
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 2, pp. 1152–1166, DOI 10.12694/scpe.v25i2.2620

OPTIMUM BATCH SCHEDULING MODEL FOR QUALITY AWARE DELAY SENSITIVE
DATA TRANSMISSION OVER FOG ENABLED IOT NETWORK

NARAYANA POTU∗, CHANDRASHEKAR JATOTH†, AND PREMCHAND PARVATANENI‡

Abstract. The emerging fog networks in the internet of things (IoT) applications provide flexibility and agility for service
providers. The combination of fog nodes and edge nodes enable them to deliver a given network service. However, the selection of
suitable edge and fog nodes and their scheduling still remain a research challenge. Finding a globally optimal scheduling of oversized
data transmission over IoT applications for industrial requirements is crucial. Optimal batch scheduling has been regarded as a
viable way to achieve optimal scheduling in other contemporary network models. This manuscript has projected an Optimum
Batch Scheduling Model (OBSM) for Quality aware Delay Sensitive Data Transmission over Fog Enabled IoT Networks. A novel
clustering technique has been proposed in this manuscript to group the transmission nodes (fog or edge nodes) and data packets,
which further pairs each group of data with one of the corresponding node group to achieve delay sensitivity and other quality
factors such as energy efficiency. The data scheduling between data and node group is drawn from the previous contribution
-”Quality aware Energy Efficient Scheduling Model (QEESM) for Fog Enabled IoT Network”. The simulation results have shown
that, in terms of average make span rate, average round trip time, and energy consumption, the batch scheduling model OBSM
performs noticeably better than the contemporary scheduling models. The OBSM scheduling model’s average make-span rate,
roundtrip time, as well as energy consumption per make span are 23.3 7.03, 17.8 5.2, and 11.33 6.9 joules, respectively, which
conclusively demonstrate that the OBSM model outperforms the existing models. A novel batch scheduling algorithm has been
proposed using a unique unsupervised learning approach that suggested to cluster the transmission requests and transmission
channels in to multiple clusters.

Key words: Internet of Things, Industrial IoT, fog computing, edge nodes, Optimum Batch Scheduling Model, QALS

1. Introduction. Introduction. There is an increase in communication and computation latency and re-
sponse times as a result of IoT devices generating a large volume, variety, and velocity of data [1].For instance,
IIoT gives connectivity among production lines and customers such that customers might guide the process of
production directly as stated in [2], and connectivity of IIoT enables exchange of data among overall indus-
trial devices such that entire production process could rapidly change by adapting to novel products [3].The
significant and fundamental part in IIoT is industrial networks.

In order to fulfill the crucial pre-requisites of industrial applications, the networks of industry have to
transmit data, with accuracy in the control of data transmission, provision of sufficient bandwidth aimed at
video-streams and handling each packet in huge communications Several industrial wireless and wired networks
have been projected for managing these high pre-requisites scenarios. Yet, there has been no one single network
architecture, covering all the industrial pre-requisites. Heterogeneous networks comprising of wired network(s)
and several wireless field networks are being considered as the future solutions for the industrial networks.

IoT has been a word for computing systems that refers to things created for rationally linking the animal
world through the web, also known as the ”things oriented vision,” as mentioned in [4]. The architecture of the
Internet of Things may be reduced to three mechanisms: devices, hardware, as well as middleware, depending
on this previous contribution [5]. The first section of the system consists of the sensors and actuators needed for
direct human and device communication in the physical world. Next, it is the responsibility of the gateways to
enable and centralise communication among diverse objects. The third component, middleware, which is often
found in the cloud, saves the data collected from other components as well as condenses the knowledge based
on that data. The ”REST (Representational state transfer)” web service is typically used by IoT middleware
to adopt the SOA (service-oriented architecture).

∗University College of Engineering, Osmania University, Hyderabad, India (Corresponding author, 1potunarayana@gmail.com)
†National Institute of Technology, Raipur, India (chandrashekar.jatoth@gmail.com).
‡University College of Engineering, Osmania University, Hyderabad, India.

1152

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1153

The environment of IoT has been characterized by extreme heterogeneity where several devices of numerous
architectures communicate among themselves along with other services of internet as in [5] [6]. Within this
heterogeneous architecture, the fundamental role of gateways is twofold: they enable interaction of minimal
computation performance systems to access internet providers as well as assure the secure communication of
the wireless sensor nodes while the middleware interacts with diversified network protocols. However, they are
faced with challenges: the gateways of IoT accept device data from several different communication networks;
they need to retransmission the statistics to internet as well as convert the data received for Web service. The
gateways would be further required to get packet data from hundreds of sensor systems as well as actuators. The
tasks require a minimal latency in transmission as well as rapid data processing. In several instances, process
bottle necks occur in REST call response time and not in transmission of packet. Thus, the usage of buffers
has become essential for receiving and processing of data at the device end. In view of the extreme diversity
of sensor data gathered by the devices, maximal transmission priority needs to be accorded for authentication
of novel devices or actuators calls in the network. The gateway needs to prioritize the urgent calls over regular
ones in the incoming traffic. Thus, the gateway will have to address the problems related to huge amount of
data volumes, prioritization, processing of packets, synchronous messaging, and performance difference among
network mechanisms.

There could be an effect when the performance of various algorithms and protocols changes. Some of
the sensor devices, for example, use TCP transport, while others use UDP, and still others don’t have a
transport layer at all. It is also possible to mention connection and physical-layer strategies, such as the (IEEE
802.11) Wi-Fi network or the (IEEE 802.15.4) ZigBee network. Furthermore, when the gateway uses HTTPS
protocol, sensors often use device manufacturer’s proprietary protocols in the layer of application. In addition,
this cross-pollination of technologies adds IoT gateway’s computational complexity. The packet’s priority is
to recognize and manage packets with the highest priority. For instance, sensors that has been evaluating
something of extreme importance, sensor components that have demanded action through actuators, or even
tasks of high priority, such as sensor authentication in a network before forwarding data packets. In the case
of Synchronous Messaging, synchronous links between middleware and sensor devices may be a bottleneck
because the middleware’s for the following packet to be processed, a response is necessary. Additionally, these
difficulties call for the application of IoT gateway methods including traffic shaping, packet discarding, and
queue management. In order to provide effective and equitable treatment again for requests processed by
the gateway, this study proposes an IoT gateway including QoS qualities based on a network prioritization
algorithm.

1.1. Motivation. The evolving IoT is thought of as the next internet generation. Actuators, cars, phones,
cars, and sensors are examples of things that interact to provide a service. Cloud computing is a new computing
model that allows users to access a shared pool of resources on demand. The cloud and IoT are currently
attracting both industry and academia’s attention. Sensor data is sent to a gateway, which sends it to the cloud.
Typically, the cloud stores, processes, transmit, and stores user-generated data. When data transmission from
sensor nodes to the cloud fails, data is re-transmitted until it succeeds.

1.2. Problem statement. In the fog IoT prototype, users serve as data requesters and the IoT serves
as a source of data for the cloud. When there is an internet access, users may be able to get the necessary
sensor data from the cloud. All of these applications for cloud-based IoT integration, such as smart cities and
buildings depend on IoT to consistently deliver sensory data to the cloud in response to user requests [7]. Since
non-rechargeable batteries are used in most sensors, data sensing performance, transmission, and processing
depletes battery power over time. Several models exist for optimizing power consumption and improving IoT
reliability. However, power consumption reduction models have negatively impacted network reliability.

1.3. Organizing of the Manuscript. In the further sections of this manuscript, section-2 refers to the
related work summary from the literature review. Section-3 provides insights into the materials and methods,
proposed model narrative, its algorithm flow, and other key metrics that signify the mode. Section-4 provides
insights into experimental study and section-5 refers to the conclusion based on the efficiency aspects estimated
from the model.

1154 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

2. Related Research. According to Liu et al., [8], an ADEC (adaptive dynamic energy consumption)
improvement strategy was proposed based on the JNCC model. The Improved Software-Defined WSN was
developed by Y Duan et al., [9]. (Improved SD-WSN). Managing the network and ensuring adequate coverage
are the primary concerns. To reduce energy consumption, C Zhu et al., [10] proposed a novel WSN-mobile
cloud computing integration scheme that includes two parts: 1) a prioritized sleep scheduling algorithm for
WSN and 2) a time-based selective data transmission algorithm for mobile cloud computing.

Each sensor’s computing load and energy consumption are both reduced thanks to their use of fog-cloud
hierarchical network architecture. Wang et al., [11] that a single, energy-constrained source can be used to power
multiple energy-constrained relays in a wirelessly powered Internet of Things by selecting the best power beacons
(PBs) (IoT), have proposed it. Over the Rayleigh fading channel, each scheme has closed-form expressions for
power outage, secrecy outage, and energy efficiency IoT-cloud service prototype by S Kim et al., used Docker
Swarm-based container orchestration to ensure the service’s reliability and tested its uptime [12].

Each application’s delay bound and target reliability were guaranteed using a QoS framework for arbitrary
hybrid wired/wireless networks by S Zoppi et al., [13]. An alternative scheduling algorithm for wireless sensor
networks is also proposed. Three methods are recommended by Y Peng and colleagues [14]: short, ongoing, and
noise-related faults. Using an algorithm that estimates probability-guaranteed limits on packet reception ratio,
W Sun et al., [15] propose a smart grid solution. According to J Yuan et al., [16], trusting IoT edge devices
requires a multi-source feedback information fusion approach. For large-scale IoT edge computing, they present
a low-overhead trust evaluation mechanism. Traditional trust schemes can be replaced by a new algorithm
that incorporates feedback from multiple sources. In order to allow any TSCH node to transmit or receive
frames at any time, H Park et al., [17] and his colleagues developed STATIC TSCH scheduling. Large-scale
smart meter networks can be built with TSCH. Broadcast and unicast slots were defined separately to prevent
network control message collisions.

In order to create an IoT platform with high exile and reliability, S C Wang et al., [18] used fog and
cloud computing in conjunction (IFCIoT). IFCIoT can be used in a variety of other applications and disaster
monitoring systems. All fault-free nodes in the IFC IoT platform can come to an agreement on a protocol with
the smallest number of messages, while still allowing for malicious and dormant components. D Purkovic et
al., [19] have proposed an energy-efficient communication protocol. In order to collect environmental data with
the least amount of energy possible, this protocol is used. It’s designed for sensors with short battery lives and
energy harvesting. Teach-in and Data Telegram packets are used to collect the data.

JuanLuo et. al [20] proposed to increase the system efficiency of fog devices as well as decrease service
latency, a multi-cloud into multi-fog architecture is used, along with the construction of two different service
models using containers. The MILP was used by Al-Shammari et al., [21] to investigate the energy efficiency of
a smart city service embedding framework. Using this framework, IoT systems will be able to meet the virtual
node and link requirements of business processes while using less power. Fog computing for health monitoring
was investigated by Ida Syafiza M. Isa et al., [22]. They used a MILP model to process and analyze patient
electrocardiogram signals. Use of the most energy-efficient locations for processing and networking servers.

PegahGazori et. al. [23] concentrated on scheduling tasks in fog-based IoT systems with the goal of
minimizing length of service latency and computation cost while adhering to resource and deadline limitations.
We have conducted research using the reinforcement learning technique to solve this issue [23]. An IoT-based
real-time HVAC control system [24] was designed and implemented using thermal comfort, demand response,
and user feedback. In order to forecast the room’s thermal parameters, they use artificial neural networks
trained on historical data. With the help of MILP, the HVAC control problem is optimized for energy efficiency
and user satisfaction. Decentralized micro grid energy exchange mechanisms have been proposed by Laszka
et al., [25]. Consumers no longer have to worry about their privacy or the security of the system when they
trade energy. In order to quickly and securely clear offers, the platform uses a hybrid MILP solver approach.
IoT service selection was proposed by M E Khanouche et al., [26]. Energy consumption is minimized while
service quality requirements are met by this multi-objective optimization problem. Pre-selecting services that
meet the quality of service (QoS) requirements of end-users is a goal of each others. Pareto’s concept of relative
dominance relations is used to select the best service. It is the user’s preferences that determine the relative
dominance of a potential service (QoS). Near-optimal solutions for large-scale IoT environments with thousands

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1155

of distributed entities can be found using the EQSA algorithm (about 98 percent).
The Contemporary models “QEESM (Quality Aware Energy Efficient Scheduling Model) [27]”, “CFCA

(Container based Fog Computing Architecture) [28]”, and “QALS (Quantum approach of load scheduling) [29]”
are competent methods to perform data transmission with minimal droop ratio across IoT networks using fog
computing. However, none of the aforesaid methods considering the context of the oversized delay sensitive
data transmission. Considering the scope of a scheduling model to perform optimal transmission of oversized
delay sensitive data transmission over fog enabled IoT networks, this manuscript endeavoured to portray an
Optimum Batch Scheduling model for Quality aware Delay Sensitive Data Transmission over Fog Enabled IoT
Networks.

3. Methods and Materials. The optimum batch scheduling model have been addressed to achieve delay
sensitive and quality aware data scheduling In IoT networks with fog support. The issue of data frame loss
is critical in IoT networks, which is due to overloaded transmission or by any crux of network quality issues
that often admitted by IoT devices with weak resources. Hence, suboptimal data scheduling in IoT networks
is a significant research issue to address. In order to this, earlier contribution has suggested a novel scheduling
strategy for Fog enabled IoT networks that intended to achieve energy efficiency and other quality factors [27].
However, the overwhelmed data transmission sources of IoT networks, which has been connected to fog network
based cloud services such as industrial IoT networks still causes considerable data frame drop ratio, which often
critical to address in delay sensitive fog enabled IoT networks. To address this issue, this contribution has
portrayed a batch scheduling strategy, which is a firm extension of the earlier contribution “Quality-aware
Energy Efficient Scheduling Model (QEESM) for Fog Enabled IoT Networks”. The suggested batch scheduling
strategy is an unsupervised clustering technique that partitions the data frames to be transmitted over fog
enabled IoT networks in to multiple clusters and then performs QEESM scheduling model on each cluster in
the priority order of these clusters defined under delay sensitivity. The subsequent sections explore the methods
and materials used in scheduling process portrayed [30], [31].

3.1. Data-frames and node clustering process. The process of clustering the nodes is initiated based
on the estimation of distance amidst the idle times among the fitness function. Every cluster signifies the
nodes based on the idle time overlap conditions. The fundamental function in the process of nodes clustering
is to focus on the start and end time related to the nodes to observe overlap conditions. Accordingly, all the
overlapping nodes are grouped into one. In line with the above the mentioned process, even the data-frames
are grouped in order that the data-frames overlap based on the time-interval feasible for handling arrival and
residual session span.

The process adapted in the case of the data-frames streaming to scheduler on basis of incremental arrival
time, and the time interval nodes. The process refers to the conditions wherein the incremental start-time is
considered, as well as the cluster - based method is triggered as a positive approach, to mitigate the risk of
data-frame loss or inappropriate scheduling of the nodes. The objective is to overcome certain challenges of
clustering which are imperative in the existing solutions.

In the proposed solution, the clustering process adapted is inspired by the traditional k-means clustering
algorithm [32], [33]. However, the change considered in the model is about unrestricting the cluster counts.
The emphasis is more about adhering to time series compatibility, wherein the newly arrived record relates to
the recently formed cluster or shall be allowed to form a new cluster. The new cluster formation shall be based
on the steps discussed in the sub-sections.

3.1.1. Node clustering. .When no more nodes satisfy the requirements, a cluster is considered complete.
The process proceeds with the remaining nodes after a cluster’s nodes are eliminated from the list. Until all
nodes are clustered, this process is repeated. Idle nodes are effectively grouped using node clustering algorithms.
Using a pre-sorted list, the methodical approach clusters nodes based on overlaps in idle time. Figure 3.1
illustrates how this algorithm forms clusters gradually to maximize network performance. Nodes are arranged
to maximize idle times using this thorough clustering technique, which enhances network performance.

Algorithm to cluster the idle nodes
The objective of the algorithm is to cluster nodes based on their idle time intervals, optimizing network

1156 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

performance in a fog-enabled IoT environment. The algorithm operates on a set of nodes with defined idle
time intervals and employs a clustering mechanism inspired by k-means but adapted for time interval-based
clustering.

1. Initialization and Node Sorting: Let L = {e1, e2, ..., en} represent the list of nodes, sorted in
ascending order based on the start times of their idle time intervals. This ensures idle_start(ei) ≤
idle_start(ei+1) for all i.

2. Cluster Centroid Initialization: The first node in the list, e1, is initialized as the centroid for the
first cluster, ctrdj , of the jth cluster nclj .

3. Cluster Formation:
• For each node ei in nL, the algorithm checks if idle_start(ei) < idle_start(ctrdj)+idle_duration
(ctrdj).

• If the condition is satisfied, ei is added to nclj .
4. Updating Clusters and Centroids:

• If new nodes are added to nclj , the algorithm sorts the nodes within the cluster in decreasing
order of their idle time durations.

• The node with the longest idle duration in nclj becomes the new centroid, ctrdj .
• If no new nodes are added, indicating that the cluster is complete, nclj is finalized.

5. Iteration:
• Remove the nodes of nclj from nL and increment j for the next cluster formation.
• Repeat the process until all nodes in nL are clustered.

6. Termination:
• The process ends when nL is empty, indicating all nodes have been clustered.

This algorithm effectively groups nodes based on overlapping idle time intervals, optimizing the utilization
of resources in a fog computing network. The mathematical approach ensures precision in clustering, leading
to enhanced network performance and efficiency.

3.1.2. Data-frames clustering process for schedule.. The scheduling process for idle frame interval
nodes is similar to that of data-frame clustering. Data frames are buffered and grouped by crucial transmission
times by the scheduler shown in figure 3.2. In this process, data frames are arranged according to arrival times.
The first data-frame in this ordered list, denoted as df , serves as the centroid of the first cluster, denoted
by dfcl1. Making this decision creates the foundation for cluster formation. The data-frame arrival times
and centroid transmission times are compared using the clustering method. Data frames whose arrival times
coincide with the centroid’s transmission interval are received by the cluster dfcl1. As a result, data frames
with comparable transmission properties are grouped. During the process, the data-frame from dfcl1 with the
maximum transmission end time is used to reform the cluster centroid. To capture the most representative
transmission characteristics of the cluster, dynamic centroid selection is essential. When the composition of
a cluster remains constant between centroid formations, it is considered final. Following finalization, these
clusters are eliminated from the list, and the remaining data frames are processed in the same manner. Until
every data frame is grouped into clusters, this cycle is repeated. The interval start list is replaced by the
data-frame list (DFL) and the arrival list of each data-frame, denoted as a(df), which are represented by the
evolutionary clustering algorithm for this frame. The transmission time that is needed is rtt(df). This cloning
of the clustering process is depicted in the algorithmic representation below.

Algorithm: Data-Frames Clustering
1. Initialization:

• Define dfL = {df1,df2, ..., dfn} as the list of data-frames, sorted in ascending order based on their
arrival times, a(dfi).

• Define dfrt
i as the required transmission time of data-frame fi.

• Initialize the cluster set, dfclj = ϕ, and a temporary set, ts = ϕ.
• Set the initial cluster centroid, trdfj , as the first data-frame in dfL.

2. Clustering Process:
• For each data-frame dfi in dfL:

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1157

Fig. 3.1: FlowChart Representing of the OBSM Node Clustering

– If a(dfi) < a(ctrdfj) + dfrt
j , add dfi to dfclj .

3. Centroid Update and Cluster Finalization:
• If new data-frames are added to fclj , determine the data-frame with the maximum sum of arrival

time and required transmission time, denoted as mrss.
• Update ctrdfj to the data-frame with the maximum mrss.
• If no new data-frames are added, finalize dfclj and remove its elements from dfL.

4. Iteration and New Cluster Formation:
• If dfL is not empty, increment the cluster index j and repeat the process with the remaining

data-frames in dfL.
• Set ctrdfj as the first data-frame in the updated dfL, and initialize a new cluster dfclj .

5. Termination:
• The process terminates when dfL is empty, indicating all data-frames have been clustered.

3.1.3. Ranking of the data-frame and cluster of nodes. . Each cluster of idle nodes is correlated
with the data-frames using specific criteria, allowing the process to estimate three objectives. Distances are
defined as the minimum start time of idle intervals for nodes within clusters and the minimum arrival time of
data-frames. A comparison is also made between the data-frame transmission time and the mean idle time in
clusters. Additionally, the process makes a comparison between the mean intervals of idle transmission times
for nodes in the same cluster and the variance in data frame transmission times for nodes. Idle node clusters

1158 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

Fig. 3.2: Flow Chart Representing of the OBSM Data Frame Clustering

can be identified by classifying idle clusters by least arrival time data in descending order. Based on their sorted
list position, these clusters are ranked according to arrival rate. The next step is to rank the data-frame clusters
according to position and sort them according to mean transmission time. Based on average idle time intervals,
clusters are ranked. Data-frame clusters are sorted in descending order using the variance in transmission times.
Based on the variance of idle intervals, idle node clusters are ranked. The intervals between data transmission
ranks, idle times, and transmission time deviation ranks are all estimated by this process. For every data-frame
cluster, a notable cluster of nodes is selected in order to accomplish several objectives. The algorithmic ranking
process for data-frame clusters is presented below. Please only use this process for Data-Frame Clusters.

The set of data-frame clusters, DFCL, is represented as dfcl1,dfcl2, ..., dfcl|DFCL|. The algorithm involves
cloning DFCL into a temporary set TC and creating ordered sets for data-frame clusters based on the least
arrival time, average residual session span, and deviation in transmission times. The algorithm iterates through
these sets, identifying data-frame clusters with the least arrival time, session span, and deviation. For each
identified cluster, a rank is assigned based on its order in terms of arrival time, transmission time, and deviation.
These ranks are used to move the data-frame cluster into respective ordered sets. The process continues until
all clusters in TC are ranked.

Algorithm signifying discriminative ranks for data-frame clusters
1. Initialization:

• Let DFCL = {dfcl1,dfcl2, ..., dfcln} be the set of all data-frame clusters.
• Define aoDFCL, soDFCL, and doDFCL as sets for arranging data-frame clusters based on least

arrival time, average session span, and deviation in transmission time, respectively.
• Initialize an index counter idx to 0.

2. Ranking Based on Arrival Time:
• For each cluster dfcli in DFCL:

– If dfcli is not in aoDFCL, find the cluster with the least arrival time and assign it to dfclia.

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1159

– Update aoDFCL by adding dfclia and assign it a rank based on its position in the ordered
set.

3. Ranking Based on Session Span:
• For each cluster dfcli in DFCL:

– If dfcli is not in soDFCL, find the cluster with the least session span and assign it to dfclis.
– Update soDFCL by adding dfclis and assign it a rank based on its position in the ordered set.

4. Ranking Based on Deviation:
• For each cluster dfcli in DFCL:

– If dfcli is not in doDFCL, find the cluster with the least deviation and assign it to dfclid.
– Update doDFCL by adding dfclid and assign it a rank based on its position in the ordered

set.
5. Increment Index and Repeat:

• Increment the index idx.
• Repeat the ranking process for each cluster in DFCL until all clusters have been ranked in aoDFCL,

soDFCL, and doDFCL.
6. Output:

• The output of the algorithm is the sets aoDFCL, soDFCL, and doDFCL with their respective
ranks, representing the discriminative ranks of data-frame clusters based on arrival time, session
span, and deviation in transmission time.

3.1.4. Collation of data-frame clusters and clusters of nodes. . The correlation of data-frame
clusters and node clusters is based on the discriminative ranks allocated in the earlier process. For a specific
data-frame cluster dfcl, a corresponding cluster of nodes ncl is determined based on several rank comparisons.
These include the comparison of the rank of idle intervals in ncl with the mean transmission time rank of dfcl,
the variance span rank in ncl with the variance span rank of dfcl, and the start time of idle intervals in ncl with
the least arrival time rank of dfcl. Scheduling of data-frames is managed according to these paired clusters of
nodes, ensuring an optimized correlation between node availability and data-frame transmission requirements.

3.2. Residual energy. The residual-energy pertaining to the nth make-span at kth transmission node is
considerably the remains of energy observed from the earlier make-span ((n−1)th completion). Residual-energy
ren for the nth make span is estimated as

ren = (re(n−1) + ce(n−1) − coe(n−1))− coτ

The notations re(n−1), ren, ce(n−1), coτ are used for indicating the residual-energy for the (n− 1)th, nth make-
spans, wherein energy conserved for the period as the (n−1)th make-span, and the energy consumed at (n−1)th

make-span and the energy consumed in the process of idle time amidst (n − 1)th and nth make-spans of the
target node.

To assess the optimality for the projected (n+ 1)th the make-span, transmission node process constitutes
energy efficiency, turnaround time ratio, and Task Arrival Time Interval ratio. The scheduling strategy proposed
for handling the process is as follows. For every metric, turnaround time interval, the scope of process completion
time interval, turnaround time interval, and task arrival interval are estimated for the make-span (n + 1)th,
wherein the Max-State (mas), Min-State (mis), and Close-State (Cls) are observed in accordance to how the
make-span close.

In furtherance, a two-dimensional matrix for every metric is depicted wherein the values for the status
measures are handled in a matrix format depicted below Table 3.1.

Followed by, for every metric, the task arrival time interval, turn around time interval, and process com-
pletion time interval are handled effectively wherein the moving averages for every status measure are as-
sessed based on the close-state, max-state, min-state, and initial-state. For every column c related to the
two-dimensional matrix M(ins), M(mas), M(mis), or M(cls) referring to the status measures ins, mas, mis,
and cls of every metric as follows: turnaround time interval (tti), task arrival time interval (tati), process com-

1160 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

Table 3.1: The values for the status measures are handled in a matrix

Make span-ID Initial-State Max-State Min-State Close-State
1 [insmi

1]−1 [masmi
1]−1 [mismi

1]−1 [clsmi
1]−1

2 [insmi
2]−1 [masmi

2]−1 [mismi
2]−1 [clsmi

2]−1

...
...

...
...

...
i [insmi

i]−1 [masmi
i]−1 [mismi

i]−1 [clsmi
i]−1

i+ 1 [insmi
(i+1)]

−1 [masmi
(i+1)]

−1 [mismi
(i+1)]

−1 [clsmi
(i+1)]

−1

...
...

...
...

...
n [insmi

n]−1 [masmi
n]−1 [mismi

n]−1 [clsmi
n]−1

pletion time interval (pcti), The necessary moving averages for each of the column are observed, for column c.

mai(c) =
1

mac

i+mac−1∑
j=i

c[j]

 , for i = 1 to (|c| − mac) (3.1)

Eq 3.1 moving average referring to values of column c of the two-dimension matrix M of the metric tti, tati,
or pcti Post the process, for every set of moving average, the Heikin-ashi equivalent is developed based on
the open, low, high, as well as end values, which enables in deriving the candle patterns for representing the
expected make-suitability span’s for the associated metric.

Depending on the indicated nodes, the emphasis is optimality for all the metrics like the Heikin-Ashi
candle patterns, which are estimated. For each node n, for every metric rt, rr, cl, the moving average with
each maM(rt),maM(rr),maM(cl), The following is how Heiken-ashi patterns are created. ha −maMi(o) =
maMi(o) // For the moving averages for the initial make-span-related indicators, Else, the Heiken-ashi moving
averages are calculated as follows: Eq 3.2 to Eq 3.5

ha−maMi(o) =
ha−maM(i−1)(o) + ha−maM(i−1)(e)

2
(3.2)

ha−maM(e) =
maM(o) +maM(h) +maM(l) +maM(E)

4
(3.3)

ha−maM(l) = min(ha−maM(o),maM(l), ha−maM(e)) (3.4)

ha−maM(h) = max(ha−maM(o),maM(h), ha−maM(e)) (3.5)

Subsequently, it determines each node’s grade coefficient in the manner shown below.
For every node n, for every metric a request receiving time (rr), round-trip time (rt), as well as computational-

process-time (cl) are used for observing the average of the high-value (h), status-measures (open-value (o),
end-value (e), as well as low-value (l)), as well as a variance, the root-mean-square length using the equation
as: Eq 3.6 to Eq 3.14.

⟨rtn⟩ =
rton + rthn + rtln + rten

4
(3.6)

rtρn =

√
⟨rtn⟩ − rton

2
+
√
⟨rtn⟩ − rthn

2
+
√
⟨rtn⟩ − rtln

2
+

√
⟨rtn⟩ − rten

2

4
(3.7)

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1161

Table 3.2: Optimal Node IDs

Node ID Quality Coefficient Projected Energy Consumption Residual Energy

Table 4.1: The Table Record ID, Metric Values

RECORD-ID METRIC VALUES
Node-ID High-value Open-Value End-value Low-value

Makespan-ID
Metric-ID

rtmc
n = ⟨rtn⟩+ rtρn (3.8)

⟨rrn⟩ =
rron + rrhn + rrln + rren

4
(3.9)

rrρn =

√
(⟨rrn⟩ − rron)

2 +
√
(⟨rrn⟩ − rrhn)

2 +
√
(⟨rrn⟩ − rrln)

2 +
√
(⟨rrn⟩ − rren)

2

4
(3.10)

rrmc
n = ⟨rrn⟩+ rrρn (3.11)

⟨cln⟩ =
clon + clhn + clln + clen

4
(3.12)

clρn =

√
(⟨cln⟩ − clon)

2 +
√
(⟨cln⟩ − clhn)

2 +
√

(⟨cln⟩ − clln)
2 +

√
(⟨cln⟩ − clen)

2

4
(3.13)

clmc
n = ⟨cln⟩+ clρn (3.14)

In furtherance, sorts of the optimal nodes oN as an ascending order for the projected residual energy are
estimated, as it can refer to the node scope in terms of completing the transaction, and sorting in open-value,
feasible end-value. Also, in terms of the descending order for the respective quality coefficient, the nodes sort
shall appear in the following dimension Table 3.2.

Thus, the scheduling strategy chosen as one of the significant issues in the listed nodes constitute to schedule
based on the contextual factors considered, as necessary.

4. Experimental Study. The suggested Optimum Batch Scheduling Model (OBSM) for quality aware
delay sensitive data transmission across fog enabled IoT networks has undergone an experimental evaluation
to scale performance.

The experimental study performed in passive model, which executes the proposed and contemporary models
QEESM, on known data (labelled data). The dataset has generated and used, which explored in contemporary
model QEESM. The dataset format has been portrayed following Table 4.1.

This aforementioned dataset was created using a simulation based on fog-sim. The following table lists the
simulation parameters that were employed (Table 4.2).

A total of 3600 internet protocol equipped sensors have been taken into account when creating the dataset.
Each of them produces data at an average speed of 300 kbps. Through the scheduling gateway, these sensors are
connected to the edge nodes. Additionally, these edge nodes are connected to a network of 50 fog nodes in a fog

1162 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

Table 4.2: The Simulation Parameters

Parameter Specification
Low power parameter eDRX, Power saving mode
Latency parameter greater than 10 seconds
Data Rate specification 25 kbps in download and 64 kbps in UL
Link budget parameter above 164 dB (20dB GPRS)
Modulation scheme
Uplink parameter π/4-QPSK, π/2-BPSK, QPSK
Downlink parameter QPSK
Multiple access
Downlink specification OFDMA
Uplink specification SC-FDMA
Duplex Mode specification FDD Half Duplex Type B
Frequency Range parameters 1,2,3,5,8,11,12,13,17,18,19,20,25,26,28,66,70 MHz
Supporting parameters Uplink power control, HARQ

Table 4.3: Average Make-span Rate for Both Current Models and OBSM

Node Count 10 15 20 25 30 35 40 45 50
OBSM 13 15 15 20 28 30 29 29 31

QEESM 17 19 19 23 31 32 32 33 34
CFCA 19 22 22 26 35 36 35 36 37
QALS 35 37 41 44 46 49 51 54 55

computing system. The metric data collected from the most recent 60 make-spans in order are displayed one per
node of the edge and fog networks. The dataset that was produced has 216,000 records in total. It’s make-span
rate on average, round-trip duration beside a varied set of fog devices, as well as variable transmission load are
the metrics taken into account for performance analysis. The energy consumption ratio versus fluctuating load
is another key metric that was evaluated.

By making comparisons the metric reported the results for OBSM with said correlating measure obtained
values again from recent methods QEESM [27], CFCA [28], as well as (QALS) [29], it can be seen that the
effectiveness of the OBSM has increased.

The presence of the nodes is indicated by the metric ’make-span rate,’ which is proportional to each other.
The lower make-span rate is predicted by Table 4.3 and Figure 4.1 to be inversely proportional to the total
fog nodes. The typical make-span rate that the OBSM scheduling model has detected is 23.3 ± 7.03. When
compared to the mean make-span rates 26.7 ± 6.62, 29.8 ± 6.95, and 45.8 ± 6.7 of the QEESM, CFCA, and
QALS models, the mean make-span rate of the OBSM is noticeably low and has a little divergence.

For OBSM, QEESM, CFCA, QALS, other reliability of this research round frame has indeed been taken
into account as well as compared (see Table 4.4, Figure 4.2), The statistics shown in Figure 4.2 clearly show that
the model OBSM outperforms the current models QEESM, CFCA, QALS with shorter round-trip time. The
mean of the average round-trip times recorded from OBSM, QEESM, CFCA, QALS is 17.8± 5.2, 33.96± 6.0,
40.36± 10.3, as well as 44.56± 14.3.

The anticipated round-trip time for a variable load is shown in Table 4.5 and Figure 4.3. When scaled
against the modern models QEESM, CFCA, QALS, the model OBSM has shown a superior performance. The
average difference here between round-trip time 14.9 ± 7.7 of the OBSM, and the round-trip time 32.3 ± 7.01
of the QEESM, 39.9± 12.9 of CFCA, and 44.9± 17.9 of QALS model.

Table 4.6 and Figure 4.4 show statistics for the essential objective energy consumption. The mean energy
consumption in joules for every make-span for the proposed as well as current models, QEESM, OBSM, CFCA,

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1163

Fig. 4.1: The common make-span rates for the OBSM, QEESM, CFCA, and QALS

Table 4.4: Average Round-Trip Time for Fog Nodes with a Changeable Number of Nodes vs. a Fixed Load
(Specify Constant Load Value)

Node Count 10 15 20 25 30 35 40 45 50
OBSM 21 25 22 21 19 18 15 11 8

QEESM 42 40 39 37 33 31 29 28 23
CFCA 44 42 43 40 36 35 33 33 27
QALS 49 46 47 44 40 38 36 36 30

Fig. 4.2: The average round-trip time of OBSM, QEESM, CFCA, and QALS versus variable number of fog
nodes

Table 4.5: Average Round-Trip Time for a Load Fixed vs a Different Number of the Fog Nodes

Load in KBPS 100 150 200 250 300 350 400 450 500
OBSM 5 8 9 14 14 14 16 22 32

QEESM 22 25 28 30 29 34 38 41 44
CFCA 28 30 32 34 35 40 45 46 51
QALS 33 35 37 38 40 44 48 52 55

1164 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

Fig. 4.3: Models OBSM, QEESM, CFCA, & QALS round-trip time statistics versus variable nodes

Table 4.6: Energy consumption for each make-span with a variable load

Load in KBPS 100 150 200 250 300 350 400 450 500
OBSM 1 2 6 9 12 15 17 18 22

QEESM 3 9 12 20 21 25 31 39 44
CFCA 8 14 17 24 26 29 35 44 49
QALS 12 18 21 29 31 35 39 48 53

as well as QALS, has been evaluated by comparing. The results show that the proposed model, including an
average of 11.33 ± 6.9 joules for every make-span, outperforms a current model, QEESM with a consumption
of 22.7 ± 12.8 joules per make-span, CFCA with a consumption of 27.4 ± 12.8, and QALS. In comparison to
the energy used by the modern models QEESM, CFCA, and QALS, the OBSM uses less energy on average.

4.1. Critical Analysis. An experimental study on the Optimal Batch Scheduling Model (OBSM) as-
sesses how well it manages delay-sensitive, quality-aware data transmission over fog-enabled Internet of Things
networks. In this study, a specially generated dataset and an elaborate simulation setup are used to compare
the OBSM with contemporary models such as QEESM, CFCA, and QALS. A widely used IoT simulation tool
called fog-sim was used to create the dataset for this study. High, open, end, and low metrics for a thorough
analysis are displayed in Table 4.1.

The simulation parameters in Table 4.2 are essential to the experimental setup used in this study. Examples
include data rate specifications, latency parameters longer than 10 seconds, and low power parameters such
as eDRX and Power Saving Mode. The modulation scheme, downlink and uplink parameters, and auxiliary
features like HARQ and Uplink Power Control are all included in the simulation. The experiment’s applicability
to actual Internet of Things network scenarios is enhanced by meticulous parameter selection.

3600 internet protocol-equipped sensors are considered in the experiment as part of a network setup. A fog
computing system is created by connecting these sensors through edge nodes to a network of fifty fog nodes. A
critical analysis is conducted on the make-span rate, round-trip duration, energy consumption ratio, and over
variable fog device and transmission load counts. An extensive setup like this offers a scalable and realistic
OBSM testbed.

A thorough comparative analysis of OBSM is given in Tables 4.3 through 4.6 and Figures 4.1 through 4.4.
A crucial network node indicator, the make-span rate, is displayed in Table 4.3 and Figure 4.1. The OBSM
exhibits a lower make-span rate across node counts, suggesting improved task handling. Figures 4.2 and 4.3
and Tables 4.4 and 4.5’s round-trip time comparisons, which show that OBSM reduces transmission delays
more quickly, corroborate this.

The analysis of energy consumption (Table 4.6, Figure 4.4) is an important aspect of the study, showing
that OBSM is more energy-efficient than the other models. This finding highlights the applicability of the

Optimum Batch Scheduling Model for Quality Aware Delay Sensitive Data Transmission over Fog Enabled IOT Network 1165

Fig. 4.4: The consumption of energy used for every make-span in variable load that was observed using the
OBSM, QEESM, CFCA, & QALS methods

model for energy-efficient and sustainable Internet of things applications.
The reviewer recommended enhancing visual clarity, particularly in the flow chart (Figure 3.1), despite the

study’s strengths. To gain a deeper understanding of the system’s functioning, a more comprehensive discussion
of OBSM’s algorithms and their impact on model performance is warranted.

5. Conclusion. The important problem of scheduling large-scale, time-sensitive data transmission over
fog-enabled IoT networks in industry is addressed in this manuscript. Current scheduling models perform well
for small to moderately delayed data transmissions, but not well for highly delayed data. This difference is
closed by the fog-enabled IoT network-specific Optimal Batch Scheduling Model (OBSM). When it comes to
performance, OBSM outperforms QEESM, CFCA, and QALS. OBSM’s make-span rate is 23.3±7.03, which
shows that it is superior due to its lower average and minimal deviation. With 17.8±5.2, OBSM beats QEESM
(33.96±6.0), CFCA (40.36±10.3), and QALS (44.56±14.3) in terms of average round-trip times. And in terms
of energy efficiency, OBSM shines. Its energy consumption per make-span is lower (14.9±7.7 joules) than that
of QALS (31.8±12.8), CFCA (27.4±12.8), and QEESM (22.7±12.8). These findings show how well the OBSM
model performs in fog computing environments when handling large-scale, delay-sensitive data transmission. In
terms of make-span rate, round-trip time, and energy consumption ratio, OBSM performs better than current
models. Further studies will look more closely at IoT network task and workflow scheduling enabled by fog
computing. Enhancing data transmission strategies in these crucial technological ecosystems requires this.

REFERENCES

[1] C. Paniagua and J. Delsing, Industrial frameworks for internet of things: A survey, IEEE Systems Journal, 15 (2020), pp.
1149–1159.

[2] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, Edge computing in industrial internet of things:
Architecture, advances and challenges, IEEE Communications Surveys & Tutorials, 22 (2020), pp. 2462–2488.

[3] W. Wu, Z. Zhao, L. Shen, X. T. R. Kong, D. Guo, R. Y. Zhong, and G. Q. Huang, Just Trolley: Implementation of
industrial IoT and digital twin-enabled spatial-temporal traceability and visibility for finished goods logistics, Advanced
Engineering Informatics, 52 (2022), pp. 101571.

[4] S. Alam, S. T. Siddiqui, A. Ahmad, R. Ahmad, and M. Shuaib, Internet of things (IoT) enabling technologies, requirements,
and security challenges, in Advances in Data and Information Sciences: Proceedings of ICDIS 2019, Springer Singapore,
2020, pp. 119–126.

[5] F. Amin, R. Abbasi, A. Mateen, M. A. Abid, and S. Khan, A step toward next-generation advancements in the internet
of things technologies, Sensors, 22 (2022), pp. 8072.

[6] M. Bansal, M. Nanda, and M. N. Husain, Security and privacy aspects for Internet of Things (IoT), in 2021 6th Interna-
tional Conference on Inventive Computation Technologies (ICICT), IEEE, 2021, pp. 199–204.

[7] B. C. Csáji, Z. Kemény, G. Pedone, A. Kuti, and J. Váncza, Wireless multi-sensor networks for smart cities: A prototype
system with statistical data analysis, IEEE Sensors J., 17 (2017), pp. 7667–7676.

1166 Narayana Potu, Chandrashekar Jatoth, Premchand Parvataneni

[8] X. Liu, N. Xiong, W. Li, and Y. Xie, An optimization scheme of adaptive dynamic energy consumption based on joint
network-channel coding in wireless sensor networks, IEEE Sensors J., 15 (2015), pp. 5158–5168.

[9] Y. Duan, W. Li, X. Fu, Y. Luo, and L. Yang, A methodology for reliability of WSN based on software defined network in
adaptive industrial environment, IEEE/CAA J. AutomaticaSinica, 5 (2018), pp. 74–82.

[10] C. Zhu, Z. Sheng, V. C. M. Leung, L. Shu, and L. T. Yang, Toward offering more useful data reliably to mobile cloud
from wireless sensor network, IEEE Trans. Emerg. Topics Comput., 3 (2015), pp. 84–94.

[11] Y. Wang, W. Yang, X. Shang, J. Hu, Y. Huang, and Y. Cai, Energy-efficient secure transmission for wireless powered
Internet of things with multiple power beacons, IEEE Access, 6 (2018), pp. 75086–75098.

[12] S. Kim, C. Kim, and J. Kim, Reliable smart energy IoT-cloud service operation with container orchestration, in Proc. 19th
Asia-Pacific Netw. Oper. Manage. Symp. (APNOMS), Sep. 2017, pp. 378–381.

[13] S. Zoppi, A.V. Bemten, H. M. Gürsu, M.Vilgelm, J. Guck, and W. Kellerer, Achieving hybrid wired/wireless industrial
networks with WDetServ: Reliability-based scheduling for delay guarantees, IEEE Trans. Ind. Inform., 14 (2018), no. 5,
pp. 2307–2319.

[14] Y. Peng, W. Qiao, L. Qu, and J. Wang, Sensor fault detection and isolation for a wireless sensor network-based remote
wind turbine condition monitoring system, IEEE Trans. Ind. Appl., 54 (2018), no. 2, pp. 1072–1079.

[15] W. Sun, W. Lu, Q. Li, L. Chen, D. Mu, and X. Yuan, WNN-LQE: Wavelet neural-network-based link quality estimation
for smart grid WSNs, IEEE Access, 5 (2017), pp. 12788–12797.

[16] J. Yuan and X. Li, A reliable and lightweight trust computing mechanism for IoT edge devices based on multi-source feedback
information fusion, IEEE Access, 6 (2018), pp. 23626–23638.

[17] H. Park, H. Kim, K. T. Kim, S.-T. Kim, and P. Mah, Frame-type-aware static time slotted channel hopping scheduling
scheme for large-scale smart metering networks, IEEE Access, 7 (2018), pp. 2200–2209.

[18] S.-C. Wang, S.-C. Tseng, K.-Q. Yan, and Y.-T. Tsai, Reaching agreement in an integrated fog cloud IoT, IEEE Access, 6
(2018), pp. 64515–64524.

[19] D. Purkovic, M. Honsch, and T. R. M. K. Meyer, An energy efficient communication protocol for low power, energy
harvesting sensor modules, IEEE Sensors J., 19 (2019), no. 2, pp. 701–714.

[20] J. Luo et al., Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT, Future
Generation Computer Systems, 97 (2019), pp. 50–60.

[21] H. Q. Al-Shammari, A. Lawey, T. El-Gorashi, and J. M. Elmirghani, Energy efficient service embedding in IoT networks,
in Proc. 27th Wireless Opt. Commun. Conf. (WOCC), Apr./May 2018, pp. 1–5.

[22] I. S. M. Isa, M. O. I. Musa, T. E. H. El-Gorashi, A. Q. Lawey, and J. M. H. Elmirghani, Energy efficiency of fog
computing health monitoring applications, in Proc. 20th Int. Conf. Transparent Opt. Netw. (ICTON), Jul. 2018, pp. 1–5.

[23] P. Gazori, D. Rahbari, M. Nickray, Saving time and cost on the scheduling of fog-based IoT applications using deep
reinforcement learning approach, Future Generation Computer Systems, 110 (2020), pp. 1098–1115.

[24] A. Rajith, S. Soki, and M. Hiroshi, Real-time optimized HVAC control system on top of an IoT framework, in Proc. Third
Int. Conf. Fog Mobile Edge Comput. (FMEC), Apr. 2018, pp. 181–186.

[25] A. Laszka, S. Eisele, A. Dubey, G. Karsai, and K. Kvaternik, TRANSAX: A blockchain-based decentralized forward-
trading energy exchanged for transactive microgrids, in Proc. IEEE 24th Int. Conf. Parallel Distrib. Syst. (ICPADS),
Dec. 2018, pp. 918–927.

[26] M. E. Khanouche, Y. Amirat, A. Chibani, M. Kerkar, and A. Yachir, Energy-centered and QoS-aware services selection
for Internet of Things, IEEE Trans. Autom. Sci. Eng., 13 (2016), no. 3, pp. 1256–1269.

[27] K. Ramana, et al., Leaf disease classification in smart agriculture using deep neural network architecture and IoT, Journal
of Circuits, Systems and Computers, 31 (2022), no. 15, 2240004.

[28] M. R. Kumar, B. R. Devi, K. Rangaswamy, M. Sangeetha and K. V. R. Kumar, IoT-Edge Computing for Efficient and
Effective Information Process on Industrial Automation, 2023 International Conference on Networking and Communica-
tions (ICNWC), Chennai, India, 2023, pp. 1–6.

[29] Potunarayana, sreedharbhukya, chandrashekarjatoth, p. Premchand, Quality-aware Energy Efficient Scheduling
Model for Fog Enabled IoT Network, Computers and Electrical Engineering, 2021.

[30] V. K. A. Kumar, M. R. Kumar, N. Shribala, N. Singh, V. K. Gunjan, K. N.-e.-a. Siddiquee, and M. Arif, Dynamic
Wavelength Scheduling by Multiobjectives in OBS Networks, Journal of Mathematics, 2022, Article ID 3806018.

[31] J. Luo, et al., Container-based fog computing architecture and energy-balancing scheduling algorithm for energy IoT, Future
Generation Computer Systems, 97 (2019), pp. 50–60.

[32] S. M. Vadlamaani, P. K. Bharti, and M. R. Kumar, Generalized Statistical Indicators For Cloud Computing Fault
Tolerance, International Journal of Intelligent Systems and Applications in Engineering, 10 (2022), no. 1s, pp. 269–281.

[33] M. Bhatia, S. K. Sood, and S. Kaur, Quantumized approach of load scheduling in fog computing environment for IoT
applications, Computing, (2020), pp. 1–19.

[34] A. M. Fahim, et al., An efficient enhanced k-means clustering algorithm, Journal of Zhejiang University-Science A, 7 (2006),
no. 10, pp. 1626–1633.

Edited by: Anil Kumar Budati
Special issue on: Soft Computing and Artificial Intelligence for wire/wireless Human-Machine Interface
Received: Sep 24, 2023
Accepted: Dec 23, 2023

