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SYNCHRONOUS FEDERATED LEARNING BASED MULTI UNMANNED AERIAL

VEHICLES FOR SECURE APPLICATIONS

ITIKA SHARMA∗, SACHIN KUMAR GUPTA†, ASHUTOSH MISHRA‡, AND SHAVAN ASKAR§

Abstract. Unmanned Aerial Vehicles (UAVs), also known as drones, have rapidly gained popularity due to their widely
employed applications in various industries and fields, including search and rescue, agriculture, industry, military operations,
safety, and more. Additionally, drones assist with tasks such as search and rescue efforts, pandemic virus containment, crisis
management, and other critical operations. Due to their unique capabilities in image, video, and information collection, a multi-
UAV system plays a crucial role in these activities. However, such images and video data involve individual privacy. Therefore, such
multi-UAV applications have an indigenous tradeoff of privacy preservation. We have proposed a Federated Learning (FL) based
approach for ensuring privacy in multi-UAV applications. The proposed methodology utilizes a synchronous FL approach and
the Convolutional Neural Network (CNN) to ensure security. The model parameters are protected by using a secure aggregation.
Results demonstrate that the proposed approach outperforms existing techniques in terms of accuracy and precision.
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1. Introduction. Unmanned Aerial Vehicles (UAVs) or drones, have experienced tremendous growth in
both the industrial and academic fields. Drones play a crucial role due to their unique characteristics and
ability to perform critical tasks such as capturing images and videos. The market value of UAV usage in civil
infrastructures exceeds 45 billion dollars. A drone, also known as a UAV, is an aircraft that operates without an
onboard operator or crew. Drones were first used in Italy in 1849 during the struggle for independence between
Venice and Austria. Austrian soldiers attacked Venice using bomb-laden hot-air, hydrogen, or helium-filled
balloons. In 1982, the Israeli Air Force utilized UAVs to destroy the Syrian fleet while minimizing Israeli losses
[1]. Israeli UAVs were employed as a deception tactic, disrupting communications and providing real-time video
surveillance. The rapid adoption of drones over the past decade has raised concerns about privacy, security, and
safety. Drones are used by travelers and paparazzi to capture images of individuals in their homes and other
previously private locations. Additionally, drones are utilized in high-risk areas such as cities and airports. UAVs
are an integral part of an Unmanned Aircraft System (UAS), which includes a controller and communication
system for the UAV. Companies like Google and Amazon are developing drones to facilitate the delivery of goods
by air. Another intriguing concept being explored by Facebook involves the construction of massive drones
to provide direct internet access to remote areas. Lightweight synthetic structures are commonly used in the
construction of unmanned aircraft to enhance maneuverability and manage weight [2]. Military drones, thanks
to the strength of composite materials, are capable of flying at extremely high altitudes. The combination of
drones and IoT technology has resulted in a surge of new commercial applications. UAVs integrated with IoT
sensor networks on the ground can assist agricultural organizations in monitoring lands and harvests, enable
energy companies to inspect power lines and operate equipment, and help insurance companies assess claims
and policies.

∗School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Kakryal-182320, Katra, (Jammu
and Kashmir), UT, India (itikasharma142@gmail.com)

†Department of Electronics and Communication Engineering, Central University of Jammu, Samba, UT of J&K, 181143 India
and School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra-182320, (UT of J&K), India
(sachin.gupta@smvdu.ac.in, Corresponding Author)

‡School of Integrated Technology, Yonsei, University, South Korea, and the Department of Electronics & Communication
Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India (ashutoshmishra@yonsei.ac.kr, Cor-
responding Author)

§Technical Engineering College, Information System Engineering Department, Erbil, Iraq (shavan.askar@epu.edu.iq)

191



192 Itika Sharma, Sachin Kumar Gupta, Ashutosh Mishra, Shavan Askar

ML techniques like differential privacy and homomorphic encryption have surged in IoT devices. Even
commonplace items used by people in daily life, such as wearables, smart meters, and smart water meters,
can be utilized with the Internet of Things (IoT) network to collect data from the environment using sensors
and actuators. This data can then be used to solve a variety of problems in daily life. IoT has transformed
traditional industries into smart ones, including smart waste management, smart grids, smart homes, and
smart healthcare [3]. However, the heterogeneity of devices, energy shortages, restricted bandwidth, and other
limitations pose challenges in implementing advanced security methods in IoT networks, making them more
susceptible to destructive insider attacks [3]. Also, security problems lead to privacy-sensitive issues. There
are security issues in IoT networks because central data is collected to train the model. So, protecting data is
quite critical as there is a central server in a common model that works on training and test sets.

There are many challenges in UAV civil applications, including swarming challenges and network security
challenges. Another issue is the scalability issue [4]. Therefore, the unacceptable latency and the raw data
transfer to the server by UAV requiring high network bandwidth are the most significant issues faced by
traditional ML. To handle these problems, we suggest using federated learning (FL) model that efficiently
addresses all privacy and latency issues. Google introduced the first application of FL in 2016. They established
FL to improve the predictive text on Google’s Android keyboard. Apple also utilizes FL to enhance voice
recognition on Siri. FL can protect clients’ raw data and reduce communication costs. There is widespread
use of FL in the healthcare system, where it securely handles data without sending raw data directly to
the server [5, 6, 7, 8]. FL utilizes less complex hardware as it doesn’t rely on a central server. Each UAV
locally trains its models, and then the updated parameters are sent to the server and aggregated globally there
[9, 10, 11, 12, 13, 14].

1.1. Key Contributions. The FL methodology has been used to address multi-UAV systems due to
security concerns associated with DL-based methodologies that transmit raw data. FL was developed as a
solution to this problem, aiming to store original data at its source and solely send locally trained models from
users to the server for aggregation. Both asynchronous and synchronous UAVs are employed in conjunction
with federated learning. Asynchronous federated learning allows for faster training of local models, but it
entails a loss of data packets, resulting in subpar communication and diminished accuracy. Therefore, we
utilize federated learning to effectively communicate and achieve accuracy. The key contributions of this study
are as follows:

1. Application of FL in conjunction with multi-UAV systems to ensure privacy.
2. Utilization of convolutional neural networks (CNN)-based algorithm for model training.
3. Comparative analysis of the traditional centralized model versus the federated model.
4. Performance assessment of the federated models in terms of accuracy, precision, and recall.

The remainder of the paper is structured as follows: part II reviewed related literature. The proposed
model is illustrated in Section III. The debate and findings are examined in Section IV. Section V serves as the
work’s conclusion with its future scope.

2. Related Works. This section will differentiate the study of previous work done from our article by
revealing the procurement of UAVs with FL. Al-Emadi et al. in [1] discussed a drone detection solution based
on RF frequency. The author proposed a model for detecting and classifying drones using an RF signal and
compared CNN and DNN. In this model, the author used a DL technique called CNN, which is an effective
mechanism for drone detection. The proposed model was tested and trained using a dataset. To analyze and
determine the performance of this model, the author made a comparison of data obtained with ANN, CFAR,
and HOC. Due to its unique qualities that integrate feature extraction and classification into a single model,
CNN has a wide range of applications, particularly in recognition and classification challenges. In this paper,
the author claims to have achieved accuracy and provided better performance in drone detection as well as
drone identification.

Brik et al. in [2] introduced the FL concept and its fundamentals. The author gives a broad overview of
FL applications for UAV networks. The traditional DL methods use a centralized server to which the UAV
data is directly sent. This creates issues in network communication overhead, leading to energy inefficiency
and network bandwidth problems for UAV devices. Moreover, there may be private data like localization
and identification of UAVs, which can directly impact UAV privacy. To address these concerns, the author



Synchronous Federated Learning based Multi Unmanned Aerial Vehicles for Secure Applications 193

introduced the FL concept, where data is not directly sent to the server. The basic concept behind UAVs is to
preserve raw data where it is created and locally train the models. In this paper, the author discusses the open
issues and challenges in the FL approach.

In [3], Ahmad et al. demonstrated malicious attacks in the IoT using supervised machine learning tech-
niques. The IoT was created to connect numerous smart gadgets and sensors for gathering and analyzing vital
information online. However, the IoT network faces several limitations, including limited sensor computational
capability, heterogeneity of gadgets, limited energy resources, and bandwidth, among others. These limitations
prevent the use of high-end security techniques, making the networks more susceptible to insider assaults and
other security threats. Additionally, due to the unexpected behavior and ubiquity of IoT networks, identifying
malevolent insiders in the network is exceedingly challenging. Machine learning techniques can address these
issues by forecasting anomalies in the system and understanding its behavior. The authors applied various
supervised machine-learning approaches to the available IoT dataset to determine the most effective method
for identifying hostile insider assaults in the IoT network. Multiple supervised algorithms were trained on the
NSL-KDD dataset, and the results show that the Gradient Boosting technique outperforms the other covered
techniques.

The FL-based approach is the suggestion made by Lim et al. [4] to enable security in IoV applications
such as traffic forecasting. In this article, the authors have developed an FL-based detecting and collaborative
learning scheme in which UAVs gather data and participate in private information collaborative model training
for IoV paradigm applications, aiming to establish an Intelligent Transportation System (ITS). Additionally,
the authors presented a multidimensional contrast matching-based reasoning framework layout that aims to
utilize the self-revealing characteristics of an ideal contract to produce the most ideal UA. Yang et al. [5]
suggested an asynchronous FL framework for multi-drone networks, which may provide asynchronous learning
or distributed computing by allowing the training model to operate without transmitting or sending raw sensitive
information to UAV servers. It also includes a device selection technique to prevent devices of poor quality
from compromising efficiency and precision in learning. Furthermore, the author has proposed an asynchronous
advantage actor-critic (A3C)-based combined device selection, UAV deployment, and resource management
strategy to increase federated convergence speed and accuracy. Simulation results reveal that the suggested
scheme and algorithm produce greater accuracy and quicker federation execution time than existing solutions.

Yang et al. demonstrated energy-efficient UAVs based on federated learning [6]. This article examines the
problem of resource allocation for federated learning across UAVs and efficient energy transmission. With the
goal of reducing the overall energy consumption of the devices while considering the delay restriction, both the
challenges of local processing and transmission energy are approached as optimization problems. The author
presents a solution to the energy minimization problem by providing the delivery time for the reduction problem
and suggests a bisection-based strategy to obtain the optimal answer, which is a practical option due to the
iterative technique recommended by the author. Khamidehi et al. proposed a federated-based architecture in
order to shorten UAV flight times while maintaining reliable internet connectivity [7]. Since UAVs are unable
to independently develop the global model, the author provides the following two options: (1) Using federated
learning, the UAVs cooperate to build a large model to predict outages in the environment; (2) Based on a
model created in the first phase using fast random trees (RRTs), the author provides a path-planning technique.
The author devises an optimal course for UAVs that reduces travel time while ensuring cellular connectivity.
In [8], Yazdinejad et al. proposed a federated learning approach based on deep neural networks (DNN) for
drone authentication. By integrating drones with federated learning, maximum privacy is achieved. The
author creates an authentication model based on the DNN Neural Network and the Federated Learning idea.
This authentication mechanism federates the number of aircraft while maintaining anonymity. This approach
protects privacy and utilizes DNN design to scale with a large number of drones. Secure aggregation techniques
and cryptographic algorithms are used to safeguard secure parameters for the models. The author states that
the simulation demonstrates a high True Positive rate and performs best when used with the training and
validation datasets.

Tang et al. conducted research [9] to improve Federated Edge Learning (FEEL) for B5G/6G networking
in the Internet of Things (IoT) enabled by UAVs. Federated learning is an effective framework for creating a
decentralized shared paradigm between computers and edge devices without transmitting raw data. However,
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FEEL’s performance in connected devices with UAV support is limited by two important factors: latency and
energy consumption. While earlier research has focused on reducing latency and promoting energy efficiency,
few studies have examined how the limited battery life of devices affects FEEL.
Wang et al. proposed an asynchronously federated learning system based on a permissioned blockchain in
[10]. The article suggests a blockchain-based synchronization federated learning server that consists of a core
blockchain and several sub-blockchains. Each sub-blockchain is responsible for updating a specific model param-
eter while the main blockchain updates all parameters globally. Based on this design, a permissioned blockchain
technology federated learning synchronization aggregation protocol is suggested. This protocol combines second-
order aggregation calculations with the learning algorithm to effectively replace concurrent federated supervised
learning. As a result, synchronization problems are avoided and the reliability of distributed data is guaranteed.
According to calculations and experimental results, the suggested architecture can maintain acceptable training
results when working with a small number of nodes with varying data quality, has good automated failover,
and can be expanded to edge computing applications.

In [11, 12, 13], the authors proposed a privacy computing system (AFLPC) for 5G-V2X scenarios using
asynchronous federated learning to address potential privacy leakage issues at the network edge in the 5G
V2X environment. This model combines secure computing and asynchronous federated learning. The article
introduces an adaptive independent privacy strategy to protect parameter privacy and reduce the impact
of noise on model validity. To address the consolidation issue of asynchronously federated learning based on
moving averages in practical applications, an aggregate approach based on weighted summaries is recommended.
The proposed asynchronous federated instruction and learning mechanism primarily focuses on the 5G V2X
environment, but further investigation into other settings is also suggested [14, 15, 16, 17, 18]. Results from the
study conducted using the MNIST and CIFAR-100 datasets demonstrate that the approach described in this
article can provide high precision in terms of confidentiality and safety, solve the issue of diminishing model
calculation time caused by variations in node learning speed, and improve the productivity of AFL.

The use of ”UAV with FL” demonstrates that when UAVs are used with federated learning, it ensures
the privacy of transmitted data without any loss and avoids communication overhead. This leads to efficient
network bandwidth and energy utilization. In traditional DL-based UAVs, the original information is sent to
a central server, which creates issues related to network bandwidth, energy efficiency, and privacy. Due to
these concerns, the concept of federated learning is now being used, where only local models are transferred
instead of the original information. This approach offers the benefits of privacy, energy efficiency, and network
bandwidth.

3. FL: A System Model. This section covers the proposed model, the function of FL in UAVs, the
function of CNN, and the encryption technique utilized in the FL process.

3.1. Proposed Model. The majority of machine learning (ML) techniques are cloud-based, which means
that data must be transferred to and analyzed in a single location, such as a database server. However, these
ML methods are not suitable for UAV-wireless networks due to several reasons. Firstly, since the generated
data could contain sensitive information like the location and identification of UAVs, the private data might
not be accessible. Secondly, the continuous transmission of unprocessed data by UAVs, such as images, videos,
and other types of data, to the server requires a high network bandwidth and consumes more UAV energy,
especially when bandwidth and UAV energy are constrained.

Moreover, cloud-centric approaches introduce significant latency, particularly for applications that require
instantaneous decisions, like unmanned drone monitoring and UAV-based virtual reality applications. Therefore,
decentralized teaching methods are crucial for effectively managing scattered sub-datasets produced by UAV
instruments. In 2016, Google introduced Federated Learning (FL) as a novel form of AI that moves training to
the edge or on-device. FL is based on decentralized data and training, enabling multiple parties to collaborate
on a shared, robust ML model without disclosing data. It addresses critical issues related to data confidentiality,
safety, data login credentials, and access to heterogeneous data.

In our proposed model, we incorporate privacy by deploying multiple UAVs and utilizing FL. The server
sends the model to each UAV for training, and these neighboring UAV clients regularly exchange the model
parameters. Before delivering these parameters, several models encrypt them, thus enhancing data security
and protection. The features of the global model are sent to data centers to include them in their ML model
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Fig. 3.1: FL Process

parameters. Each UAV then trains the model on its own data before sending the revised model back to the
server. The models are globally aggregated at the server, and the process is repeated until the desired accuracy
is achieved. As a result, privacy is ensured as raw data is not sent directly to the server; only models are
transmitted. Secure aggregation, which encrypts both the data and the model, is employed in our work. Secure
aggregation is essentially a protocol used for privacy-preserving federated learning. It enables the aggregation
of models without revealing individual models, thereby preventing the disclosure of private information from
both individual and local models. This aggregation ensures that the server cannot access the private data of
the local models. Additionally, Fig. 3.1 illustrates the federated learning process. First, the FL server creates
the global model G0 and sends the UAVs the requirements for data types and training parameters. To prevent
the exhaustion of the UAV’s resources, the FL server displays the number of iterations and the learning rate.
For each UAV I start gathering information and updating local parameters, Lij. Using the global model Gj (j
is the iteration index), UAVs also search for the optimal settings to minimize the loss function. The modified
settings are then provided to the server. The FL server compiles the local updates and sends the refreshed
parameters to the UAVs. The purpose of the FL server is to minimize the overall global loss function (Gj) as
shown in equation (3.1):

Loss(Gj) =
1

M

=M∑

i=1

Loss(Lj
i ) (3.1)

In the initial stage of implementation, each UAV receives models from the server. The initial stage of the
suggested methodology’s implementation includes sending models to every local UAV client. The second phase
of implementation will then begin after the training procedure has been finished. Each UAV client begins the
training process using their own data in the second phase. The trained model will then be sent back to the
drones in a third stage when there is no or low accuracy from the server and federated server. The procedure will
continue until the correctness of the data is maintained. After the servers have globally combined the federated
learning model and accuracy is maintained, the federated server will broadcast the globally aggregated model.
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3.2. Role of FL in UAVs. Security risks are increasing every day as the number of UAVs rises. Each
day, a large number of drones are being attacked. Therefore, there is a critical demand for highly secure drones.
Several researchers have developed AI-based drones and incorporated privacy into them using the concepts of
ML and DL. However, there have still been some issues with achieving truly secure communication. To address
this problem, the concept of FL was introduced.

FL is an ML method that involves training an algorithm on numerous decentralized edge devices or servers.
Each device or server retains local data samples and does not share them. In contrast, conventional DL-assisted
systems are centralized and rely on servers to receive and store UAV data. However, UAVs are resource-
constrained devices, particularly in terms of CPU and electrical resources. By avoiding the transfer of data to
a central organization, FL significantly reduces network overhead. Consequently, FL utilizes less bandwidth
compared to centralized ML systems.

This implies that FL may enable the training of learning models for UAV wireless communication in the
future, in contrast to cloud-centric approaches that are centralized. FL avoids transmitting sensitive information
to a single node, ensuring the security of UAV data while also reducing network costs and latency. In our work,
we focused on the CNN model for the training phase. Although any NN can be used for training, the CNN
model offers advantages in terms of computational efficiency, memory efficiency, and complexity efficiency. FL is
increasingly being adopted in various domains, including healthcare, autonomous vehicles, mobile applications,
predictive maintenance in industries, and others.

3.3. Role of CNN Model. A Convolutional Neural Network (CNN) is constructed with a convolutional
layer that performs a process known as convolution. During the convolution process, the input undergoes
convolution with filters, leading to activation. CNN has a broad range of applications in object recognition
and is primarily employed in image classification to evaluate visual information. CNN can be utilized for tasks
such as image and video categorization, identification, medical image analysis, and recommendation systems.
Convolutional, ReLU, Pooling, and Fully Connected (FC) layers are the concealed layers within a CNN.

3.4. Homomorphic Encryption. Rivest et al. began their exploration of the creation of the homomor-
phic encryption (HE) method in 1978. HE is a unique encryption method that addresses security and privacy
concerns. One option is to encrypt both our models and data. This encryption technique allows data to remain
encrypted while being processed and handled. Model security is ensured during model training. HE is an
encryption technology that enables computations to be performed on encrypted information without the need
for a secret key to decrypt it.

The HE approach can be used to construct privacy-preserving machine learning (PPML) in industries where
privacy protection is important. HE is an encryption technology that empowers service providers to perform
calculations. Network operators can directly execute arithmetic computations on ciphertexts by utilizing HE
encryption technology. Partially homomorphic encryption (P.H.E.) was originally capable of addition and
multiplication.

3.5. Practical Applications of Federated Learning in UAV. The following are potential real-time
applications of FL-enabled UAVs:

• A2G photographs can sometimes be taken and kept private, which is why FL-based UAVs come into
service. FL-based UAVs keep data safer because the initial information is not sent directly to the server.
As a result, no one will be able to easily breach the data area.

• FL-based UAVs play a significant role in data security and privacy, especially in the military. Given the
sensitivity of military information, FL-based UAVs are essential for maintaining security and privacy.

• Federated technologies can be utilized to generate user behavioral patterns from a pool of smartphone
data, including voice recognition, face identification, and next-word prediction, without disclosing any
personal information. For example, Google employs federated learning to develop pattern recognition
algorithms for on-device voice commands like ”Hey Google” in Google Assistant.

• Manufacturing companies can utilize federated learning algorithms to create equipment predictive
maintenance predictions. Predictive maintenance may face challenges when clients or users are reluctant
to provide personal information, and when there are data exporting issues from various locations.
Federated learning can overcome these problems by utilizing regional datasets.
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Table 4.1: Simulation Parameters

Description Value
UAV Servers 1

Epochs 60
UAV Clients 4
CPU Usage 2.5Ghz

Global Training Accuracy 97
Global Training Loss 3

RAM 16GB

• Federated learning techniques would be beneficial for insurance and healthcare systems as they allow
for the protection of private data in its original form. Federated learning systems can gather data
from multiple sources such as hospitals and electronic health record databases to diagnose uncommon
diseases, thereby providing a more diverse set of data. In contemporary healthcare systems, hospitals,
research institutions, and federal departments collaborate to enhance healthcare nationwide.

3.6. Core Challenges of the Federated Learning Process. A number of major obstacles must be
overcome for Federated Learning to be implemented in UAVs:

• Effective communication between federated learning-enabled UAV networks.
• Managing diverse systems within a single network.
• Data in federated networks are statistically heterogeneous.
• Privacy issues and methods to protect them.

4. Results and Discussions. In this section, the gathered results discuss the training accuracy and
training loss of local UAV client models, as well as the global model. The performance has been analyzed
using Python libraries, including NumPy, TensorFlow, pandas, and Keras. Socket programming is used to
communicate local client models to the server, and an HTTPS connection is established for the interconnection
of multiple UAVs and servers. In this work, 6000 training samples are taken, and each sample is tested. The
experimental parameters used throughout the work are described in Table 4.1.

4.1. Flowchart of the Proposed Work. Fig. 4.1 represents the flowchart of the proposed work. Firstly,
the UAV client is loaded with the models or architecture, weights, and gradients. Then, the models undergo
training using CNN. The input layer of the CNN takes the models or architectures as input and various hidden
layers perform the learning process, resulting in updated or trained local models. The trained local models
are encrypted using secure aggregation and homomorphic encryption and then sent to the server for global
aggregation. Subsequently, the global models are broadcasted.

In Fig. 4.2 the training process of local UAV clients is depicted in Python, showing the training accuracy of
the local models. During the training process, local model 4 shows accuracy after 10 epochs, while local models
1, 2, and 3 show accuracy after 40-45 epochs. The accuracy and loss graphs depend on the batch size and the
type of data used. Some data is smooth and can be filtered easily, requiring less time for training. However,
some data is more challenging to filter, so when a batch size of 200 is used, the graph reflects the corresponding
accuracy and loss.

In Fig. 4.3 the training accuracy of the global model is displayed. This figure was generated using Python.
The global model demonstrates accuracy after 10 epochs during the training process, while all other local clients
(Aircraft) achieve stability after 30 iterations. Once the local clients are aggregated through the Federated
Learning (FL) process, their accuracy and stability increase, while the remaining local clients exhibit different
characteristics. Therefore, Figure 4 illustrates that local UAV clients achieve accuracy after 30 epochs, indicating
that FL can achieve privacy in multiple ways.

Fig. 4.4 presents a comparison graph of accuracy between centralized and FL approaches. We utilized FL
to train UAV data and used centralized learning with Python to train the same data, comparing the results.
In the case of centralized and automated systems, Data 1, 2, and 4 indicate an accuracy of 80%, Data 5 has an
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Fig. 4.1: Flowchart of Proposed Work

Fig. 4.2: Training Accuracy of Local Model

accuracy of 75%, and Data 3 has an accuracy of 90%. For FL, Data 1 and 4 demonstrate an accuracy of 82%,
while Data 2, 5, and 3 provide accuracies of 80%, 75%, and 88%, respectively. The accuracy in FL is lower
than in centralized learning, as evidenced by Data 3, suggesting that accuracy can depend on the type of data
collected. Perhaps the dataset used in that case is not as clear and filtered.

Similarly, in Fig. 4.5, we conducted a comparison between centralized and FL approaches and depicted the
graph. Data 1, 4, and 5 exhibit a precision of 80%, while Data 2 shows a precision of 85%, and Data 3 shows
90% in the case of centralized learning. For FL, Data 1 and 5 show a precision of 85%, Data 2 and 4 show
a precision of 90%, and Data 3 shows a precision of 75%. In this graph, Data 1 and Data 5 show almost no
variation in terms of precision. Data 3 displays a significantly lower precision rate in the case of FL compared
to centralized learning. Thus, in terms of precision, FL yields result similar to centralized learning, with only
minor variations observed in the comparative analysis.
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Fig. 4.3: Training Accuracy of the Global Model

Fig. 4.4: Comparison Graph of the Accuracy of Centralized and Federated Learning

In Fig. 4.6, we employed UAV data and trained it using the FL process and then the centralized process,
subsequently conducting a comparative analysis based on recall. Data 1 and 4 indicate the recall rate, Data 2
shows 80%, Data 3 shows a recall of 90%, and Data 5 shows 75% in the case of centralized learning. For FL,
Data 1 and 2 demonstrate a recall of 90%, Data 3 shows 85%, and Data 4 and 5 exhibit a recall of 83%. In
this case, as well, Data 3 shows better results in centralized learning and lower results in the case of FL. Data
4 displays significant variation in terms of recall for FL and centralized learning.

5. Conclusion and Future Work. The primary focus of this paper is the deployment of multi-UAVs
and the incorporation of privacy measures through the utilization of FL. This study addresses machine learning-
specific challenges, such as centralized training. The proposed model applies FL techniques to train each UAV’s
data locally and leverages decentralized UAV data to achieve privacy-preserving advantages. Furthermore,
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Fig. 4.5: Comparison Graph of Precision of Centralized and Federated Learning

Fig. 4.6: Comparison Graph of Recall of Centralized and Federated Learning

this paper includes a comparative analysis between ML Models and FL Models, evaluating their accuracy,
precision, and recall. The findings demonstrate FL’s superiority over centralized learning regarding privacy
protection, as raw data is not directly transmitted to the server. Instead, UAVs locally train their models,
which are subsequently sent to the server for aggregation as a ”global model.” The results reveal enhanced
accuracy, precision, and recall in the federated model compared to the local model, providing a comprehensive



Synchronous Federated Learning based Multi Unmanned Aerial Vehicles for Secure Applications 201

comparison of traditional centralized versus federated models. Future research endeavors could expand upon
the development of UAV networks to facilitate intercommunication among them. Additionally, the optimization
of UAV placement in terms of height and angle could be explored to improve coverage, capacity, and secure
communication within the network. Furthermore, the integration of FL into a multi-UAV network can enable
the implementation of various efficient routing protocols and path planning techniques to enhance quality of
service (QoS) metrics.
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