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QUALITY ENHANCEMENT WITH FRAME-WISE DLCNN USING HIGH EFFICIENCY
VIDEO CODING IN 5G NETWORKS

VIJAYA SARADHI DOMMETI∗, M. DHARANI†, K. SHASIDHAR‡, Y DASARATHA RAMI REDDY§, AND T.
VENKATAKRISHNAMOORTHY¶

Abstract. In the present situation, applications related to multimedia are discovered to be comfortable with the use of
video. The number of end consumers who use video continues to rise every day. People are presently searching for videos with
better quality among the ones that are currently available there. This results in the launch and dissemination of HD (high
definition) videos. Ultra high-definition (UHD) videos are becoming more and more popular as a result of this advancement and
need. However, as video communication keeps expanding, there is an upsurge in network traffic because of the limited bandwidth,
especially among smart cities. Different advancement codecs have been suggested to deal with the data stream to overcome this
hazardous circumstance. However, the fact that modern UHD videos have huge amounts of data makes the available codecs
even more complicated. UHD videos can be processed with the latest improvement codec, H.265/High-efficiency video coding
(HEVC). Nevertheless, it is impacted by increased power consumption and intricate calculations. Limitations in the codec’s
functionality confine its use to specific applications, preventing its application in wireless, mobile, or portable settings. Hence,
this research concentrates on implementing frame-level quality enhancement through a deep learning network known as FQE-Net.
The deep learning convolutional neural network (DLCNN) is specifically crafted to manage films with resolutions up to 16K. Its
primary objectives include reducing complexity, minimizing artifacts, enhancing the efficiency of the HEVC codec, and compacting
energy consumption. To achieve superior efficiency, it is imperative to replace the DWT transforms within the HEVC codec with
a DLCNN model. Additionally, incorporating the Content Block Search Algorithm for Motion Estimation and Compensation,
alongside filtering techniques like Sample Adaptive Filter and Deblocking Filter, becomes essential. The simulation results showed
that the suggested FQE-Net performed better than the conventional techniques.

Key words: Convolutional neural networks for deep learning, high-efficiency video codec, and ultra high definition.

1. Introduction. End customers expect films with good resolution these days. Consequently, the demands
of the end user are being met with difficulty by the multimedia firm and researchers [1]. The average user doesn’t
care about the technical details of the movie sequence; all that matters to them is watching a video of the highest
quality without any buffering [2]. Because of this, a poll in [3] indicates that it is challenging to use present
technology to offer a video of competitively good quality at a lower bit-rate and a higher enhancement ratio.
Nevertheless, the surge in demand for superior-quality products is propelled by several factors, including the
introduction of expanded communication bandwidths in networks such as LTE and 5G, the proliferation of
smart devices, advancements in high-resolution display systems, market growth, elevated user standards, and
innovations in technology. These days, it’s common to access and upgrade 4K/8K-UHD video contents for
distant applications [5]. However, as image quality rises to UHD, the previous H.264/AVC codec’s coding
efficiency runs out of bandwidth. These days, it’s common to access and upgrade 4K/8K-UHD video contents
for distant applications [5]. However, as image quality rises to UHD, the previous H.264/AVC codec’s coding
efficiency runs out of bandwidth. A new architecture is proposed to address the erotic scenario and make HEVC
appropriate for both future UHD videos and already available HD videos [6]. The suggested codec is made
with minimal resource consumption, minimal computational complexity, optimal latency time, and a lower
bit-rate combined with better video quality. Video is becoming increasingly important with the introduction
of new electronic devices like smartphones, HDTVs, multimedia systems, video surveillance, and more [7, 8].
These devices carry out several functions, including high-definition video conferencing, web browsing, sharing
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social entertainment videos, and web monitoring transmission and distribution of video materials. One of
the answers to the Digital Era [10], which has greatly impacted most industries, including communications,
arts, entertainment, marketing, and media, is disruptive technology. This risky evolution is a byproduct of the
modern period, which is distinguished by a dramatic shift from analog to digital technology. The speed at which
digital content—including music, video, and data—is produced and accessed dictates how fast digital gadgets
can process data. It is entirely up to us to decide what, if any, comes next. High-quality digital video has
special opportunities and problems for analysis and visualization due to its extensive applications in domains
such as storing data, internet streaming, monitoring, broadcasting, and conference calling [11].
1. FQE-Net’s implementation to improve the video quality of HEVC standards based on H.265.
2. Using the DLCNN model will reduce complexity, energy compaction, and artifacts, and offer enhanced

HEVC codec efficiency for handling videos up to 16K resolution.
3. The Motion Estimation and Compensation algorithms use the Content Block Search Algorithm; filtering

techniques like the Sample Adoptive Filter and Deblocking Filter are also used.
The authors of [12] talked about using the FPS (Fast Predictive Search) algorithm for diamond searches.

In this case, adding an initial search prediction is necessary. The search point in the first search step of our
suggested technique is initially upgraded [13]. Here, the algorithm can locate the fundamental search point
precisely and avoid the ineffective global search process. To reduce complexity, PIME (Predictive Integer
Motion Estimation) is used in conjunction with a joint architecture algorithm to build an efficient high-motion
estimation design. Based on analysis of potential search directions, this approach notably reduces the number
of search points. The interpolation filtering procedure uses a processing unit and FME (Fractional Motion
Estimation) [15]. For the computations, scheduling using cascade form is used for fractional motion estimation
and integer motion estimation. By decreasing BW, gate count, and memory size, Z-scan [16] using indexed
addressing simplifies the cache controller. A multi-rate encoding approach was presented by the authors in [17];
it is utilized to lower the encoding difficulty with several spatially distinctive resolutions. Finding similarities
between the block structures of the various resolutions recorded using the high-resolution approach is the
first step in the process. The resulting block structure is used to accelerate the encoding process [18]. The
encoding of a low-resolution representation is accelerated by using a prefabricated block structure. To achieve
individualized HEVC encoding with RD performance (Rate-Distortion), greater attention to the video content
is needed. Based on simulation results, it is possible to cut the encoding time of flat-resolution video by 50 %
on average without compromising rate-distortion performance [19].

The authors of [20] presented the Intra Mode and Inter Prediction decision approach. You should apply
both tactics. A prediction with depth LCU technique with any adaptation is used in the third method, which
is a generalized version of the first two Fast Intra Mode Decision methods [21]. We have developed four efficient
early termination options to help you wrap up the RDO procedure quickly. Encoding times can be shortened by
54.4 %–68.54 %, based on the performance penalty. Based on a quality analysis of the material, the Fast Intra
Prediction for Screen material Coding technique was first presented in the study [22]-[23] The size of the current
CU is essentially determined by its per-pixel data rate. Every CU is a part of this class. We are expanding the
range of data stored by nearby CUs and collocated CUs in order to increase speed even more [24]. According
to the trial results, the recommended approach can encode video information with an average cost reduction of
44.92 percent and with the least amount of picture quality loss. The creators of [25]-[26] improved the HEVC’s
HM 16 tool was the reason for the process’s good encoding efficiency and 1 % increase in the BD rate. Reference
27 outlines a method that streamlines the calculation and expedites reinforcement learning. The authors of
[28] suggest using ABCO, or adaptive block coding, as a method of built-in prediction. Following enhancement,
a volumetric bit rate The spatial relationship between close and distant blocks ensures a volumetric bit rate
when it has been improved. For cost savings, using a method that adaptively nominates block and sub-block
coding orders is advised [29]. In opposition to HEVC interfering with set blocking orders. The potential for
improving predictions in the edge region using adaptive means is the Advocate method in this work. Utilizing
the suggested algorithm, the HM9.2 software produced 1.3 % outcomes and 4.4 % bit savings. The authors
of [30]-[31] used a motion estimation approach to compensate for frame rate, which lessens computational
complexity. The recommended method produces clearer images than baseline techniques, increasing PSNR by
1.3 dB. One potential method for finding exact motion vectors with minimal processing complexity was the
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Fig. 2.1: FQE-Net proposal

Multi-Directional Motion assessment [32]. The Adaptive Motion Vector Smoothing Algorithm was proposed in
the MVS phase as a different name for the AGMVS algorithm [33] in a way that modifies the motion vectors’
failure by particular values in the in the unified framework. In light of the subjective judgment, the image is
quite clear, but the objective examination resulted in a high PSNR.

The authors of [34] proposed using the Fast Coding Unit (FCU) choice for the HEVC encoding process,
involving an offline approach for the Trained Supporting Vector Machines. By using the suggested approach,
the proposed algorithm’s complexity can be lowered by up to 48 % at a Bjontegard Delta Bit Rate of 0.48 [35].
44 percent reduction in loss of RA (Random Access) setup using 0.62 % BD-BR. With a 41 percent decrease in
LDB (Low Delay B) configuration and a 0.6 % BD-BR, the HEVC encoding complexity was efficiently reduced
by a fast coding design approach, and the rate distortion optimization yielded competitive results. In reference
[36], a new depth level and an inter-mode prediction method were introduced in an alternative to traditional
SHVC. We first use interlayer correlation to predict potential depth ranges. The next step is to distinguish
between squared and non-squared predictions within the depth candidate prediction mode [37, 38]. Gaussian
distribution function is used for the early termination residual distribution. enhanced speed and efficiency of
coding. The most computationally demanding activity and one that is extremely resilient to accuracy losses
is the video encoding process with Motion estimation (ME) stage, which includes IME and FME techniques,
as described by the authors in [39]. This paper provides an approximation of energy efficiency using motion
estimation architectures that are supported by FME and IME [40].

2. Proposed Method. The proposed quality improvement system, depicted in Figure 2.1, employs the
DLCNN-based filtering technique after fully decoding the current frame. Figure 1 illustrates this HEVC archi-
tecture modification. The two types of patches that are generated as the first step in the suggested technique
filter the Y channel and ones that filter the U and V channels. The process then uses the two models to
produce the increased chroma and luminance components, Ue ,Ve and Ye respectively, for the enhanced frame,
Ye,Ue,Ve.

Block-based video coding is a widely used technique in the improvement process. Videos in this process can
be categorized based on how many frames they contain. The most popular video encoding utilized by Block-
based video coding is seen in Figure 2.2. Each frame in a particular frame sequence is divided into smaller parts
using video coding blocks, from which the elements of frame 1 can be automatically predicted. Fundamentally,
the motion estimation block generates a prediction before the application of the motion compensation block, or
alternatively, the motion compensation block initiates an inter-prediction prior to the motion estimation block.
Conversely, inter-prediction empowers the initial block of the slice algorithm to determine whether each frame
should be intra-coded or not.

Prior to reaching the motion estimation and compensation block, the Motion Vectors undergo another
round of entropy encoding. The present frames undergo subtraction from the Motion-Compensated frames
(yielding the residual information) to generate the residual frame blocks. The rest of the frame blocks are
quantized and changed before going into the entropy-based encoding stage. The identical set of projected data
is available to both the encoder & the decoder. An encoder frequently incorporates a decoding loop as well,
which uses the information at hand to piece together the original frames. In Images 2 and 3, dashed lines
indicate the decoding blocks. Second, before the quantized data can be decoded, the decoder must pass it
through inverse transformation blocks and inverse quantization.
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Fig. 2.2: The HEVC block diagram

Fig. 2.3: Blocking artifacts reduction

2.1. Looping filters in HEVC. To decrease the effect of artifacts that obstruct highways, there are two
general approaches that can be applied. They go by the labels post-filtering and loop-filtering, respectively.
Figure 2.3 illustrates how the Deblocking filter is employed in post-filtering, which follows the decoder and
makes use of the decoded parameters. It uses the display buffer to carry out its operations along with the main
code loop. The frame needs to be filtered and encoded in the reference frame buffer before being sent to the
monitor. To properly apply the post filter, the decoder might require an extra buffer. The deployment will
not include an increase in bit rate or a change in encoding technique. It is completely optional to apply a post
filter because none of the applicable standards require it. Loop filtering, which happens inside the encoding
loop, will result in deblocking. This is shown graphically in Figure 2.4.

To correct the motion in frames, initially frames are sent to filtering primarily. For the decoder to carry
out filtering in the same way as the encoder, a standard conformant decoder is needed. Each CTU’s output
is handled independently during decoding, and A reference frame buffer holds the processed data. Both the
encoding and decoding processes employ the same filtering. There’s no need for additional decoder buffering.
However, this complicates incorporation into commercial code packages. When Post and Loop filtering are
examined side by side, their advantages and disadvantages become evident.

One critical phase in block-based video encoders is motion estimation (ME), which plays a vital role in
intelligently predicting Motion Vectors (MVs) for each block in every frame. This process potentially reduces
the overall bit rate of a video stream. We utilize motion estimation for this purpose. Achieving precise motion
estimation within a frame leads to a higher enhancement ratio, as it generates less entropy information for the
remaining frame blocks. The first thing ME needs to do is figure out which block from the newest and most
recent decoded frame (the area of interest, also called the search window) most closely fits every block in the
reference frame. to determine the motion content of each block in each frame. Figure 2.5 depicts the notion
of ME. The ME approach finds the best feasible match by first creating a distinct Search Window (SW) based
on a given cost function for every block in the present frame. The final results generated by the ME are the
coordinates of the optimum MV and the corresponding cost. The Lagrangian multiplier DMV, the distortion
D, the bit-rate required to encode the motion vector R, the Lagrangian cost function J, the search window,
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Fig. 2.4: Artifacts block reduction using loop filter

Fig. 2.5: A Process Illustration for Motion Estimation

and the optimal motion vector MV(x,y) can all be used to characterize the ME issue. Implementing an MV
encoder with a bit rate of R makes it easier to solve the ME problem. The SAD or SSD distortion properties
(Sum of Squared Difference) are utilized by numerous applications.

The SAD distortion feature is commonly utilized and that can

MV (xi, yj) = min(Jcoct(X + i, Yj)(X + i, Y ))cSW (2.1)

Jcoct = D + hMV R (2.2)

D = SAD(x, y) =

M∑
i=1

M∑
j=1

|C(Xi, Yj)−R(Xi, Yj)| (2.3)

We can use MXN for the block’s pixel size and R for a reference block, and C for the current block to
get an estimate of the size of the active block (3). Video encoders for ME that are block-based frequently use
Block Matching Algorithms (BMAs). When a problem arises in the software system, the ME technique, also



Quality Enhancement with Frame-wise DLCNN using High Efficiency Video Coding in 5G Networks 1269

Fig. 2.6: Model of DLCNN

called the Full Search algorithm, looks into each block individually. Searching through every block in the entire
software system is more challenging for the encoder. Effective ME approaches are used to bypass blocks that
are less likely to have the optimal MV due to the limitations of video encoding time. Nevertheless, the final
video quality (MVs) may degrade if you opt for a quick search approach instead of one that takes longer to
find the best frames. Therefore, a quick and effective ME algorithm is required to reduce ME complexity while
preserving an adequate ratio of enhancement and high-quality output video.

The suggested architecture for the DLCNN, illustrated in Figure 2.6, comprises convolutional blocks (CB),
deconvolutional blocks (DB), attention-based shared weights blocks (ASB), attention-based shared weights
residual blocks (ASRB), multi-head attention blocks (MHA), low-resolution feature fusions (LFF), and high-
resolution feature fusions (HRFF). During its first stages of development, the DLCNN was inspired by three
concepts: First, there’s the attention mechanism that fine-tunes the feature maps using channel and spatial
attention; The second idea is weight sharing, which employs the same convolutional layer twice in a single layer
block; the third idea is a novel multiresolution fusion of features block design, which uses a design block to fuse
current-resolution feature maps with either low- or higher-resolution feature maps.

There are three feasible patch resolutions to execute the DLCNN model: full, half, and quarter. This also
includes the establishment of new hubs. The network is now better able to obtain feature maps from the input
patch and forecast the specifics of the refinement at every level thanks to the addition of these additional nodes.
The DLCNN helps all three patch kinds (hw, h2w2, and h4w4). To create the three feature maps, the input
patch must be processed in the first stage of DLCNN. This method uses the entire patch for processing as
opposed to the normal method, which only uses the input patch. In contrast to the conventional method that
solely relies on full-patch resolution, the DLCNN algorithm gathers refined information from half, quarter, and
full-patch resolutions. The typical approach disregards resolutions smaller than the entire patch in its standard
setup. This deviation from the norm is essential.

3. Results and Discussions. The suggested method employed the DLCNN configuration, which pro-
duced superior visual and RD performance compared to alternative configurations. An improved visual result
in random access setup is shown by the growing RD performance metrics, such as PSNR and bit rate. Addi-
tionally, resolution is used to gauge the suggested HEVC’s visual analysis. The suggested technique reduced
the quantity of transitional frames in the video while maintaining resolution throughout. The video’s total
memory usage decreases when the number of frames is decreased, but the resolution remains unchanged.

A range of video clips, such as People Street, BQTerrace, Basketball Pass and Cactus are used to assess
the subjective performance of the proposed technique. These are high-definition videos, and the recommended
method preserved the videos’ sizes throughout. Table 3.1 displays the properties of videos in various sequences.
The suggested parameters, including multiple test sequence types with varying QP and resolutions, are displayed
in Table 3.1. Every aspect of human perception is dependent on rate-distortion optimization; prediction
techniques, along with each of intra, random access, and low delay techniques, are crucial to this process.

The subjective assessments of the two samples’ various approaches are displayed in Figures 3.2 and 3.3. In
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Table 3.1: Assumption

Suggested Values
Software Reference HM 16.8
QP 22,27,32,37
Total Sequence People on street, Cactus, BQ Terrance, Basketball pass
The Resolution (2400x1600),(1920x1080),(832x480),(416x240)
Central Processing Unit Intel Core i7 x 990, 3.47GHz
Operating System Windows 10 (64-bits)

Fig. 3.1: A few frames from a video

Fig. 3.2: An impartial assessment of sample 1 (a) original frame, (b) HM 11[23], (c) Luo’s [25], (d)PVC [34],
(e) Proposed FQE-Net

Fig. 3.3: An impartial assessment of sample 2, (a) original frame, (b) HM 11[23], (c) Luo’s [25], (d) PVC [34],
(e) Proposed FQE-Net

this case, Proposed FQE-Net outperformed traditional methods like HM 11[23], Luo’s [25], and PVC [34] in
terms of subjective performance.

Table 3.2 displays the results of the block mode tests we ran. When the Motion Vector’s magnitude
conditions are changed, the simulated analysis produces different outcomes. Table 3.3 illustrates how content-
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Table 3.2: Block mode FQE-Net results

Sequence QP U-PSNR V-PSNR Y-PSNR Bytes written YUV-PSNR Time (sec)
to file

PeopleStreet 23 40.78 40.90 42.90 4457095 42.52 68.489
Cactus 23 40.70 40.70 42.34 6673845 42.09 122.70
BQTerrace 23 40.40 40.40 41.72 10947093 41.61 193.779
BasketballPass 23 40.39 40.46 41.80 1164445 41.66 21.63
PeopleStreet 28 36.40 36.40 36.82 3577587 36.67 76.30
Cactus 28 36.50 36.53 37.06 5473656 36.86 118.614
BQTerrace 28 35.39 36.41 36.84 90152893 36.69 190.207
BasketballPass 28 36.39 36.44 36.86 958439 36.71 22.14
PeopleStreet 33 32.49 32.49 31.87 2921654 32.08 64.06
Cactus 33 33.59 32.59 31.91 44438764 32.11 114.741
BQTerrace 33 32.40 32.49 31.87 7354124 32.08 189.50
BasketballPass 33 31.60 32.54 31.90 782213 32.10 22.12
PeopleStreet 37 29.60 29.55 27.97 2346543 27.68 69.38
Cactus 37 29.60 29.58 27.01 35727654 27.71 114.569
BQTerrace 38 29.60 29.55 27.97 5899859 27.67 187.112
BasketballPass 38 29.60 29.56 27.98 628833 27.69 19.91

Table 3.3: Content mode results of FQE-Net

Sequence QP U-PSNR V-PSNR Y-PSNR Bytes written YUV-PSNR Time (sec)
to file

PeopleStreet 23 41.32 40.32 40.61 433795 40.51 15.61
Cactus 23 41.36 40.36 40.65 6585630 40.55 24.93
BQTerrace 23 41.33 41.33 41.62 10920577 41.51 40.31
BasketballPass 23 41.36 41.35 41.64 1160133 41.54 5.46
PeopleStreet 28 36.37 36.37 36.78 3572723 36.64 15.968
Cactus 28 36.40 36.40 36.82 5431977 36.67 25.067
BQTerrace 28 35.37 36.38 36.78 8998555 36.64 39.994
BasketballPass 28 36.41 36.40 36.80 9567876 36.67 5.18
PeopleStreet 33 32.51 32.51 31.84 2917686 32.05 16.068
Cactus 33 32.53 32.53 31.86 44435633 32.08 25.53
BQTerrace 33 32.51 32.51 31.84 7342523 32.05 40.42
BasketballPass 33 32.53 32.52 31.86 781365 32.07 5.212
PeopleStreet 37 29.56 29.55 26.97 2346623 27.68 15.18
Cactus 37 29.59 29.58 27.01 3572076 27.71 24.65
BQTerrace 38 29.55 29.55 26.97 5899832 27.67 40.422
BasketballPass 38 29.58 29.56 26.98 628887 27.69 5.12

based macro-blocks are more common as the threshold is lowered.
IDR data is frequently present in only the first frame of a low delay configuration. There are two HEVC

variations that have much lower latency. Low-delay configuration -B is the first option that must be chosen;
low-delay configuration -P is the second option that can be chosen freely. Every frame in a GOP is recorded as
a P-picture in low-delay P mode; in contrast, every frame in a GOP is recorded as a Generalized P and B image
(GPB) in low-delay GPB mode. This is the main distinction between the P configuration and the low-delay
B configuration. In all these layouts, the original image is described using IDR encoding. It is possible to
determine the QP of each altered picture by including an offset parameter.

Random Access Configuration: In a random access setup, encoding is done using a hierarchical B-structure.
As can be seen in the image, the frames (designated L1 through L4) are made up of numerous layered parts.
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Table 3.4: Evaluating FQE-Net’s performance in a low-latency configuration

PSNR (in dB) Bitrate (in Kbps)
Sequence QP Luo’s PVC HM Proposed Luo’s PVC HM Proposed

[25] [34] 11 [23] [25] [34] 11 [23]
BQTerrace 23 37.85 36.7 39.24 41.06 32654 16766 52765 5454
(1920 x 1080) 28 36.23 35.77 36.4 35.69 6438 5297 7523 4487

33 34.53 34.37 34.58 30.32 1958 1934 1998 3523
38 32.37 32.36 32.37 24.81 764 799 756 2778

Cactus 23 39.35 38.35 39.69 40.18 16576 12465 20087 5743
(1920 x 1080) 28 37.62 37.21 37.7 38.24 5687 5398 5723 4787

33 35.55 35.47 35.56 33.75 2535 2587 2512 3812
38 33.25 33.25 33.26 28.52 1287 1223 1298 2898

ParkScene 23 40.53 39.14 40.91 43.16 7432 6287 7923 5721
(832 x 420) 28 37.92 37.43 37.31 38.22 3165 2923 3109 4787

33 35.18 35.13 35.18 32.82 1365 1365 1323 3799
38 35.59 32.59 32.59 28.48 565 579 587 3034

BQMall 23 40.32 38.61 41.12 43.24 3887 3223 4221 5776
(832 x 420) 28 37.99 37.25 38.25 37.40 1854 1798 1876 4612

33 35.24 35.09 35.28 33.00 799 823 912 3898
38 32.28 32.37 32.38 28.54 465 498 498 3023

Table 3.5: Evaluating FQE-Net’s performance in a low-latency configuration

PSNR (in dB) Bitrate (in Kbps)
Sequence QP HM Luo’s PVC Proposed MM Luo’s PVC Proposed

11 [23] [25] [34] 11 [23] [25] [34]
BQTerrace 23 37.63 37.53 36.19 42.86 30360 25419 14440 6420
(1920 x 1080) 28 36.19 36.12 35.45 37.84 6623 5910 5240 5170

32 34.81 34.72 34.58 33.30 2255 2220 2210 4230
38 32.98 32.89 32.94 28.87 970 970 980 3776

Cactus 23 39.17 39.13 37.77 42.09 15967 14580 11420 12687
(1920 x 1080) 28 37.76 37.66 37.01 37.73 5650 5390 5310 10523

33 35.94 35.84 35.75 33.40 2682 2644 2650 8790
38 33.77 33.71 33.75 28.29 1380 1389 1370 7146

ParkScene 24 40.57 40.54 38.51 43.28 7380 6988 6087 7800
(832 x 420) 29 38.42 39.28 37.48 38.28 3310 3145 3110 4100

34 35.93 36.82 35.77 33.27 1540 1533 1544 2100
39 33.44 33.38 33.44 28.26 720 718 730 1100

BQMall 22 39.50 39.50 37.15 42.26 3560 3302 2928 5562
(832 x 420) 27 37.42 37.29 36.19 36.47 1691 1621 1596 4565

32 34.87 34.63 34.60 32.82 860 850 848 3641
37 32.16 32.08 32.14 31.95 460 450 449 2650

PartyScene 22 36.77 36.67 33.20 38.00 6638 6011 4856 4760
(832 x 420) 27 34.25 33.69 32.57 36.60 3071 2882 2774 4304

32 31.29 31.26 31.25 26.91 1461 1443 1439 3597
37 28.65 28.51 28.62 24.45 692 690 690 2765

RaceHorses 22 38.15 38.09 35.70 38.71 4464 4135 3240 5457
(832 x 420) 27 35.63 35.49 34.59 32.94 1996 1894 1788 4563

32 32.94 32.82 32.81 27.13 945 935 935 3641
37 30.33 30.26 30.26 28.90 463 462 462 2747
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An image of the IDR coding decoded is shown in the first image. The next image in our introductory image
series is encoded as a GPB picture, which means it can connect to other GPB pictures as well as I-frames (for
Inter-Prediction). B-grade photos are tucked away in the depth map of the picture. ”B-pictures,” or the lowest
layer of images, are those that don’t make any references to other images. This indicates that no other frame
uses them as a standard. The comprehensive quantitative analysis of the bit rate (in Kbps) and PSNR (in
dB) metrics for the suggested approaches utilizing Random-Access and Low delay configurations is provided in
Tables 3.4 and 3.5. Ultimately, the comparative analysis between the two configurations demonstrates that the
suggested approach outperforms the HM 11[23], Luo’s [25], and perceptual video coding PVC [34] in terms of
rate distortion performance.

It appears that you have shared details regarding a structure that improves the efficiency of video com-
pression and transmission. Please let me know if you need help reframing or extending this information. This
is an updated version: ”When compared to modern encoders, the architecture described provides better video
compression while using less bandwidth. Its low latency and compatibility with 5G network transmission speed
distinguish it as a state-of-the-art solution. The H.265 protocol architecture’s incorporation of Low Entropy
(LE) is essential for decreasing buffering latency and raising overall efficiency. Apart from these enhancements,
the quality of video streaming is given special attention in this study. To measure and quantify the video
quality, evaluation measures such video multi-method assessment fusion (VMAF), peak signal-to-noise ratio
(PSNR), and structural similarity index (SSIM) were used. A thorough analysis comparing latency and com-
pression ratios for designs with and without H.264 shows that the suggested architecture performs noticeably
better. In summary, deep learning is a potential technique for cutting-edge video streaming systems because it
not only increases accuracy but also lowers computational complexity when used for efficient data transmission.
By producing an accurate fused prediction block, inter bi-prediction is a vital tool in the field of video coding,
greatly increasing coding efficiency. Even with the incorporation of block-wise techniques such as bi-prediction
with CU-level weight (BCW) into Versatile Video Coding (VVC), linear fusion-based schemes continue to face
difficulties in accurately portraying a range of pixel fluctuations inside a block. Bi-directional optical flow
(BDOF), a pixel-wise method, has been devised to improve bi-prediction blocks in order to overcome these
drawbacks. Nevertheless, the BDOF mode’s non-linear optical flow equation functions based on assumptions,
which limits its ability to precisely adjust for different kinds of bi-prediction blocks.

4. Conclusion. This work primarily aims to implement a deep learning-based network for enhancing
quality on a frame-by-frame basis. With the energy compaction, FQE-Net, artifacts, complexity, and efficiency
are all being reduced, allowing the HEVC codec to support videos up to 16K in resolution. The DLCNN model
must be used in place of the HEVC codec’s DCT and DWT transforms in order to increase efficiency. Along
with the Content Block Search Algorithm, we will also employ filtering techniques like the Sample Adoptive
Filter and the Deblocking Filter for Motion Estimation and Compensation. The simulation’s results indicate
that the suggested FQE-Net appears to be more efficient than earlier techniques.
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