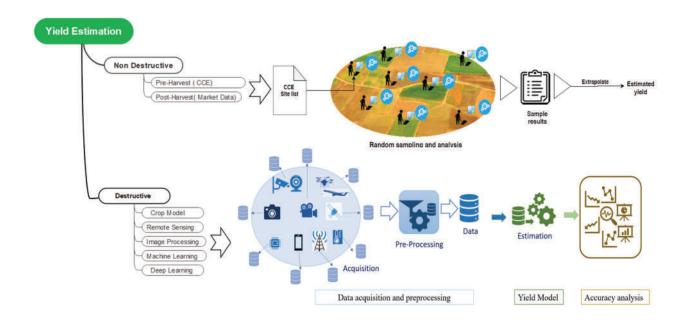


Fig. 1.3: Different yield estimation approaches

dependent on accurate data. The study was initialized with numerical data. However, the availability of data from heterogeneous sources and technological progress allowed researchers to explore the possibility of including them in yield models. The entire non-destructive approach is summarized into three generic phases as shown in Fig. 1.3.

**3.** Data acquisition and preprocessing. To estimate yield, data plays a vital role. This section covers the detailed taxonomy of data acquisition and processing. A brief specification of their usage in different models is also covered in this section.

**3.1. Data acquisition.** The data acquisition process involves data collection. Site-specific data are recorded using various devices. Gathered data is categorized into numeric & non-numeric. Numeric data is segregated into meteorological, environmental and economic [22], [23]. The data combines categorized or continuous data and provides qualitative and quantitative features that can be used as input. Temperature, humidity, sunshine, and precipitation are widely used meteorological data. Environmental parameters include soil properties, crop type, harvest information, acreage, phenology, & irrigation. Economic data includes market statistics such as trading prices and harvest information about crop gathering and production. Machine learning [39], [40], crop models [41] widely use this data for estimate prediction.

Non-numeric data include images and remote sensing data products. RGB images acquired from the camera are used in image processing and deep learning models [42]. Specialized cameras such as LED [43], thermal [44], and monocular high-resolution camera devices [45] were used to capture images. Other non-numeric data are acquired from remote sensors. The most widely used remote sensing products were NIR, R(Red), and B(Blue) bands to compute values like NDVI and EVI. Data was gathered from various satellites with remote sensors such as SPOT [46], MODIS [47], Terra and Aqua [48], Landsat [49] and IRS [20]. The computation of NDVI [50] and EVI [51] for MODIS data is shown in Equation 3.1 and Equation 3.2 where  $\beta$ NIR,  $\beta$ R,  $\beta$ B and G represents NIR, R, B band and gain factor respectively. A sample image was acquired from earth explorer, and VI were computed. Apart from these AVHRR NOAA [52], hyperspectral imagery [53] and multispectral images [39] were also used. Fig. 3.1 illustrates the taxonomy of data.

| Model | Dataset           | Type of data          | Preprocessing techniques                                     |
|-------|-------------------|-----------------------|--------------------------------------------------------------|
|       | source            |                       |                                                              |
| CM    | [66]-[69]         | Meteorological, envi- | Recalibration, ensemble, Kalman filter, calibration of       |
|       |                   | ronmental, economi-   | data using standard equations, atmospheric corrections,      |
|       |                   | cal                   | normalization                                                |
| RS    | [66], [70]-[72]   | Environmental, im-    | GA for optimization, radiometric corrections, atmo-          |
|       |                   | age                   | spheric corrections, NDVI, LAI, EVI calculation, spatial     |
|       |                   |                       | sampling, recalibration of parameters, spectral clustering,  |
|       |                   |                       | ROI extraction, manual detection of boundary mask.           |
| IP    | [43], [44], [59], | Image, economical     | Color conversion, grey scaling, shape analysis, segmen-      |
|       | [80]              |                       | tation, color, texture detection, edge detection, threshold- |
|       |                   |                       | ing, histogram processing, histogram equalization, blur-     |
|       |                   |                       | ring, laplacian, sobel, symmetry analysis                    |
| ML    | [73]-[76]         | Meteorological, envi- | Replacing missing values by mean, median, removal or         |
|       |                   | ronmental, economi-   | merging certain column data, normalization (Z-score,         |
|       |                   | cal                   | mean, standard deviation)                                    |
| DL    | [66], [76]-[79]   | Image, economical     | Pixel annotation, spectral processing, cropping ROI, an-     |
|       |                   |                       | notation, segmentation of pixel, augmentation, PCA, his-     |
|       |                   |                       | togram processing                                            |

Table 3.1: Data acquisition and preprocessing details

Several datasets are available as specified in the dataset source column of Table 3.1. Meteorological, environmental and economic data can be obtained from these sources. Entire data or a few subsets of features after required preprocessing can be used in CM, RS and ML models. IP and DL model mostly uses image data. Due to the expensive data gathering process, most of these data are unavailable as open access.

$$NDVI = \frac{\beta NIR - \beta R}{\beta NIR + \beta R}$$
(3.1)

$$EVI = G \frac{\beta NIR - \beta R}{\beta NIR + 6\beta R - 7.5\beta B + 1}$$
(3.2)

**3.2.** Data preprocessing. The data had to be preprocessed for several reasons, such as missing values, outliers, etc. Crop and ML models used numerical data such as climate, weather information, soil data, and meteorological data. These data were obtained from standard data sources released by country or state such as USDA, IOWA [55], Illinois [40], Minnesota university [56] etc. The data obtained from such sources might contain missing data or need to undergo recalibration. Data normalization techniques such as Z-score, mean, and standard deviations [22] were used to fix the values in the required range. Atmospheric corrections filters such as Kalman filters [55], [57] are also applied numeric data. RGB to HSV color conversion [42], reshaping [58], resizing, grey scaling [59] are some of the techniques applied to images. Apart from this, segmentation using colour, texture [59], and watershed algorithm [42] were also applied to separate ROI from the image. Preprocessing remote sensing data is essential due to the inherent complexity of data and its acquisition process. Recalibration [60], radiometric, atmospheric [46], spatial and spectral [53] corrections were applied before using the values. Since the image acquired spans a large area, ROI extraction, manual demarcation, and spatial sampling [61] were applied. GA [62] was used for optimal parameter selection on data gathered from sensors. Most deep learning models require an image dataset with a large sample size for model training. Augmentation techniques [63] helps to enhance dataset size. Remote sensing (RS) data was integrated into a deep learning model. However, the data had to be preprocessed using techniques such as histogram processing [64], pixel annotation [82]. RS data was segmented using spectral clustering [65] and ROI extraction. Table 3.1 summarizes the data acquisition techniques, a few dataset sources and preprocessing techniques widely adopted in the research work.

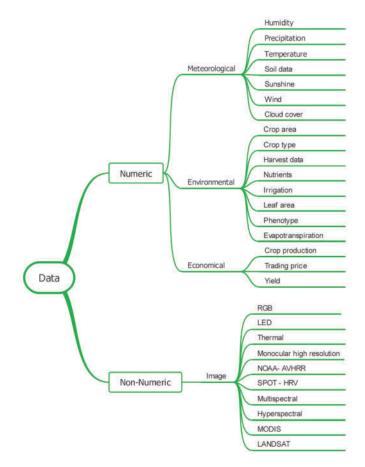


Fig. 3.1: Taxonomy of Data

4. Yield estimation models. Several methods are tried depending on the features extracted from different sources. The taxonomy of modes is shown in Fig. 4.1. Each technique is explained as it evolved in technological advancement.

4.1. Crop Models. The crop model estimation involves two mathematical models, viz. qualitative and quantitative. Crop models can be categorized as statistical or simulation-based, depending on the input. Statistical estimation models accept a set of agrometeorological data as an input into a statistical regressor to estimate yield. However, the past few decades have witnessed wide variations in climate and soil structures, impacting the estimated yield. Statistical models failed to incorporate this dynamic aspect. To overcome this, qualitative features such as soil, weather, phenology with other infield observations are incorporated into simulation models. Plant biomass and yield were generated as an output by these models. In [83], environment and growth-related parameters were used to estimate yield; the study was conducted at geographical sites with local weather station data. Experimental observations concluded that there could not be a global optimized model to estimate yield for all crops. Region-wise new models of existing models should be developed. Production and crop growth analysis was done in the WOFOST model [84]. The CERES-Maize water balance model experimented with [85] under varied weather and soil conditions in the Netherlands. Input data comprised crop species, soil profile, fertility, physical properties and historical crop yield. Initially, SUCROS [86] model studied growth under sufficient water supply and nutrients. This model did not consider growth inhibitors such as pests, diseases and weeds. Variants of this model integrated other data such as SPOT, aerial images and

Anitha Modi, Priyanka Sharma, Deepti Saraswat, Rachana Mehta

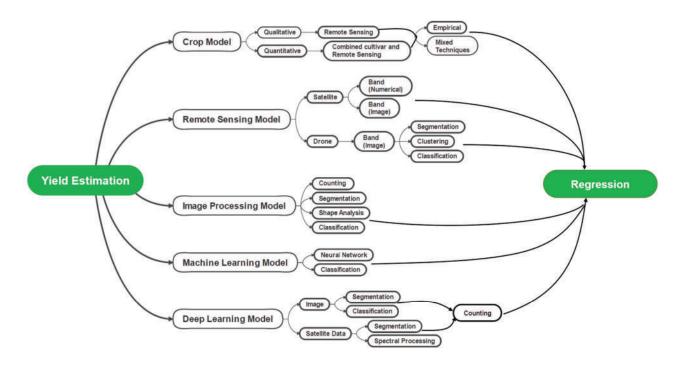


Fig. 4.1: Taxonomy of methods

remote sensing data to improve the accuracy of the model [60] [87].

A comparative study was conducted between SUCROS2 and SAIL [88] model. These models used SPOT and aerial photos to calculate leaf area; it is an early study of integrating remote sensing data into the crop model. Irrigation and Nitrogen related studies were conducted in designing the VSM model [89]. Plant density and mean daily solar parameters are included in it. Similar studies were conducted between CERES and CroySyst model in Indo-Gangetic plains. In [90] with CropSyst gives better results in the Indian subcontinent scenario. SBOCM [41] integrated geographical data from the weather station in China and the SVR method to estimate crop growth at various stages. Upscaling of AquaCrop model with RS data used to compute crop canopy and biomass was used in AquaCrop-RS [91] model for regional yield. Table 4.1 includes the summary of crop models.

4.2. RS model. Aerial and RS images were mainly used for land cover, crop classification, etc. However, certain features extracted from these images provided qualitative parameters which were integrated into yield models. The frequency of data capturing and a good resolution have allowed researchers to design a model to incorporate them. Several parameters could be calculated with the captured spectral band [92]. A subset of these calculated or calibrated values played a significant role in yield estimation models. The plant absorbs energy during photosynthesis as per plant physiology. IR and NIR bands capture this qualitative feature, indicating plant health and growth process. [61] stated the usage of RVI and NDVI data to estimate crop yield along with field survey data for the crop in India. NDVI calculated from Landsat and IRS-1A and IRS- 1B band assisted in CCE site identification leading to higher accuracy in the yield model [20]. Evapotranspiration (ET) data computed from (RS) was used in the SWAP model to recalibrate soil water content managing parameters which widely assisted in increasing yield [49]. A combination of soil moisture and LAI was integrated into the DSSAT-CSM model [55] which was unsuccessful due to discontinued satellite services. Early studies showed a linear correlation between GIN values acquired from Landsat in the US and yield estimates when integrated into the Agromet model [93]. In another paper greenness value obtained from Landsat and AVHRR data was used to generate yield estimates [94].

4.2.1. RS data used in other models. Recalibration of LAI using SPOT/ HRV data was used in the SAFY yield model [46]. In another work, LAI calculated from Landsat 7, and 8 and Sentinel-2A were assimilated into the WARM model [57]. WOFROST-PROSAIL model used KS reflectance algorithm with MODIS surface reflectance. The highest accuracy was achieved when KS reflectance values were used [47]. VI product of MODIS and LAI products was used in the CSM-CERES model for estimating yield with a conclusion that only half year product is sufficient to estimate yearly produce [62]. RS data was also used to estimate grassland biomass [95] in regions such as Ireland. Another product of MODIS, DVI was used at the national and further at the subnational level capturing extreme weather conditions [48].

The growing popularity of AI and ML led researchers to explore the possibility of using them to solve the yield estimation problem. SKN, CP-ANN and XY-F algorithms were used along with NDVI [23]. Spectral clustering of ROI into tomato and non-tomato was done using aerial images captured from a UAV. SOM and EM for clustering were used, and EM gave better results [65]. Linear regression with NDVI was used in [96]. VHI, VCI, and TCI computed weekly for almost two decades (1982- 2004) using NOAA-AVHRR were used in PCR [52] to estimate crop yield. Table 4.2 summarizes the RS yield model.

4.3. Image processing model. Several methods depending on the image source and the image acquisition mode were experimented with to obtain a yield estimate. Color, contrast, texture, and shape can be input features. Image processing techniques are used to extract these features from images. Usually, images are captured in broad daylight with maximum sun exposure using normal handheld cameras [42], [59] and mobile cameras [58]. Images captured under a controlled lighting environment using the specialized LED camera at night to avoid errors due to illumination effect [43] were also experimented. A different set of input images captured from different devices such as thermal camera [44] monocular high-resolution camera [45] was also tried. The manual image capturing was difficult due to various conditions such as large crop areas, repeated site visits at a specific time, etc. This process was automated using aerial vehicles and satellite payloads. Specialized vehicles such as UAV [65], [74], computer vision integrated autonomous vehicles [45] were used. A combination of thermal, multispectral and RGB image data captured and features extracted from them were used in another image processing-based yield model [74].

Color is an important feature that can be used in designing a yield model. Colour format conversions such as RGB to HSV were also explored to improve efficiency [97]. Experiments were conducted on trees with objects of high or meagre contrast [45], [42], [59], [98] against green foliage. The work in [99] discusses correlations such as count and weight, size and weight, and area and weight using a grape cluster as a case study. These correlations are essential while using count to estimate yield. Table 4.3 summarizes different yield models based on image processing.

**4.4. Machine Learning Model.** ML in AI is widely used for yield estimation. Widely used ML models include simple feed-forward neural network (NN) [101], back-propagation [22], [40] and NN.

Meteorological, environmental, and market pricing were widely used for training NN [22, 102]. SNN (a variant of NN) with panel regression using environmental features were also tried [102]. ENN gave better results when compared with BPN with different input features [22]. KNN, ANN [39], [102] used different parameters for estimation. C4.5 [104] was also used to focus on GUI design for illustrating climatic variations and estimation. GA was used for selecting optimal input features that could maximize yield estimation using BP-ANN [40]. SMLR with feed-forward NN was designed to model the relation between soil parameters, climate, and yield [101].

| $\operatorname{Ref}$ | Method                 | Input feature      | Output                      | Evaluation     | Summary                       | Open issues                       |
|----------------------|------------------------|--------------------|-----------------------------|----------------|-------------------------------|-----------------------------------|
|                      |                        |                    |                             | metric         |                               |                                   |
| [00]                 | SUCROS                 | SPOT, leaf area,   | Potential growth            | RMSE           | RS with data re-calibration   | Data availability con-            |
|                      |                        | atmospheric data   | under ideal condi-<br>tions |                | & modelled potential growth   | straints                          |
| [85]                 | Carbon                 | LAI, meteorologi-  | Water content,              | RMSE, $R^2$    | Growth related parameters     | Limited $\&$ missing              |
|                      | Balance +              | cal, soil          | expanded leaf,              |                | with water content, leaf ex-  | environment data,                 |
|                      | CERES-                 |                    | aerial phytomass            |                | pansion, phytomass            | Early work                        |
|                      | Maize water<br>balance |                    |                             |                | 5<br>1<br>1                   | 1                                 |
| [86]                 | SUCROS-87              | Sunlight, temper-  | Potential growth            | $\mathrm{R}^2$ | Pest, disease-free growth     | Potential model suit-             |
|                      |                        | ature, leaf area,  | rate                        |                | model                         | able under ideal con-<br>ditions. |
| [91]                 | AquaCrop-RS            | Soil, climate,     | Yield and other             | RMSE, RE,      | Integration of calculated     | Missing validation                |
|                      |                        | NDVI, irrigation,  | simulated units             | NRMSE          | canopy coverage, biomass      | with the latest data.             |
|                      |                        | canopy coverage,   |                             |                | from RS data into model.      |                                   |
|                      |                        | biomass            |                             |                |                               |                                   |
| [41]                 | SBOCM                  | Meteorological     | Rice develop-               | RMSE, RE       | Estimates 1-year rice pro-    | Missing economic pa-              |
|                      |                        | database of        | ment, Rice Yield            |                | ductions with meteorologi-    | rameters                          |
|                      |                        | China.             |                             |                | cal RS data                   |                                   |
| [55]                 | EnKF-                  | Soil moisture,     | Yield with differ-          | R, MBE,        | Inclusion soil moisture, leaf | Discontinued satel-               |
|                      | DSSAT-                 | yield, weather,    | ent data assimila-          | RMSE           | area, data acquired from re-  | lite & data unavail-              |
|                      | CSM-Maize              | leaf area          | tion                        |                | mote sensing                  | ability                           |
| [00]                 | CERES -                | Weather, soil,     | Status of crop              | MAE, RMSE      | Yield model comparison        | Geographical con-                 |
|                      | Wheat and              | plant phenotype    | and soil, Growth,           |                | with increasing nitrogen      | straints and location             |
|                      | CropSyst               |                    | Environment and             |                | supply                        | dependency                        |
|                      |                        |                    | stress                      |                |                               |                                   |
| [89]                 | VSM                    | Irrigation, Nitro- | Potential yield of          | $ m R^2$       | Yield model with minimum      | Missing important                 |
|                      |                        | gen                | rice grains and             |                | input parameters              | environment data                  |
|                      |                        |                    | biomass                     |                |                               |                                   |
| [87]                 | SUCROS2                | SPOT, photos,      | Potential yield             | RRMSE          | Integration of RS and aerial  | Model complexity                  |
|                      | and SAIL               | atmospheric data   | with and without            |                | photos into the model         | and data acquisition              |
|                      |                        |                    | assimilation.               |                |                               | difficulty.                       |

Table 4.1: Summary of crop model

| model      |
|------------|
| of RS      |
| Summary    |
| Table 4.2: |

| Ref  | Method                                                        | Band                                 | DA                                         | Bes                              | Period                      | Outnut                                              | ΕM                                          | Summ                                                             | 0.L                                                        |
|------|---------------------------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------|-----------------------------|-----------------------------------------------------|---------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|
| [93] | Linear re-                                                    | Landsat                              | GIN data                                   | 10m                              | 9 day cy-                   | Estimated & $ob-$                                   | Yield                                       | Integrated GIN                                                   | Delayed yield                                              |
|      | gression                                                      | Spectral<br>Band                     | computed                                   |                                  | cle: 1978-<br>79            | served yield dif-<br>ference                        | differ-<br>ence                             | & Agromet model                                                  | data generation.                                           |
| [94] | Linear re-<br>gression                                        | GI from<br>Landsat<br>NOAA-<br>AVHRR | Landsat<br>NOAA-6<br>AVHRR<br>data         | 1 km                             | 1981 year<br>data           | linear relation<br>between GI &<br>yield            | Я                                           | Study of yield<br>and GI                                         | Early work.<br>Missing other<br>RS parameters              |
| [20] | Linear re-<br>gression                                        | Radiance<br>in NIR<br>and R          | IRS 1A,<br>1B Land-<br>sat LISS-<br>sensor | Not<br>consid-<br>ered           | 22 days                     | CCE site & yield estimation                         | R, SE                                       | CCE site and<br>yield using RS<br>data                           | Limited inputs<br>and no crop<br>phenology                 |
| [49] | SWAP with<br>GA for as-<br>similation                         | ETM+<br>sensor 8<br>bands            | Landsat7<br>ETM+<br>images                 | Not<br>speci-<br>fied            | Feb 4 &<br>March 8,<br>2001 | Yield under irri-<br>gation scenarios               | Yield<br>differ-<br>ence                    | RS with CM,<br>yield with dif-<br>ferent irrigation<br>scenarios | Missing environ-<br>mental data                            |
| [52] | PCR with<br>VHI, VCI<br>and TCI                               | AVHRR,<br>NOAA<br>GVI, NIR,<br>IR    | NOAA<br>AVHRR                              | Not<br>men-<br>tioned            | 1 week (23<br>yrs)          | Yield compared<br>with USDA data                    | ${ m MAE}, { m RMSE}, { m R}^2$             | Used NOAA<br>AVHRR data                                          | Large areas<br>without much<br>geographical<br>variations. |
| [62] | CSM-<br>CERES<br>maize with<br>LAI & VI                       | Blue,<br>Green and<br>NIR            | MODIS                                      | 1Km                              | 16 days                     | Included VI and<br>LAI data as pa-<br>rameters      | RMSE                                        | Showed half year<br>values are suffi-<br>cient                   | Discontinued<br>satellite and<br>cloud contamina-<br>tion  |
| [23] | Ortho-<br>rectification,<br>reflectance<br>& calibra-<br>tion | Green,<br>Red, NIR                   | MODIS                                      | 30m                              | 8 day                       | Estimate soil<br>properties                         | Accu-<br>racy                               | RS, ML integra-<br>tion                                          | No environ-<br>mental data &<br>generic study              |
| [65] | Spectral<br>clustering<br>Spatial seg-<br>mentation           | Red Green<br>Blue                    | UAV                                        | NA                               | AA                          | Matured stage<br>detection                          | Recall<br>Preci-<br>sion, F<br>mea-<br>sure | Detected green<br>and red toma-<br>toes effectively.             | Missed counting<br>and calibration<br>of results           |
| [95] | MLR, ML<br>ANN and<br>ANFIS                                   | Blue,<br>Green and<br>NIR            |                                            | $250\mathrm{m},$ $500\mathrm{m}$ | 8 day                       | VI values and<br>raw band values                    | ${ m RMSE}{ m R^2}$                         | Statistical & ML were used for estimation                        | Dataset size,<br>Data quality                              |
| [46] | Linear re-<br>gression                                        | Red, IR,<br>Green,<br>MIR            | SPOT 4,5                                   | 5:10m,<br>4:20m                  | 21 days                     | Correlation of es-<br>timated & mea-<br>sured yield | ${ m RMSE}{ m R^2}$                         | CM with LAI<br>from SPOT                                         | Data availability,<br>cloud cover & re-<br>calibration     |

| Ket.  | Method           | $\operatorname{Band}$                       | D.A.       | $\mathbf{Res.}$ | $\mathbf{Period}$ | Output             | EM               | Summ.                   | 0.I.               |
|-------|------------------|---------------------------------------------|------------|-----------------|-------------------|--------------------|------------------|-------------------------|--------------------|
| [96]  | Linear re-       | $\operatorname{Red}$ , $\operatorname{NIR}$ | Terra      | $30 \mathrm{m}$ | 8 day             | Yield estimated    | RMSE             | Estimates for 7 Missing | Missing phys-      |
|       | gression         |                                             | MODIS &    |                 |                   | compared with      |                  | crops with an-          | iological $\&$     |
|       |                  |                                             | Landsat    |                 |                   | USDA data          |                  | nual variations         | environmental      |
|       |                  |                                             | 5,7        |                 |                   |                    |                  |                         | data               |
| [57]  | Use of LAI       | Not men-                                    | Landsat    | $30\mathrm{m}$  | 2014 - 2016       | Estimates with     | MAE              | RS(LAI) used in         | Recalibration      |
|       | into WARM        | tioned                                      | 7,8 and    |                 |                   | & without use of   | RRM-             | WARM model              |                    |
|       | rice model       |                                             | sentinel-  |                 |                   | LAI data           | SE               | gave better             | study of in-field  |
|       |                  |                                             | 2A         |                 |                   |                    |                  | results                 | yield variation    |
| [47]  | MODIS,           | MODIS: 1-                                   | MODIS      | $30 \mathrm{m}$ | 8 days            | Assimilated        | RMSE             | RS with syn-            | Getting optimal    |
|       | Landsat &        | $7  \mathrm{band}$                          | and Land-  |                 |                   | results with dif-  | ${ m R}^2$       | thetic KS yield-        |                    |
|       | synthetic        |                                             | sat $5,$   |                 |                   | ferent reflectance |                  | ing better results      | calibration is     |
|       | KS into          |                                             | 8 re-      |                 |                   | products           |                  |                         | tedious            |
|       | WOFROST-         |                                             | flectance  |                 |                   |                    |                  |                         |                    |
|       | PROSAIL          |                                             |            |                 |                   |                    |                  |                         |                    |
| [48]  | Linear           | Red and                                     | Terra      | 1Km             | 2001-2917         | Winter yields      | R,               | Captured low            | Unable to in-      |
|       | regres-          | NIR band                                    | & Aqua     |                 |                   | with additional    | RMSE             | yields due to           | corporate other    |
|       | sion with        |                                             | satellites |                 |                   | low yields at      |                  | extreme weather         | weather extrem-    |
|       | DVI from         |                                             |            |                 |                   | extreme weather    |                  | conditions              | ity                |
|       | MODIS            |                                             |            |                 |                   | conditions         |                  |                         |                    |
| [100] |                  | NIR, R                                      | MODIS      | 231.7m,         | 8 day,            | Yield estimates    | RMSE,            | VI w                    | Suitable for rain- |
|       | ÷                |                                             |            | 463.3m          | 2000-2018         |                    | $\mathbf{R}^{2}$ | computed &              | fed region with    |
|       | V1 Irom<br>MODIS |                                             |            |                 |                   |                    |                  | used                    | high yield         |

# Anitha Modi, Priyanka Sharma, Deepti Saraswat, Rachana Mehta

| Ref.    | Method                                         | Device           | Dataset        | Output                                        | EM                | Summ.                          | 0.I            |
|---------|------------------------------------------------|------------------|----------------|-----------------------------------------------|-------------------|--------------------------------|----------------|
| [44]    | RGB conversion and                             | Thermal          | 120 images     | fruit diameter esti-                          | Differenc         | DifferenceThermal data for     | Missed hidden  |
|         | image detection                                | image camera     |                | mates & count                                 |                   | counting                       | objects        |
| [45]    | Segmentation, HSV                              | Monocular        | Single image   | Segmented object                              | Error             | Different acquisition          | Expensive      |
|         | with geo-tagging,                              | camera over      | for counting   | with counting to                              | (Differ-          | method                         | cannot han-    |
|         | counting                                       | autonomous       |                | estimate yield                                | ence)             |                                | dle object     |
|         |                                                | vehicle          |                |                                               |                   |                                | clusters.      |
| [59]    | Shape analysis, SVM                            | camera           | 100 random     | Count classified ob-                          | Accuracy          | Accuracy Classification $\&$   | Occlusion,     |
|         | & Segmentation                                 |                  | images         | ject                                          |                   | counting in outdoor            | illumination   |
|         |                                                |                  |                |                                               |                   | environment                    | were not       |
|         |                                                |                  |                |                                               |                   |                                | handled        |
| [98]    | Detection (radial                              | Camera           | Sample size    | Correlation between                           | $\mathbb{R}^2$    | Count, weight corre-           | Occlusion not  |
|         | symmetry), cluster-                            |                  | not specified  | count $\&$ weight after                       |                   | lation of grape clus-          | handled        |
|         | ing $\&$ counting                              |                  |                | harvest                                       |                   | ter                            |                |
| [43]    | Night image pixel                              | LED camera       | Tree:41 im-    | segmentation $\&$                             | Accuracy          | Accuracy Approach avoids illu- | Missing object |
|         | segmentation                                   | & night image    | ages: 141      | count                                         |                   | mination effects               | localization   |
| [26]    | HSV conversion,                                | Camera           | Tree:591       | Object detected,                              | Mean,             | Less error for green           | Complex pre-   |
|         | thresholding, his-                             |                  | Images:1182    | $\operatorname{count} \& \operatorname{time}$ | $\mathbb{R}^2$    | objects & green back-          | processing     |
|         | togram equalization,                           |                  |                |                                               |                   | ground                         |                |
|         | spatial filter Gaus-                           |                  |                |                                               |                   |                                |                |
|         | sian blur                                      |                  |                |                                               |                   |                                |                |
| [58]    | Canny edge detec-                              | Mobile cam-      | Dataset: 4300  | Classified ripe, semi-                        | $\mathbb{R}^2$    | Low cost, ML to com-           | Blurring of    |
|         | entatio                                        | era              | images         | ripe, unripe object $\&$                      |                   | pute yield                     | images during  |
|         | classification $\&$                            |                  |                | count                                         |                   |                                | capture        |
|         | counting                                       |                  |                |                                               |                   |                                |                |
| [42]    | HSV conversion,                                | camera           | Tree: 21 Im-   | Segmented object                              | $\mathbb{R}^2$    | Counting based algo-           | Single tree    |
|         | thresholding, color                            |                  | age: 84        | and count                                     |                   | rithm                          | was taken into |
|         | detection, watershed                           |                  |                |                                               |                   |                                | consideration  |
|         | segmentation, blob                             |                  |                |                                               |                   |                                | for the study  |
|         | counting                                       |                  |                |                                               |                   |                                |                |
| [74]    | Image stitching, geo-                          | RGB, ther-       | Single image   | Yield estimated using                         | $\mathbb{R}^{2},$ | Different features             | Complex and    |
|         | tagging with differ-                           | mal, multi-      | from each de-  | regresso                                      | RMSE              | into yield model               | expensive pro- |
|         | ent features                                   | spectral         | vice           |                                               |                   |                                | cess           |
| Ref.: R | Ref.: Reference, EM: Evaluation metric, Summ.: | n metric, Summ.: | Summarization, | Summarization, O.I.: Open Issues.             |                   |                                |                |

Table 4.3: Summary of image processing model

| Ref.  | Method                 | Dataset               | Output                | EM                               | Summary                   | Open issues                 |
|-------|------------------------|-----------------------|-----------------------|----------------------------------|---------------------------|-----------------------------|
| [63]  | R-CNN, ZF net,         | PASCAL-VOC            | Ground truth vs       | F1 Score                         | Augmentation was used     | Error in ground truth la-   |
|       | VGG16 Augmen-          |                       | count by network      |                                  | to enhance dataset size.  | belling & missed detect-    |
|       | tation: Flip, scale,   |                       |                       |                                  |                           | ing few in a cluster.       |
| 5     | 51                     | 2                     |                       | 100                              | 5<br>0<br>0               |                             |
| [54]  | S                      | MODIS multispec-      | Yield estimation      | RMSE                             | Integration of RS data    | Computationally com-        |
|       | Gaussian Process       | tral data             | through regression    | MAPE                             | into DL                   | plex with extensive         |
|       | pre-processing: His-   |                       |                       |                                  |                           | training & preprocessing    |
|       | togram generation      |                       |                       |                                  |                           | time                        |
| [106] | Modified Inception-    | Training: 24000 Test- | Linear regression     | MSE                              | The algorithm handled     | Synthetic images with       |
|       | Resnet A               | ing:100               | based on counting     |                                  | partially occluded image, | missing data for unripe     |
|       |                        |                       |                       |                                  | shadow, moderate over-    | objects                     |
|       |                        |                       |                       |                                  | lapping                   |                             |
| [64]  | Transfer learning      | MODIS                 | Regression NDVI,      | RMSE $R^2$                       | Transfer learning with    | Data-dependency, issue      |
|       | with LSTM, Pre-        |                       | Band modes            |                                  | RS data to estimate       | related to specific crop    |
|       | processing:Histogram   |                       |                       |                                  | yield                     | data availability           |
|       | & bin generation       |                       |                       |                                  |                           |                             |
| [53]  | Spectral processing,   | Hyperspectral cam-    | Field count vs esti-  | $\mathbb{R}^2$ , $\mathbb{R}MSE$ | Hyperspectral sensor      | Occlusion problem, com-     |
|       | tree detection, CNN    | era 494 tree images   | mated count           |                                  | data used in the deep     | plex model due to large     |
|       | for identification and |                       |                       |                                  | learning model            | number of bands             |
|       | counting               |                       |                       |                                  |                           |                             |
| [107] | DNN author de-         | Syngenta crop chal-   | Estimated yield,      | RMSE                             | Environment with geno-    | Complex model & hard        |
|       | signed                 | lenge 2018 dataset    | check yield and yield |                                  | type data were used for   | to get a biological insight |
|       |                        |                       | difference            |                                  | estimation                | testing hypothesis          |
| [82]  | CNN with semantic      | Image:40,             | Manual vs system-     | Precision                        | Resolves problems faced   | Considers only one side     |
|       | segmentation           | Patches:11096         | generated count       | $\operatorname{Recall}$          | in image processing       | of image. Multiple side     |
|       |                        | Testing: Image:4      |                       | F1-Score                         |                           | images may lead to dupli-   |
|       |                        | Patches:1500          |                       | Accuracy                         |                           | cate counting.              |
| [108] | DNN preprocessing:     | Author generated      | Regression: Random    | RMSEP,                           | Multimodal feature fu-    | Complex data gathering      |
|       | fusion of features     | thermal, multispec-   | forest, SVR, PLSR,    | $\mathrm{R}^2$                   | sion with data gath-      | and preprocessing tech-     |
|       | from multimodal        | tral and RGB images   | DNN-F1 & DNN-F2       |                                  | ered from multiple sen-   | niques. Compute inten-      |
|       | data                   |                       |                       |                                  | sors boarded on a UAV     | sive process.               |

Table 4.4: Summary of Deep Learning Model

72

# Anitha Modi, Priyanka Sharma, Deepti Saraswat, Rachana Mehta

The calendar day model against thermal was modelled to estimate yield in [103] as there were greater variations in temperature conditions. Within a year, spatial changes and weather were studied using BPNN [105]. Table 4.5 summarises various ML-based yield model.

| Ref   | Model      | Input features         | Evaluation        | Description                 | Open issues            |
|-------|------------|------------------------|-------------------|-----------------------------|------------------------|
|       |            |                        | $\mathbf{metric}$ |                             |                        |
| [40]  | BP-ANN     | Yield, weather, soil   | RMSE, Ac-         | Studied fertilizer & rain-  | Missing weather pat-   |
|       |            | details, phenology     | curacy            | fall with input parameter   | terns, history and re- |
|       |            |                        |                   | combinations                | gional data.           |
| [101] | NN, SMLR   | Soil data, yield, tem- | $\mathbb{R}^2$    | Quantifiable relations be-  | Overfitting & need     |
|       |            | perature, rain         |                   | tween climate, soil &       | more data on climate   |
|       |            |                        |                   | yield.                      |                        |
| [105] | BPNN       | 14 factors (site, to-  | RMSEP             | Used BPNN & major pat-      | Missing input feature  |
|       |            | pography, weather,     |                   | terns were captured         | selection technique    |
|       |            | soil)                  |                   |                             |                        |
| [103] | ANN, k-NN, | Growth, reproduc-      | Accuracy          | Calendar-oriented estima-   | Limited input fea-     |
|       | MR         | tive stage             |                   | tion                        | tures                  |
| [104] | C4.5       | Cloud, rainfall, tem-  | Average Ac-       | GUI for ease of usage. Cli- | Missing environmen-    |
|       |            | perature, yield        | curacy            | mate changes were a ma-     | tal data.              |
|       |            |                        |                   | jor factor                  |                        |
| [22]  | BPN, ENN,  | meteorological, envi-  | Error rate        | reduction in error rate     | Optimal architecture   |
|       | regression | ronmental, economi-    |                   |                             | was not fixed.         |
|       |            | cal                    |                   |                             |                        |
| [39]  | MLR, RF,   | Agrometeorological,    | RMSE,             | overall harvest with opti-  | Unbalanced & miss-     |
|       | SVM, K-NN, | RS, economical data    | MAER              | mal seed selection          | ing environmental      |
|       | ANN, WHR   |                        |                   |                             | data                   |
| [102] | SNN, Panel | parameters: environ-   | MSE               | climate change impact on    | Missing site-specific  |
|       | Regression | ment, economic, irri-  |                   | yield                       | data & warmer          |
|       |            | gation                 |                   |                             | climate conditions     |

Table 4.5: Summary of ML model

4.5. Deep learning model. DNN has gained attention for solving yield estimation problems through regression analysis. Clustering and segmentation architectures are also used along with regressors to identify or extract ROIs. The ROI's were further processed to estimate the count of objects being studied. These outputs were then fed to the regressor designed for yield estimation. Deep architectures need a large dataset with a high variance to train the network. Usually, augmentation techniques such as flip, scale, PCA augmentation were used to increase the dataset size [63]. A modified inception-ResNetA architecture was used to count ROI in the image with Adam optimizer and Xavier weight to initialize the network [106]. PASCAL-VOC data set was used to identify and count from the image to estimate against ground truth [63]. DNN was used by the winners of the Syngenta challenge 2018, wherein the data set provided was used to estimate corn yield [107]. CNN-based semantic segmentation with counting technique was also used [82]. Hyperspectral and multispectral images obtained from RS or specialized cameras were available for studies. The paper discussed a preprocessing technique in which multispectral data was processed, and histograms were generated. These histograms were fed to CNN, and LSTM was integrated with a GP. A combination of CNN, LSTM and GP was also tried in [54], [64]. In another approach, spectral processing and CNN for ROI identification were experimented with using hyperspectral image (HSI) [53]. Multimodal fusion of data from different sensors captured using a UAV experimented. The extracted features were concatenated and fed as input to DNN, which was used as a regressor to estimate yield [108]. Table 4.4 list the details of DL methods in crop yield estimation.

5. Analysis. The critical part of estimation is the analysis of model-generated output with actual data to ensure the correctness of estimates generated. This section covers the evaluation metric and methods that are widely used.

5.1. Evaluation Metric. The wide methods utilized in the literature for accuracy and performance analysis are RMSE,  $\mathbb{R}^2$ , RE and Accuracy. It was difficult to identify common evaluation metrics with benchmark values as different methods were used with different input parameters across different models. Example CM and RS models were used for rice yield estimation. However, RMSE, RE [41] MAE, RRMSE [57] and  $\mathbb{R}^2$  [89] with different output values were used for result analysis. This is an open issue that needs to be addressed. Hence, metric usage was considered in our study for various models. Fig. 5.1 shows the graphical representation of the metric evaluation usage across five different models considered in the survey. The most important metric having wide acceptance for evaluation has been kept initially. It also shows that the RMSE and  $\mathbb{R}^2$  are acceptable evaluation metrics for all five models.



Fig. 5.1: Percentage distribution of prominent evaluation metric across 5 yield models

5.2. Method usage. We have implemented ML techniques such as SVM, segmentation, classification, clustering, K-Means, KNN, LSTM, Random Forest, NN, DNN and CNN for yield estimation. These techniques are based on statistical analysis and regression. Regressors were used in all five models. SVM in CM, IP, ML model. Segmentation in RS, IP, DL model. Classification in IP, ML, DL model. Clustering in RS, IP, DL model. LSTM in RS, DL model. Random Forest and NN in RS, ML model. DNN and CNN in DL models. It is quite clear that regression-based methods are predominantly used for yield estimation. Fig. 5.2 shows detailed usage distribution of method used across all models.

6. Open issues and challenges. This section discusses the open issues and challenges of the yield estimation models. Specific issues are common to few models.

**6.1. Data related issues.** A major challenge is data availability. The unavailability of historical data to train or design the model is a significant issue [87]. National or global scale data gathering is essential to test the correctness of a model developed at the regional level [52]. Satisfying this requirement is difficult due to economic and government policies laid by nations. Hence, synthetic data are generated and used while designing and testing the estimation model. This may produce incorrect results over real data [106]. Further, RS depends on satellite services to gather the required data. Discontinuity of satellite services affects the model under design or deployment [62]. RS and ML models could provide better results compared to CM. However, these models

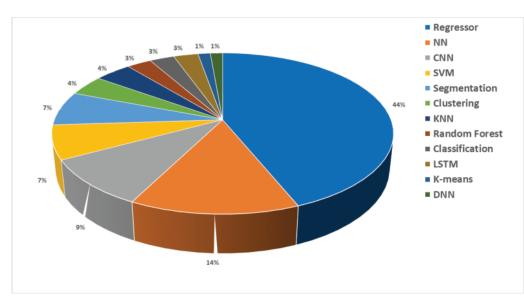


Fig. 5.2: Detailed usage distribution of methods across the entire survey

require large amount of data [95] and accurate calibration [46], [57]. Cloud cover and other weather extremities can affect the quality of data gathered [46] [48]. Another challenge is crop diversity due to geographical and environmental variations. It is difficult to obtain specific data on multiple variants of the individual crop, which is crucial for estimation [20] [57]. Expensive equipment is required for data gathering, which is a bottleneck for economical solutions [45]. Further, data gathering is subjected to several inherent problems such as blurring of images [58], limited [42], unbalanced [39], missing data [85] and complex capturing technique [108]. Certain IP, DL, and RS models provide better results. However, the data required by these models need to undergo a complex preprocessing stage which is resource intensive, and time-consuming [97] [74] [108].

**6.2.** Model related issues. Researchers designed several estimation models using different methods. The designed model is applicable with specific conditions or over specific crops due to inherent variations. Example RS model is suitable for rainfed crops and cannot be applied to irrigated lands on the specified ROI [100]. Also, there is no common model that fits all crops. Research is carried out around standard crops [17] such as wheat [90] [23], rice [41], cotton [80], few fruits [44] [45] [97] and vegetables [65]. This introduces a new issue of certain crops being eliminated as they are grown in limited regions or countries which needs to be addressed. Certain models such as RS, ML and DL depend on image data and focus on counting-based yield estimation [99] [44]. However, inherent image processing issues such as occlusion [53], illumination [59], duplicate count [82], georeferencing [45] [74], and object clusters [98] are few major challenges that affect the accuracy of prediction in these models. ML, RS, and CM need a careful selection of input features. No standard algorithms or methods can be used to perform this task [105]. DL and CM simulation version have high computational complexity due to complex input data [54] [53] [74]. Certain IP, DL, and RS models provide good results with certain inputs. However, it requires a resource-intensive and time-consuming preprocessing stage to generate these inputs [108] [85]. Also, these models require expensive equipment for data capturing, preprocessing and training [45] [74]. Insufficient or missing historical yield estimates gathered using traditional techniques [102] or market studies led researchers to fill the gap using synthetic data, which may not lead to an optimal model [47] [106].

**6.3.** Analysis related issues. Count and weight are the major representation of yield value. CM, RS [46] and ML models produce weight-based results [93], while image processing, RS (image) and deep learning models provide counting based results [63] [99] [44]. A single model cannot handle both representations. Further, different models are designed to solve estimation problems for a particular crop. Researchers have used different evaluation metrics and input parameters to solve the problem. For example, CM and RS models are used to

estimate rice yield. However, different evaluation metrics with different result values were used for result verification as per their design [41][57][89]. Hence, it isn't easy to establish a common evaluation metric with benchmark values.

7. Conclusion. The paper summarizes non-destructive approaches designed to estimate crop yield. Different models were developed based on input data and the methodology adopted. Statistical and simulation crop models were less researched as they could not incorporate various dynamic features effectively. The qualitative by-products of RS, such as NDVI, EVI, and DVI data, were extensively used in the crop and ML model to improve the accuracy of the model. Clustering and segmentation were widely used to separate ROIs in the image processing model. Pixel classification and segmentation architectures were used in the deep learning model for estimating crop yield. Most CNN and its variants, LSTM, were used to test and train the model for object detection and then proceeded towards counting. RS data was also experimented with for integration into deep architectures with histogram preprocessing.

To summarize, weight-based yield estimation was implemented by the crop model, ML model and RS model. These models were generally used for estimating yield in large geographical areas. Counting-based analysis was implemented by image processing, RS model and deep learning model using an image as a primary input. Single and a bunch of objects were explored during the counting process. But accuracy is still an open challenge due to object clutter and occlusion. R2, RMSE is widely used to analyze the accuracy of the yield estimation model. Further, there is a broad scope to harness the multimodal integration of RS image data, image processing techniques and deep learning techniques to estimate crop yield over large areas.

Acknowledgments. This work is supported by Visvesvaraya PhD Scheme, Ministry of Electronics and Information Technology (MeitY) Government of India MEITY-PHD-1394. We thank MeitY, the Government of India and Nirma University for facilitating our research work. Also, I would like to thank Dr Varsha Ganguly for her valuable suggestions in structuring the paper.

#### REFERENCES

- WORLD HEALTH ORGANIZATION AND OTHERS, The State of Food Security and Nutrition in the World 2021: Transforming food systems for food security, improved nutrition and affordable healthy diets for all., Food & Agriculture Organization (2021).
- [2] ROSER, M., RITCHIE, H. & ORTIZ-OSPINA, ESTEBAN, World population growth, Our World In Data. (2013).
- [3] AGRICULTURAL OUTPUT CROP PRODUCTION OECD DATA, http://data.oecd.org/agroutput/crop-production.htm, Accessed: Aug. 03 (2022).
- [4] FAO, FOOD. & OTHERS, The future of food and agriculture-Trends and challenges., Annual Report, v296 pp. 1-180 (2017).
- [5] EVANS, L. & FISCHER, R. YIELD POTENTIAL: ITS DEFINITION, MEASUREMENT, AND SIGNIFICANCE., Crop Science. volume 39, pp. 1544-1551 (1999).
- [6] JOHNSON, M., HSIEH, W., CANNON, A., DAVIDSON, A. & BÉDARD, F., Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods., Agricultural And Forest Meteorology, volume 218, pp. 74-84 (2016).
- [7] CHIVASA, W., MUTANGA, O. & BIRADAR, C., Application of remote sensing in estimating maize grain yield in heterogeneous African agricultural landscapes: a review. International Journal Of Remote Sensing. volume 38, pp. 6816-6845 (2017).
- [8] LIAKOS, K., BUSATO, P., MOSHOU, D., PEARSON, S. & BOCHTIS, D., Machine learning in agriculture: A review. Sensors. 18, pp 2674 (2018).
- [9] CHLINGARYAN, A., SUKKARIEH, S. & WHELAN, B., Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers And Electronics In Agriculture.151 pp. 61-69 (2018).
- [10] ELAVARASAN, D., VINCENT, D., SHARMA, V., ZOMAYA, A. & SRINIVASAN, K., Forecasting yield by integrating agrarian factors and machine learning models: A survey., Computers And Electronics In Agriculture. volume 155 pp. 257-282 (2018). volume 147 pp. 70-90 (2018).
- [11] KAMILARIS, A. & PRENAFETA-BOLDÚ, F., Deep learning in agriculture: A survey., Computers And Electronics In Agriculture. volume 147, pp. 70-90 (2018).
- [12] BASSO, B. & LIU, L., Seasonal crop yield forecast: Methods, applications, and accuracies., Advances In Agronomy. volume 154 pp. 201-255 (2019).
- [13] KOIRALA, A., WALSH, K., WANG, Z. & MCCARTHY, C., Deep learning-Method overview and review of use for fruit detection and yield estimation. Computers And Electronics In Agriculture. volume 162, pp. 219-234 (2019).
- [14] VAN KLOMPENBURG, T., KASSAHUN, A. & CATAL, C., Crop yield prediction using machine learning: A systematic literature review., Computers And Electronics In Agriculture. volume 177 pp. 105709 (2020).

- [15] MAHESWARI, P., RAJA, P., APOLO-APOLO, O. & PÉREZ-RUIZ, M., Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—a review., Frontiers In Plant Science. volume 12, pp. 1247 (2021).
- [16] RASHID, M., BARI, B., YUSUP, Y., KAMARUDDIN, M. & KHAN, N., A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction., IEEE Access. volume 9, pp. 63406-63439 (2021).
- [17] CASTRO-TANZI, S., FLORES, M., WANNER, N., DIETSCH, T., BANKS, J., UREÑA-RETANA, N. & CHANDLER, M., Evaluation of a non-destructive sampling method and a statistical model for predicting fruit load on individual coffee (Coffea arabica) trees., Scientia Horticulturae. volume 167, pp. 117-126 (2014).
- [18] MAHALANOBIS, P., Sample surveys of crop yields in India., Sankhyā: The Indian Journal Of Statistics. pp. 269-280 (1946).
- [19] KESTUR, R., MEDURI, A. & NARASIPURA, O., MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard., Engineering Applications Of Artificial Intelligence. volume 77, pp. 59-69 (2019).
   [20] MURTHY, C., THIRUVENGADACHARI, S., RAJU, P. & JONNA, S., Improved ground sampling and crop yield estimation using
- satellite data. International Journal of Remote Sensing. volume 17, pp. 945-956 (1996).
- [21] SINGH, R., SEMWAL, D., RAI, A. & CHHIKARA, R. ,Small area estimation of crop yield using remote sensing satellite data., International Journal Of Remote Sensing. volume 23, pp. 49-56 (2002).
- [22] KUNG, H., KUO, T., CHEN, C. & TSAI, P., Accuracy analysis mechanism for agriculture data using the ensemble neural network method. Sustainability. volume 8, pp. 735 (2016).
- [23] PANTAZI, X., MOSHOU, D., ALEXANDRIDIS, T., WHETTON, R. & MOUAZEN, A., Wheat yield prediction using machine learning and advanced sensing techniques. Computers And Electronics In Agriculture. volume 121, pp. 57-65 (2016).
- [24] MARKO, O., BRDAR, S., PANIĆ, M., ŠAŠIĆ, I., DESPOTOVIĆ, D., KNEŽEVIĆ, M. & CRNOJEVIĆ, V., Portfolio optimization for seed selection in diverse weather scenarios. PloS One. Volume 12, pp. 0184198 (2017).
- [25] LIU, J., GOERING, C. & TIAN, L., A neural network for setting target corn yields., Transactions Of The ASAE. volume 44, pp. 705 (2001).
- [26] SU, Y., XU, H. & YAN, L., Support vector machine-based open crop model (SBOCM): Case of rice production in China., Saudi Journal Of Biological Sciences. volume 24, pp. 537-547 (2017).
- [27] DORJ, U., LEE, M. & YUN, S., An yield estimation in citrus orchards via fruit detection and counting using image processing. Computers And Electronics In Agriculture. volume 140 pp. 103-112 (2017).
- [28] AMATYA, S., KARKEE, M., GONGAL, A., ZHANG, Q. & WHITING, M., Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting., Biosystems Engineering. volume 146, pp. 3-15 (2016).
- [29] STAJNKO, D., LAKOTA, M. & HOČEVAR, M., Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging., Computers And Electronics In Agriculture. volume 42, 31-42 (2004).
- [30] WANG, Q., NUSKE, S., BERGERMAN, M. & SINGH, S., Automated crop yield estimation for apple orchards. Experimental Robotics. pp. 745-758 (2013).
- [31] CHAHBI BELLAKANJI, A., ZRIBI, M., LILI-CHABAANE, Z. & MOUGENOT, B., Forecasting of cereal yields in a semi-arid area using the simple algorithm for yield estimation (SAFY) agro-meteorological model combined with optical SPOT/HRV images. Sensors. volume 18, pp. 2138 (2018).
- [32] HUANG, J., MA, H., SEDANO, F., LEWIS, P., LIANG, S., WU, Q., SU, W., ZHANG, X. & ZHU, D., Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model. European Journal Of Agronomy. volume 102 pp. 1-13 (2019).
- [33] FRANCH, B., VERMOTE, E., SKAKUN, S., ROGER, J., BECKER-RESHEF, I., MURPHY, E. & JUSTICE, C., Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal Of Applied Earth Observation And Geoinformation. volume 76 pp. 112-127 (2019).
- [34] INES, A., HONDA, K., GUPTA, A., DROOGERS, P. & CLEMENTE, R., Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agricultural Water Management. volume 83, pp. 221-232 (2006).
- [35] BANNARI, A., MORIN, D., BONN, F. & HUETE, A., A review of vegetation indices. Remote Sensing Reviews. volume 13, 95-120 (1995).
- [36] JIANG, Z., HUETE, A., DIDAN, K. & MIURA, T., Development of a two-band enhanced vegetation index without a blue band. Remote Sensing Of Environment. vomune 112, pp. 3833-3845 (2008).
- [37] SALAZAR, L., KOGAN, F. & ROYTMAN, L., Use of remote sensing data for estimation of winter wheat yield in the United States., International Journal Of Remote Sensing. vomune 28, pp. 3795-3811 (2007).
- [38] GUTIÉRREZ, S., WENDEL, A. & UNDERWOOD, J., Ground based hyperspectral imaging for extensive mango yield estimation. Computers And Electronics In Agriculture. vomune 157, pp. 126-135 (2019).
- [39] MARKO, O., BRDAR, S., PANIĆ, M., ŠAŠIĆ, I., DESPOTOVIĆ, D., KNEŽEVIĆ, M. & CRNOJEVIĆ, V. ,Portfolio optimization for seed selection in diverse weather scenarios. PloS One. volume 12, pp. 0184198 (2017).
- [40] LIU, J., GOERING, C. & TIAN, L., A neural network for setting target corn yields., Transactions Of The ASAE. volume 44, pp. 705 (2001).
- [41] SU, Y., XU, H. & YAN, L., Support vector machine-based open crop model (SBOCM): Case of rice production in China., Saudi Journal Of Biological Sciences. volume 24, 537-547 (2017).
- [42] DORJ, U., LEE, M. & YUN, S., An yield estimation in citrus orchards via fruit detection and counting using image processing. Computers And Electronics In Agriculture. volume 140, pp. 103-112 (2017).
- [43] AMATYA, S., KARKEE, M., GONGAL, A., ZHANG, Q. & WHITING, M., Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting. Biosystems Engineering. volume 146, pp. 3-15 (2016).
- [44] STAJNKO, D., LAKOTA, M. & HOČEVAR, M., Estimation of number and diameter of apple fruits in an orchard during the growing season by thermal imaging. Computers And Electronics In Agriculture. volume 42, pp. 31-42 (2004).

- [45] WANG, Q., NUSKE, S., BERGERMAN, M. & SINGH, S., Automated crop yield estimation for apple orchards. Experimental Robotics. pp. 745-758 (2013).
- [46] CHAHBI BELLAKANJI, A., ZRIBI, M., LILI-CHABAANE, Z. & MOUGENOT, B., Forecasting of cereal yields in a semi-arid area using the simple algorithm for yield estimation (SAFY) agro-meteorological model combined with optical SPOT/HRV images. Sensors. volume 18, pp. 2138 (2018)
- [47] HUANG, J., MA, H., SEDANO, F., LEWIS, P., LIANG, S., WU, Q., SU, W., ZHANG, X. & ZHU, D., Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST-PROSAIL model., European Journal Of Agronomy. volume 102, pp. 1-13 (2019).
- [48] FRANCH, B., VERMOTE, E., SKAKUN, S., ROGER, J., BECKER-RESHEF, I., MURPHY, E. & JUSTICE, C.Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal Of Applied Earth Observation And Geoinformation. volume 76, pp. 112-127 (2019).
- [49] INES, A., HONDA, K., GUPTA, A., DROOGERS, P. & CLEMENTE, R. Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agricultural Water Management. volume 83, pp. 221-232 (2006).
- [50] BANNARI, A., MORIN, D., BONN, F. & HUETE, A.A review of vegetation indices. Remote Sensing Reviews. volume 13, pp. 95-120 (1995).
- [51] JIANG, Z., HUETE, A., DIDAN, K. & MIURA, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sensing Of Environment. volume 112, pp. 3833-3845 (2008).
- [52] SALAZAR, L., KOGAN, F. & ROYTMAN, L. Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal Of Remote Sensing. volume 28, pp. 3795-3811 (2007).
- [53] GUTIÉRREZ, S., WENDEL, A. & UNDERWOOD, J.Ground based hyperspectral imaging for extensive mango yield estimation. Computers And Electronics In Agriculture. volume 157, pp. 126-135 (2019).
- [54] YOU, J., LI, X., LOW, M., LOBELL, D. & ERMON, S. Deep gaussian process for crop yield prediction based on remote sensing data. Thirty-First AAAI Conference On Artificial Intelligence. (2017)
- [55] INES, A., DAS, N., HANSEN, J. & NJOKU, E.Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing Of Environment. volume 138, pp. 149-164 (2013).
- [56] MIAO, Y., MULLA, D. & ROBERT, P. Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture.volume 7, pp. 117-135 (2006).
- [57] GILARDELLI, C., STELLA, T., CONFALONIERI, R., RANGHETTI, L., CAMPOS TABERNER, M., GARCIA-HARO, F. & BOSCHETTI, M Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data. European Journal Of Agronomy. volume 103, pp. 108-116 (2019).
- [58] RAMOS, P., PRIETO, F., MONTOYA, E. & OLIVEROS, C.Automatic fruit count on coffee branches using computer vision. Computers And Electronics In Agriculture. volume 137, pp. 9-22 (2017).
- [59] SENGUPTA, S. & LEE, W.Identification and determination of the number of immature green citrus fruit in a canopy under different ambient light conditions. Biosystems Engineering. volume 117, pp. 51-61 (2014).
- [60] GUERIF, M. & DUKE, C. Calibration of the SUCROS emergence and early growth module for sugar beet using optical remote sensing data assimilation. European Journal Of Agronomy. volume 9, pp. 127-136 (1998).
- [61] SINGH, R., GOYAL, R., SAHA, S. & CHHIKARA, R. Use of satellite spectral data in crop yield estimation surveys. International Journal Of Remote Sensing. volume 13, pp. 2583-2592 (1992).
- [62] FANG, H., LIANG, S. & HOOGENBOOM, G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal Of Remote Sensing. volume 32, pp. 1039-1065 (2011).
- [63] BARGOTI, S. & UNDERWOOD, J.Deep fruit detection in orchards. 2017 IEEE International Conference On Robotics And Automation (ICRA). pp. 3626-3633 (2017).
- [64] WANG, A., TRAN, C., DESAI, N., LOBELL, D. & ERMON, S. Deep transfer learning for crop yield prediction with remote sensing data. Proceedings Of The 1st ACM SIGCAS Conference On Computing And Sustainable Societies. pp. 1-5 (2018).
- [65] SENTHILNATH, J., DOKANIA, A., KANDUKURI, M., RAMESH, K., ANAND, G. & OMKAR, S.Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosystems Engineering. volume 146, pp. 16-32 (2016).
- [66] EARTHEXPLORER, https://earthexplorer.usgs.gov/, Accessed: August. 04 (2022).
- [67] AMSR-E OVERVIEW NATIONAL SNOW AND ICE DATA CENTER, https://nsidc.org/data/amsre/, Accessed: June 12 (2022).
- [68] IEM: ISU SOIL MOISTURE NETWORK. https://mesonet.agron.iastate.edu/agclimate/, Accessed December. 15 (2021).
- [69] USDA OPEN DATA CATALOG, https://www.usda.gov/content/usda-open-data-catalog, Accessed: June. 12 (2022).
- [70] LP DAAC DATA, https://lpdaac.usgs.gov/data/, Accessed: July. 15 (2022).
- [71] NATIONAL GEOSPATIAL CENTER OF EXCELLENCE (NGCE) | NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/main/ national/ngce/. Accessed December 23 (2021).
- [72] MODIS WEB., https://modis.gsfc.nasa.gov/data/, Accessed: June. 25 (2022).
- [73] SYNGENTA CROP CHALLENGE 2021, https://www.ideaconnection.com/syngenta-crop-challenge/challenge.php/2018, Accessed: February. 16 (2021).
- [74] VARIETY TESTING: SOYBEANS IN ILLINOIS INDEX, http://vt.cropsci.illinois.edu/soybean.html, Accessed: March. 5 (2022).
- [75] ACPF DOWNLOADS, GEOGRAPHIC INFORMATION SYSTEMS, IOWA STATE UNIVERSITY, https://www.gis.iastate.edu/gisf/projects/acpf, Accessed: March. 16 (2022).
- [76] SOIL SURVEY & DIGITAL SOIL DATA: ISPAID, SOIL AND LAND USE, https://www.extension.iastate.edu/soils/ispaid, Accessed: February. 25 (2022).
- [77] A. MEDURI THE MANGONET SEMANTIC DATASET 2021. https://github.com/avadesh02/MangoNet-Semantic-Dataset Ac-

Review of Crop Yield Estimation using Machine Learning and Deep Learning Technique

cessed: January 29 (2022)

- [78] COCO COMMON OBJECTS IN CONTEXT., https://cocodataset.org/home, Accessed: October. 27 (2021).
- [79] SCHMITT-MUC, SEN12MS TOOLBOX. 2021, https://github.com/schmitt-muc/SEN12MS, Accessed: October. 27 (2021).
   [80] FENG, A., ZHOU, J., VORIES, E., SUDDUTH, K. & ZHANG, M. Yield estimation in cotton using UAV-based multi-sensor imagery.Biosystems Engineering. volume 193 pp. 101-114 (2020).
- [81] HADEN, A., BURNHAM, M., YANG, W. & DELUCIA, E. Comparative establishment and yield of bioenergy sorghum and maize following pre-emergence waterlogging. Center for Advanced Bioenergy (2021).
- [82] KESTUR, R., MEDURI, A. & NARASIPURA, O.MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard. Engineering Applications Of Artificial Intelligence. volume 77, pp. 59-69 (2019). [83] CHARLES-EDWARDS, D. Modelling plant growth and development. (1986).
- [84]VAN DIEPEN, C., WOLF, J., VAN KEULEN, H. & RAPPOLDT, C. WOFOST: a simulation model of crop production. Soil Use And Management. volume 5, pp. 16-24 (1989),
- [85] INMAN-BAMBER, N.A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. South African Journal Of Plant And Soil. volume 8, pp. 93-99 (1991).
- [86] SPITTERS, C., VAN KEULEN, H. & VAN KRAALINGEN, D.A simple and universal crop growth simulator: SUCROS87 Simulation And Systems Management In Crop Protection. pp. 147-181 (1989).
- [87] LAUNAY, M. & GUERIF, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agriculture, Ecosystems & Environment. volume 111, pp. 321-339 (2005).
- [88] XEVI, E., GILLEY, J. & FEYEN, J. Comparative study of two crop yield simulation models. Agricultural Water Management. volume 30, pp. 155-173 (1996).
- [89] PIRMORADIAN, N. & SEPASKHAH, A.A very simple model for yield prediction of rice under different water and nitrogen applications. Biosystems Engineering. Volume 93, pp. 25-34 (2006).
- [90] SINGH, A., TRIPATHY, R. & CHOPRA, U. Evaluation of CERES-Wheat and CropSyst models for water-nitrogen interactions in wheat crop. Agricultural Water Management. volume 95, pp. 776-786 (2008).
- [91] HAN, C., ZHANG, B., CHEN, H., LIU, Y. & WEI, Z. Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agricultural Water Management. volume 240, pp. 106288 (2020).
- [92] XUE, J. & SU, B. Significant remote sensing vegetation indices: A review of developments and applications. Journal Of Sensors. volume 2017 (2017),
- [93] BARNETT, T. & THOMPSON, D. The use of large-area spectral data in wheat yield estimation. Remote Sensing Of Environment. volume 12, pp. 509-518 (1982).
- [94] BARNETT, T. & THOMPSON, D.Large-area relation of Landsat MSS and NOAA-6 AVHRR spectral data to wheat yields. Remote Sensing Of Environment. volume 13, pp. 277-290 (1983).
- [95] ALI, I., CAWKWELL, F., DWYER, E. & GREEN, S. Modeling managed grassland biomass estimation by using multitemporal remote sensing data—A machine learning approach. IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. volume 10, pp. 3254-3264 (2016).
- [96] HE, M., KIMBALL, JS, MANETA, M., MAXWELL, B., MORENO, A., BEGUERÍA, S. & WU, M. Regional crop gross primary productivity and yield estimation using fused landsat MODIS data. Remote Sensing. volume 10, pp. 372 (2018).
- [97] MALDONADO JR, W. & BARBOSA, J. Automatic green fruit counting in orange trees using digital images. Computers And Electronics In Agriculture. volume 127, pp. 572-581 (2016).
- [98] NUSKE, S., WILSHUSEN, K., ACHAR, S., YODER, L., NARASIMHAN, S. & SINGH, S. Automated visual yield estimation in vineyards. Journal Of Field Robotics. volume 31,pp. 837-860 (2014).
- [99] LIU, S., MARDEN, S. & WHITTY, M. Towards automated yield estimation in viticulture. Proceedings Of The Australasian Conference On Robotics And Automation, Sydney, Australia. volume 24, pp. 2-6 (2013).
- [100] SAKAMOTO, T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm. ISPRS Journal Of Photogrammetry And Remote Sensing. volume 160, pp. 208-228 (2020).
- [101] DRUMMOND, S., SUDDUTH, K., JOSHI, A., BIRRELL, S. & KITCHEN, N. Statistical and neural methods for site-specific yield prediction. Transactions Of The ASAE. volume 46, pp. 5 (2003).
- [102] CRANE-DROESCH, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters. volume 13, pp. 114003 (2018).
- [103] ZHANG, L., ZHANG, J., KYEI-BOAHEN, S., ZHANG, M. & OTHERS Simulation and prediction of soybean growth and development under field conditions. Am-Euras J Agr Environ Sci. volume 7, pp. 374-385 (2010).
- [104] VEENADHARI, S., MISRA, B. & SINGH, C. Machine learning approach for forecasting crop yield based on climatic parameters. 2014 International Conference On Computer Communication And Informatics. pp. 1-5 (2014).
- [105] IRMAK, A., JONES, J., BATCHELOR, W., IRMAK, S., BOOTE, K. & PAZ, J. Artificial neural network model as a data analysis tool in precision farming. Transactions Of The ASABE. volume 49, pp. 2027-2037 (2006).
- [106] RAHNEMOONFAR, M. & SHEPPARD, C. Deep count: fruit counting based on deep simulated learning. Sensors. volume 17, pp. 905 (2017)
- [107] KHAKI, S. & WANG, L. Crop yield prediction using deep neural networks. Frontiers In Plant Science. volume 10, pp. 621 (2019).
- [108] MAIMAITIJIANG, M., SAGAN, V., SIDIKE, P., HARTLING, S., ESPOSITO, F. & FRITSCHI, F. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sensing Of Environment. volume 237, pp. 111599 (2020).

*Edited by:* Katarzyna Wasielewska *Received:* Jun 28, 2022 *Accepted:* Aug 12, 2022