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AUTOMATIC CONTROL OF LOW VOLTAGE LOAD IN POWER SYSTEMS BASED ON
DEEP LEARNING

YAOHUI SUN∗, HONGYU ZHANG†, HAOLIN LI‡, SHU WANG§, AND CHUNHAI LI¶

Abstract. Due to the interference of false data, there is a large error in the mining results of low voltage loads in the power
system. In response to this problem, the author proposes a design of an intelligent mining system for low voltage loads in the
power system based on deep learning. Using ARM+DSP dual CPU structure, initializing the adapter agent, and using dual arm
spiral antennas, designing a low-voltage load monitor to detect partial discharge signals in the 500-1500 MHz frequency band and
suppress noise interference; By transmitting monitoring information to the intelligent switch through CAN bus or 485 bus, remote
monitoring can be achieved; Based on the contact points and current characteristics of the circuit breaker, a current transformer
has been designed to reduce the range of induced voltage variation; Construct a continuous set of functions MMD in the space,
adjust the original network structure, establish a deep learning mining model, initial network parameters, eliminate false data
in the network, optimize the network using target domain data, and combine mining engines to achieve intelligent data mining.
According to the experimental results, the maximum difference between the load of phase A of the data processing system based on
numerical simulation and the actual data is 1000 kVA at a time of 6 seconds; When the load of phase B is 4 seconds, the maximum
difference between it and the actual data is 2000 kVA; When the load of phase C is 8 seconds, the maximum difference between it
and the actual data is 2000 kVA. It has been proven that the mining error of the system is 0, and it has a precise mining effect.
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1. Introduction. The construction of the power system is an important guarantee for the well-being
of the people, social stability, and national prosperity, and is an important lifeline industry. Promote green
development, promote harmonious coexistence between humans and nature, accelerate the green transformation
of development methods, coordinate the high-quality development of the economy and the improvement of
ecological environment level, reduce energy consumption and carbon dioxide emissions per unit of GDP by
13.5% and 18% respectively [19]. This is a new requirement proposed by Premier Li Keqiang on behalf of the
State Council to the energy and power industry at the Fourth Session of the 13th National People’s Congress.
The production and consumption of electricity are completed simultaneously, and large-scale and long-term
energy storage technology is not yet mature. In power load forecasting, there is a common phenomenon of
imbalance and disharmony between multiple prediction results. Without accurate and reliable load forecasting,
it will result in large-scale energy waste, environmental pollution, and economic losses. In a broad sense, power
load forecasting refers to the prediction of electricity consumption based on multiple influencing factors in
the next hour to several years. Short term load forecasting is of great significance in ensuring the planning,
reliability, and economic operation of power systems. The author mainly discusses the application of deep
learning in short-term power load forecasting [16].

One of the traditional load forecasting methods is time series based forecasting methods, such as regression
analysis, exponential smoothing, multiple linear regression, Autoregressive Integrated Moving Average Model
(ARMA), and its improved algorithm ARIMAX. The basic idea is to predict future load values from the past
and present load values of random time series. Its advantage lies in considering the temporal relationship of the
data, while its disadvantage lies in the fact that the required time series is stationary and has limited predictive
ability for nonlinear relational data, and has strict requirements for the stationarity of temporal data [12]. Due
to the advancement of computer technology, the field of machine learning is undergoing another wave. Machine
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learning algorithms are widely used in various fields such as image recognition, object detection, natural language
processing, and have also achieved good results in power load forecasting. Various advanced machine learning
technologies such as reinforcement learning and transfer learning have been used in load forecasting. The
limitation of machine learning lies in the insufficient learning ability of high-dimensional data. Deep learning can
simplify the original data of scum, extract effective information, and form features. Artificial Neural Network
(ANN) is one of the fundamental algorithms of machine learning, which is a standard neural network composed of
input layer, output layer, and hidden layer. Another machine learning algorithm for load forecasting is Support
Vector Machine (SVM), which has good performance in small-scale data processing but poor performance in
handling massive data. Deep Learning (DL) is a branch of machine learning, whose architecture is based on
neural networks and more complex models. It has more hidden layers and loop structures, which endows it
with stronger learning ability, adaptive ability, fault tolerance, autonomous reasoning ability, and generalization
ability.

2. References. The Unified Power Flow Controller (UPFC) has gradually been put into current engi-
neering applications due to its ability to quickly and independently control the active and reactive power of
transmission lines, and adjust the distribution of system power flow. However, while UPFC brings many techno-
logical advantages, it also significantly increases the complexity of the power grid structure and operation mode,
posing great challenges to the safe and stable operation of the power system. Therefore, studying the safety
correction control of power systems containing UPFC is of great significance for ensuring the safe operation of
the power grid.

At present, the conventional calculation methods for power system security correction are mainly divided
into two categories, namely sensitivity based methods and optimization planning based methods. The sensitivity
method generally ignores the influence of reactive power, so there is a lack of consideration for the reactive power
control capability of UPFC in systems containing UPFC. In contrast, optimization planning methods can be
better applied to scenarios with UPFC [4]. In summary, when considering the minimum number of adjustment
components and the minimum adjustment amount as the optimization objectives for system safety correction,
current research usually adopts the establishment of mixed integer nonlinear programming (MINLP) models,
but these models are computationally complex and often accompanied by solveless situations. Therefore, how
to improve traditional physical model based security correction methods and maximize the computational
efficiency and convergence of security correction is the main problem currently facing research in this field [3].

In recent years, artificial intelligence has developed rapidly, and machine learning methods represented by
deep learning have been widely favored in the field of power systems due to their ability to process large-scale
data and high computational accuracy.

Song, Z. Z. J proposed a new adaptive learning deep belief network (ALDBN) with a series of growth and
pruning algorithms to dynamically adjust its structure when extracting features using ALDBN. Specifically, a
neuron growth algorithm considering individual and macro influences was designed to detect unstable hidden
neurons, and a new hidden neuron was added around each unstable neuron to compensate for the shortcom-
ings of local structure in feature extraction [14]. Huang, Q applies pumped storage hydropower (PSH), which
can quickly track load changes, operate flexibly and reliably, balance system power, and minimize bus voltage
deviation. In addition, in order to obtain the optimal control strategy for PSH, a deep reinforcement learning
algorithm, namely a deep deterministic strategy gradient, is used to train the agent to solve the continuous
transformation problem of the pumped storage hydroelectric wind solar (PSHWS) system [7]. Wen, T consid-
ered a multi-agent system based load frequency control method for multi-area power systems under false data
injection attacks. This study can provide a better solution for load frequency control in multi region power
systems under false data injection attacks. Firstly, an event triggering mechanism was introduced to determine
which data should be transmitted in the controller to save limited network bandwidth. In addition, a network
attack model was established using Bernoulli random variables. Then, the conditions for the system to maintain
asymptotic stability under attack are given. Finally, the effectiveness of the theory proposed in this paper was
verified through simulation [18].

In response to the problems existing in the traditional system mentioned above, the author proposes a
design method for an intelligent mining system for low-voltage loads in power systems based on deep learning.
This method can analyze the complex features hidden in low-voltage loads of high-voltage switchgear in detail,
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and accurately mine low-voltage loads in power systems under complex monitoring task conditions.

3. Methods.

3.1. System hardware structure design. The power system adopts advanced ARM+DSP dual CPUs,
which receive three-phase current data collected by the power system monitor and send it to the station control
service center through the IEC61850 protocol, achieving the remote monitoring function of the power system.
The hardware structure of the system is shown in Figure 2.1.

(1) Adapter. The adapter is used to process the initialization information of the agent and achieve com-
munication between the agent and the remote data collection system. This system includes the health status,
location, and current system resources of each agent [11]. Each agent has an alias in the adapter, so the agent
only needs to know its alias when communicating to determine where to run. Another function of this adapter
is to decompose mining requests sent by UIA, and then send them separately to the corresponding DMA. After
the mining process is completed, the results are directly merged and sent to UIA.

(2) Low voltage load monitor. The low-voltage load monitor is mainly used to monitor the insulation
characteristics of the box, as shown in Figure 3.1.

From Figure 3.1, it can be seen that the online monitor is composed of a detection circuit, an IED, and an
integrated information platform. It transmits partial discharge signals through high-frequency double shielded
antennas, obtains as much discharge information as possible through the detection circuit, and can better
suppress noise interference. Adopting a dual arm spiral high-frequency double shielded antenna, it can detect
partial discharge signals in the 500 1500 MHz frequency band. Realize high-frequency dual shielding results
through the IED display screen, and transmit the results to the integrated information platform through optical
fiber to complete data monitoring.

(3) Server. The controller is designed using a dual CPU structure of ARM9 chip S3C2440A and TMS320F28335,
with CAN network interface, RS-485 network interface, and RFID module set on the periphery. The IRIG-B
code matching is used to provide accurate and unified time reference [2]. The high-voltage power system fully
considers the impact of electromagnetic interference on equipment, and divides and isolates the power supply
during the design of the power supply section. The server structure is shown in Figure 3.2.

As shown in Figure 3.2, the monitoring information is transmitted by the server to the intelligent switch
through CAN bus or 485 bus. The intelligent identification unit identifies the information of the exchange
device through RFID module and communicates with the service center according to the IEC61850 protocol to
achieve remote monitoring function.
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(4) Power supply voltage. Using a switching power supply module, the input AC 220 V is converted to
DC 5 V, which is then converted to 3.3 V by the linear regulator chip MIC29502BU. Finally, by adjusting
the chip LM1117, the 3.3 V voltage is converted to 1.5 V as the power supply. Due to the limitations of
high-voltage conditions in the power system, the power supply of the monitoring device must be configured
internally, using fixed energy sources such as batteries, which cannot guarantee the long-term operation of the
system [5]. Therefore, a special current transformer has been designed, using permalloy as the iron core to
ensure that the iron core generates high magnetic current when the excitation magnetic core is saturated at
low current, thereby reducing the range of induced voltage variation, when the temperature of the busbar rises,
based on the contact points and current characteristics of the circuit breaker, the principle of electromagnetic
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induction monitoring is used to directly obtain the low-voltage power supply of the equipment from the circuit
breaker contact plate or busbar.

(5) Mining Engine. Unlike general database queries, mining engines use data mining techniques to process
databases, generating specific query sets from a specific set of objects, and automatically accessing the database
based on the query sets, thereby mining hidden rules in the database. The mining engine focuses on the low-
voltage load library and load information library of high-voltage switchgear, achieving data mining of low-voltage
loads of high-voltage switchgear. Figure 3.3 shows the system structure of the mining engine.

The mining engine takes object, domain knowledge, and pattern information as inputs, and the system
generates some random query data. These query data are used as input to the database model, and the system
predicts and evaluates the returned results [6].

3.2. System software design. Due to the differences in current distribution across different voltage and
active power datasets, which affect the accuracy of mining results, it can be replaced with the weights of the
fully connected layer, and the layer connection weights can also be adjusted to retain or abandon the weight
feature selection of some source networks, learn new network weights to achieve the goal of retaining both
source domain information and absorbing target domain information, and improve the learning ability of the
network [8]. The parameters of the non adjustable layer are directly transferred and fixed from the source
domain network, while the fully connected layer is retrained using target domain data, replaced and added,
eliminating fixed parameters in the network to reduce learning rate, and optimizing the network using target
domain data. Based on the hardware structure design of the power system, the intelligent mining process based
on the above analysis is shown in Figure 3.4.

In Figure 3.4, first preprocess the source and target domain data; Then, the original deep neural network
model or the trained network structure and parameters are trained using source domain data to establish a
source domain classification and prediction model [15]; Finally, by analyzing the maximum mean difference
between the source domain and target domain data through MMD, the distribution distance is determined,
and pre training and preprocessing are carried out to complete the construction of the data mining model.
Assuming that F is a continuous set of functions in the sample space, MMD can be expressed as:

MMD[F, p, q] = sup
f∈F

(Ep[f(x)]− Eq[f(y)]) (3.1)

Assuming x and y are datasets from distributions p and q, and the size distributions of the dataset are m
and n, the MMD empirical values are estimated as follows:

MMD[F, x, y] = sup
f∈F

(
1

m

m∑
i=1

f (xi)−
1

n

n∑
i=1

f (yi)

)
(3.2)
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From equation (3.2), it can be seen that MMD depends on a given set of functions for a specific dataset.
Under the same distribution of p and q, based on the properties of MMD, MMD is O, then it is required that
F be sufficiently widespread. In order to improve the convergence speed of MMD empirical estimation, it is
necessary to adjust the original network structure based on MMD to obtain a new target domain network
structure, while selectively mining the parameters trained from the original network structure.

4. Experimental Results and Analysis. In order to verify the rationality of the design of an intelligent
mining system for low voltage loads in power systems based on deep learning, experimental verification analysis
was conducted.

4.1. Experimental environment settings . Applying the system to an airport substation in a certain
city, taking the temperature of the three-phase temperature rise monitoring point in the power system as an
example, the overall topology of the monitoring center is shown in Figure 4.1 for operation data monitoring
from September 20, 2019 to September 24, 2019 [20].
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4.2. Experimental data analysis. Under the normal operation of various sensors in the power system,
real-time three-phase load monitoring data can be effectively obtained, as shown in Figure 4.2.

4.3. Experimental results and analysis. Compare and analyze the mining results of three-phase low-
voltage loads in power systems using machine learning based data processing systems, numerical simulation
based data processing systems, and deep learning based data mining systems, as shown in Figure 4.3a-c [13].

From Figure 4.3, it can be seen that the maximum difference between the load of phase A using machine
learning based data processing system and the actual data is 5000 kVA at a time of 6 seconds; When the load
of phase B is 10 seconds, the maximum difference between it and the actual data is 3000 kVA; The maximum
difference between the load of phase C and the actual data is 3000 kVA at a time of 10 seconds [10, 1, 17, 9].
The load of phase A of the data processing system based on numerical simulation, at a time of 6 seconds,
differs from the actual data by a maximum of 1000 kVA; When the load of phase B is 4 seconds, the maximum
difference between it and the actual data is 2000 kVA; When the load of phase C is 8 seconds, the maximum
difference between it and the actual data is 2000 kVA.

5. Conclusion. Verified the feasibility of applying deep learning to power system security correction. By
using DNN to train and learn massive historical data, a node adjustment state recognition model with high
accuracy was obtained. Greatly reducing the optimization space for node adjustment calculation, it is expected
to provide good safety protection in the event of limit exceeding faults in large systems. The author has designed
an intelligent mining system for low voltage loads in power systems based on deep learning. The intelligent
power system not only has the functions of traditional power systems, but also has intelligent monitoring
and fault diagnosis functions. It can complete corresponding operations when analyzing and processing the
status of the power system locally, accurately mining low voltage loads, and laying the foundation for achieving
intelligent control of power systems, however, its anti-interference function still needs to be strengthened, so
future research should focus on this and strive to provide reference for relevant research in this field.

Funding. Science and Technology Project of State Grid Jilin Electric Power Co., LTD., 2022 (Project No.:
2022-19).

REFERENCES

[1] H. Ahn and H.-J. Cho, Research of automatic recognition of car license plates based on deep learning for convergence traffic
control system, Personal and Ubiquitous Computing, 64 (2021), pp. 87–99.

[2] W. Deng, W. Pei, N. Li, X. Zhang, Y. Yi, and L. Kong, Operational control of low-voltage mtdc systems in a cyber-physical
environment, CSEE Journal of Power and Energy Systems, 8 (2020), pp. 1569–1582.

[3] M. Everett, Y. F. Chen, and J. P. How, Collision avoidance in pedestrian-rich environments with deep reinforcement
learning, IEEE Access, 9 (2021), pp. 10357–10377.



Automatic Control of Low Voltage Load in Power Systems Based on Deep Learning 959

 

0

5

10

15

20

25

30

35

40

2 4 6 8 10
Lo
ad
/k
V
A

Time/s

A Data Mining System Based on Deep Learning

A Data Processing System Based on Machine Learning

Data processing system based on numerical simulation

(a) A-Phase

 

0

5

10

15

20

25

2 4 6 8 10

Lo
ad
/k
V
A

Time/s

A Data Mining System Based on Deep Learning

A Data Processing System Based on Machine Learning

Data processing system based on numerical simulation

(b) B-Phase

 

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10

Lo
ad
/k
V
A

Time/s

A Data Mining System Based on Deep Learning

A Data Processing System Based on Machine Learning

Data processing system based on numerical simulation

(c) C-Phase

Fig. 4.3: Comparison of data mining results for different systems

[4] Y. He, X. Li, and H. Nie, A moving object detection and predictive control algorithm based on deep learning, Journal of
Physics: Conference Series, 2002 (2021), p. 012070.

[5] R. M. Henriques, J. A. Passos Filho, and G. N. Taranto, Determining voltage control areas in large scale power systems
based on eigenanalysis of the qv sensitivity matrix, IEEE Latin America Transactions, 19 (2021), pp. 182–190.

[6] R. R. Hossain, Q. Huang, and R. Huang, Graph convolutional network-based topology embedded deep reinforcement learning
for voltage stability control, IEEE Transactions on Power Systems, 36 (2021), pp. 4848–4851.

[7] Q. Huang, W. Hu, G. Zhang, D. Cao, Z. Liu, Q. Huang, and Z. Chen, A novel deep reinforcement learning enabled agent
for pumped storage hydro-wind-solar systems voltage control, IET Renewable Power Generation, 15 (2021), pp. 3941–
3956.

[8] R. Huang, Y. Chen, T. Yin, X. Li, A. Li, J. Tan, W. Yu, Y. Liu, and Q. Huang, Accelerated derivative-free deep



960 Yaohui Sun, Hongyu Zhang, Haolin Li, Shu Wang, Chunhai Li

reinforcement learning for large-scale grid emergency voltage control, IEEE Transactions on Power Systems, 37 (2021),
pp. 14–25.

[9] R.-H. Hwang, J.-Y. Lin, S.-Y. Hsieh, H.-Y. Lin, and C.-L. Lin, Adversarial patch attacks on deep-learning-based face
recognition systems using generative adversarial networks, Sensors, 23 (2023), pp. 83–90.

[10] J. H. Lee, B. H. Kim, and M. Y. Kim, Machine learning-based automatic optical inspection system with multimodal optical
image fusion network, International Journal of Control, Automation and Systems, 19 (2021), pp. 3503–3510.

[11] J. Li, S. Chen, X. Wang, and T. Pu, Load shedding control strategy in power grid emergency state based on deep reinforce-
ment learning, CSEE Journal of Power and Energy Systems, 8 (2021), pp. 1175–1182.

[12] J. Li, T. Yu, and X. Zhang, Coordinated automatic generation control of interconnected power system with imitation guided
exploration multi-agent deep reinforcement learning, International Journal of Electrical Power & Energy Systems, 136
(2022), p. 107471.

[13] , Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement
learning, Applied Energy, 26 (2022), pp. 1865–1885.

[14] W. Song, S. Zhang, Z. Wen, and J. Zhou, A novel adaptive learning deep belief network based on automatic growing and
pruning algorithms, Applied Soft Computing, 104 (2021), pp. 69–102.

[15] X. Sun and J. Qiu, A customized voltage control strategy for electric vehicles in distribution networks with reinforcement
learning method, IEEE Transactions on Industrial Informatics, 17 (2021), pp. 6852–6863.

[16] H. Tang, S. Wang, K. Chang, and J. Guan, Intra-day dynamic optimal dispatch for power system based on deep q-learning,
IEEJ Transactions on Electrical and Electronic Engineering, 16 (2021), pp. 954–964.

[17] W. Tang, Q. Yang, X. Hu, and W. Yan, Deep learning-based linear defects detection system for large-scale photovoltaic
plants based on an edge-cloud computing infrastructure, Solar Energy, 231 (2022), pp. 527–535.

[18] T. Weng, Y. Xie, G. Chen, Q. Han, Y. Tian, L. Feng, and Y. Pei, Load frequency control under false data inject attacks
based on multi-agent system method in multi-area power systems, International Journal of Distributed Sensor Networks,
18 (2022), pp. 4610–4618.

[19] L. Yin, C. Zhang, Y. Wang, F. Gao, J. Yu, and L. Cheng, Emotional deep learning programming controller for automatic
voltage control of power systems, IEEE Access, 9 (2021), pp. 31880–31891.

[20] L. Zhu and Y. Luo, Deep feedback learning based predictive control for power system undervoltage load shedding, IEEE
Transactions on Power Systems, 36 (2021), pp. 3349–3361.

Edited by: B. Nagaraj M.E.
Special issue on: Deep Learning-Based Advanced Research Trends in Scalable Computing
Received: Sep 18, 2023
Accepted: Nov 11, 2023


