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CONFIGURATION OF CONTAINER DEPLOYMENTS ON THE COMPUTE
CONTINUUM USING ALIEN4CLOUD

ADRIAN SPĂTARU∗AND JULEN APERRIBAY†

Abstract. This paper presents the drawbacks and benefits of using Alien4Cloud as a platform for deploying container-based
applications on the Compute Continuum. To achieve this, a plugin has been developed to deploy container-based applications in
multiple Kubernetes clusters and to configure the containers based on their dependencies. More specifically, our implementation has
been validated using a system of two Kubernetes clusters (one in Romania, and one in Spain) and a machine-learning application
that has been successfully deployed using this system.
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1. Introduction. Alien4Cloud [9] is a mature platform built for the Development and Operations (De-
vOps) paradigm. It uses TOSCA (Topology Specification for Cloud Applications), an OASIS specification for
modelling a complete application stack and automating its deployment and management in Cloud environ-
ments [6]. Using TOSCA, the administrator uploads component specifications and uses these definitions to
create an application topology.

Alien4Cloud (A4C) offers an easy-to-use interface to Drag&Drop TOSCA components and link requirements
of one with the capabilities of another. Nevertheless, this is not the main feature of the platform. Some
components can register as services in the A4C Service Registry, which allows other applications to connect to
these registered services. An example is explained in detail in Section3.2. Moreover, the platform’s functionality
can be extended through plugins. An Orchestrator plugin is responsible for deploying and monitoring an
application topology, and is able to configure the parameters of the components before they start.

We use an extension of TOSCA, namely TUFA [13] and implement an Orchestrator plugin to manage
Kubernetes deployments for the Container definitions in the TUFA specification. We validate our plugin using
an industrial application that detects anomalies in the manufacturing process.

The key contributions of this paper are:
• the implementation of the Orchestrator plugin that transforms TUFA specifications in Kubernetes

descriptions and interacts with the Kubernetes Orchestrator to deploy and monitor applications.
• the validation of the developed plugin using two Kubernetes clusters and a machine learning application
• an experience-driven assessment of the benefits and drawbacks of using a platform like Alien4Cloud for

the management of deployments in the Compute Continuum setting
The paper is structured as follows. Section 2 presents the work behind the popularity of the TOSCA

specification and the alternatives to Alien4Cloud. Section 3 describes the system architecture and details the
use case scenario. Section 4 presents the benefits and drawbacks of Alien4Cloud as a platform for developing
future-proof Orchestration plugins. Finally, Section 5 draws the conclusion.

2. Related Work. Numerous specifications in specific domains address the modelling of Cloud infrastruc-
ture, services, relationships, and policies for monitoring and scaling. A comprehensive review examining Cloud
Modelling Languages (CML), as documented by Bergmayr et al. [4], highlighted TOSCA as the predominant
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one. Although certain CMLs [2, 8] predate the TOSCA standard, and some emerged concurrently [1, 3, 5, 12],
no new modelling languages appeared since 2014. Furthermore, extensions of existing CMLs aim to integrate
with the TOSCA specification, resulting in a convergence of cloud modelling semantics.

With the rise of Fog and Edge computing, the TOSCA model has attracted various proposals for extensions,
focusing on diverse models for these resources. One approach involves using these resources as a backend for
serverless computing [14]. The serverless paradigm allows users to define the topology in terms of application
fragments, which are distributed across the resource fabric using load-balancing techniques.

SODALITE [7, 11] employs a static service optimization process based on prior application runs using
different configurations.

In the realm of deploying TOSCA-based applications, several alternatives stand out as viable options
to Alien4Cloud. Cloudify1 is an open-source orchestration platform compliant with TOSCA standards. It
offers capabilities for modeling, deployment, and management across hybrid cloud environments. Heat2, a
component-based orchestration tool for OpenStack environments, utilizes TOSCA templates to describe the
necessary infrastructure and services for applications.

The previously mentioned alternatives are mature developments that provide extreme granularity with
respect to the configuration of Virtual Machines and infrastructure in general. Our approach focuses on the
DevOps perspective which shifts fast to the development of microservices which run in Containers. The most
popular container orchestration engines Kubernetes, which is a resource generally managed outside of the
DevOps pipeline, by a system administrator.

An alternative solution is provided by the developers of Alien4Cloud, more specifically the Kubernetes
plugin3. One drawback that we identified with this plugin is the fine granularity for modelling applications.
The application developer is required to exceed his expertise and configure Kubernetes entities, which may not
be possible for all application developers. Our approach simplifies this knowledge gap and aids the application
developer in defining the relations between software components, not Kubernetes infrastructure.

The TUFA specification [13] has definitions for microservices packaged as containers, and this paper presents
their integration with the Kubernetes orchestration engine and the use of A4C services for the automatic
configuration of containers based on their dependencies.

3. System Architecture. Various components play essential roles in managing the Application life cycle,
as depicted in Figure 3.1. The Alien4Cloud platform serves as the runtime environment, supplemented with
TUFA definitions and the Orchestrator plugin. The User Interface facilitates service definition management
and application deployments. Additionally, the Components Repository serves as the storage hub for
Component Definitions, encompassing requirements and dependencies. The Application Developer uses this
component repository to store such definitions, which subsequently aids the Application Operator in creating
a new Application Topology from scratch or starting from one created by the developer in the Topology
Repository.

The Orchestrator plugin4 represents our main contribution and is developed using the Alien4Cloud
plugin development guidelines5. The plugin allows for the creation of multiple Orchestrators, each connected to
a corresponding Kubernetes cluster. The fabric86 java library is used for communicating with the Kubernetes
clusters via HTTP REST. The Service Registry allows the administrator to register external services that
provide different functionalities like storage services or message queuing services. The administrator authorises
each Orchestrator to use a given service. If the service is internal to the Kubernetes Cluster where it runs,
then the administrator will only allow the corresponding Orchestrator to use it. It makes little sense to allow
other Orchestrators to use this because the deployed components cannot access the service. By default, no
Orchestrator is authorised to use any of the services registered with the platform.

1https://docs.cloudify.co
2https://docs.openstack.org/heat
3https://github.com/alien4cloud/alien4cloud-kubernetes-plugin
4https://github.com/adispataru/tufa-a4c-orchestrator
5https://alien4cloud.github.io/#/developer_guide/plugin.html
6https://github.com/fabric8io/kubernetes-client
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Fig. 3.1: System architecture

Fig. 3.2: Application definition using TUFA definitions in Alien4Cloud Topology Editor

3.1. Anomaly detection in manufacturing use-case. To better illustrate the advantages of the system,
we present an example application. The application monitors data coming from a ball-screw component of a
manufacturing machine and detects anomalies based on the position and acceleration of the ball-screw.

Figure 3.2 presents the application modelled using TUFA specification and viewed in the Alien4Cloud
Topology Editor screen.

The application consists of 5 components:
• Data Manager component – responsible for locally persisting the data sent from the manufacturing

machine, and uploading it to Secure Storage using the S3 interface. Additionally, this component
monitors the accuracy of predicted anomalies. When the accuracy falls below a given threshold, the
Data Manager uploads the local data to Secure Storage and contacts the Training component to use it
and train a new model. This component uses a persistent volume to persist data locally and use it in
case of recovery (e.g., container restart).

• Training component – responsible for training the machine-learning models and storing them using the
S3 interface.

• Inference component – responsible for applying the trained machine learning model on new data.
• Data Broker – this component is an MQTT [10] service which directs messages. The industrial machine

connects to this component and send data related to the position and acceleration of the ball-screw.
The messages are redirected to the Data Manager component that schedules inference operations in



610 Adrian Spătaru, Julen Aperribay

batch.
• Secure Storage – this component exposes an S3-compatible interface that allows users to store data.

This component stores data used for training machine-learning models, the machine learning models
used for inference, and the predicted anomalies.

All of the first three components (Data Manager, Training and Inference) depend on the other two for
transferring messages and sending data. More concretely, the first three need to know the endpoint and
credentials for routing messages and upload data. This configuration is achieved by binding two pieces of
information: the Config Map data of a component and the inputs declared in the TUFA definition. More
specifically, for the Data Manager component, the Config Map data consists of two YAML documents, one
for configuring the application parameters and one for configuring the application logging mechanism. The
training and inference component use similar configuration. An excerpt from the configuration file related to
application parameters is presented in Listing 1.

Listing 1: Example definition of fields in the Config Map of the Data Manager component
mqtt :

host : INPUT_DATABROKER_IP
port : INPUT_DATABROKER_PORT
keepa l ive : 60
c r e d e n t i a l s :

username : INPUT_DATABROKER_USER
password : INPUT_DATABROKER_PASSWORD

storage :
type : s3
bucket_name : ideko−uc3−anomaly−detec t ion
c r e d e n t i a l s :

gateway_url : INPUT_GATEWAY_URL
skyflok_token : INPUT_GATEWAY_PASSWORD

The developer of the component will need to declare the values that require replacement (e.g. IN-
PUT_DATABROKER_IP) as inputs of the create operation of the TUFA definition. An example is presented
in Listing 2 for the Training component, but the Data Manager and the Inference components have the same
inputs. The three only differ in the implementation chosen for creating the container, more specifically, the
docker image used for deployment.

Listing 2: Example definition of inputs for the fields present in the Config Map of the Training component
i n t e r f a c e s :

Standard :
c reate :

inputs :
INPUT_DATABROKER_IP: { get_property : [REQ_TARGET, mqtt , ip_address ] }
INPUT_DATABROKER_PORT: { get_property : [REQ_TARGET, mqtt , port ] }
INPUT_DATABROKER_USER: { get_property : [REQ_TARGET, mqtt , user ] }
INPUT_DATABROKER_PASSWORD: { get_property : [REQ_TARGET, mqtt , password ]}
INPUT_GATEWAY_URL: { get_property : [REQ_TARGET, storage , u r l ] }
INPUT_GATEWAY_PASSWORD: { get_property : [REQ_TARGET, storage , password ]}

implementation :
f i l e : serrano / acce l e ra t i on−c l a s s i f i e r −t r a in ing : 0 . 1
r epos i t o ry : serrano
type : tu fa . art . Deployment . Image . Container

For the INPUT_DATABROKER_IP parameter, the get_property function receives 3 arguments:
1. REQ_TARGET specifies that the property is to be examined in the target which satisfies a requirement

of the current component
2. mqtt specifies the name of requirement
3. ip_address specifies the name of the property found in the requirement target.
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Fig. 3.3: System configuration for the validation of the plugin

The target that satisfies the mqtt requirement is the Data Broker component. Therefore, the IP address
of the Data Broker will replace the INPUT_DATABROKER_IP text in the Config Map of the corresponding
service. To achieve this during run-time, the dependency (i.e. Data Broker) is deployed before the dependent
component (e.g. Training component) such that the IP of the dependency is known and can be injected in the
configuration of the dependent component. However, the Data Broker and Secure Storage services presented
in Figure 3.2 are abstract, and the Alien4Cloud platform will find a match for them using the Service Registry.

It is essential to observe the green letter “a” that appears in the boxes corresponding to the Data Broker
and Secure Storage services from Figure 3.2. The green letter “a” means that the two services are abstract:
they don’t need to be deployed together with the other three components. Rather, they should be matched
with Services that have been registered with Alien4Cloud.

3.2. System under test. For a more comprehensive understanding of the mechanism that matches com-
ponents, we present the system under test. We have installed Alien4Cloud and have uploaded the Orchestrator
plugin and the TUFA specifications for the use case.

Figure 3.3 offers a concrete view on the system. Two Kubernetes clusters are registered the with the
Orchestrator. One Kubernetes cluster is installed at a university, Universitatea de Vest din Timisoara (UVT),
in the west of Romania, consisting of three workers using HPE ProLiant DL385 Gen10 hardware. The second
cluster is installed at a company, IDEKO, in the north of Spain, and consists of 3 Edge devices developed by
IDEKO and installed on milling machines. The specific performance of the clusters is not the scope of this
paper since performance of the application is not under scrutiny. Nevertheless, it’s worth mentioning that an
IDEKO worker has 4 cores and 8 GB of RAM, a pretty powerful edge device. The UVT worker has four times
the number of cores and eight times the size of RAM, framing this as a Fog infrastructure provider.

There are two Orchestrator instances, one for UVT and one for IDEKO. In the UVT cluster, we have the
two services that our use-case application depends on: the Data Broker and the Storage Service. The services
have public access based on authentication and thus both Orchestrators have access to the two services.

The Data Broker instance deployed on Ideko premises also uses an authentication mechanism but does not
have a public IP, thus only containers deployed on the Ideko Kubernetes cluster can reach it. In this case, only
the Orchestrator instance corresponding to the Ideko cluster is authorised by the Alien4Cloud administrator
to use the Ideko Data Broker.

3.3. Application Deployment. After using the Topology Editor as presented in Figure 3.2, the Alien4-
Cloud interface leads the user through several decisions before deployment, out of which two are of interest:

1. Locations – The user needs to select the location for the deployment of the application (i.e., UVT or
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Table 3.1: Configurations and functional tests

Test Explanation
Container Image Container image can be downloaded from a private repository. If the credentials for

the repository do not exist in the Kubernetes cluster, they are created.
Persistent Volume Claim
creation

Persistent Volume Claims (PVC) can be created. In the case of UVT, persistent volume
claims are managed dynamically by a storage class. In the case of Ideko, local Persistent
Volumes are created by our plugin apriori to satisfy the PVC.

Container binding to PVC If a component requests a volume attachment, then the PVC is created and bound to
the container at start-up

Config Map configuration The Config Map has been successfully updated to replace the placeholder information
with actual IP and credentials for the services matched in Alien4Cloud.

Matching services connec-
tion

The deployed components can access and interact with the services selected during the
matching process.

Cleanup All deployments, Config Maps and ephemeral volume claims are deleted from the Ku-
bernetes cluster.

Ideko)
2. Matching – Abstract components are matched against the Service Registry; the user needs to select

which service to use for each corresponding abstract component
Depending on the selected location, Alien4Cloud filters out matching nodes. In our experiment, if the user

chooses the UVT location, the only options are to use both the Data Broker and the Storage services deployed
at UVT. If the user selects the Ideko location, then both the UVT and Ideko instances of the Data Broker are
available for the user to choose from. The user will select the Ideko instance to speed up the communication
between these components. However, for the Storage service no instance is available on the Ideko premises.
Thus, the components will use the instance deployed at UVT (since it is publicly available).

Finally, the application has been successfully deployed using all possible configurations and all functional
tests presented in Table 3.1 have been passed.

4. Discussion. During the development of the plugin, we have encountered many circumstances, and
we reckon the reader is interested in the details. This section presents the drawbacks and benefits of using
Alien4Cloud to deploy applications on the Compute Continuum.

Benefits:
• Fit for purpose – in the context of the current investigation, Alien4Cloud solved an important problem

in our use-case, most importantly the matching of external services
• Easy development – The plugin development process is relatively easy for an user which has experience

with TOSCA and Java syntax. Documentation is accessible and well written.
• Built-in authorisation – The platform provides a complex mechanism for authorisation based on users

and groups, handling access to all resources: applications, services, locations.
Drawbacks:
• No official maintenance – during the development of our plugin, the developers of Alien4Cloud an-

nounced the final software release with no future maintenance.
• Hard maintenance – the platform has been originally developed using Java 1.8, and several soft breaking

changes have been introduced since the introduction of modules in Java 1.9. The breaking changes have
not been solved until the final release, and the most recent Java version that can be used to compile a
plugin for the platform is version 1.15.

• Design limitations – Some limitations are inherited from the original purpose of deploying applications
in Virtual Machines. This did not impose any limits for deploying Containers, but future standards
can not be accommodated since maintenance reached its end.

Overall, the platform offers the intended functionality with few efforts.We successfully extended its func-
tionality through TOSCA based definitions and our Orchestrator plugin. The extended functionality allowed
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us to achieve our goal of deploying containers in two locations on the Compute Continuum: Edge and Fog.
However, the end of official maintenance for the Alien4Cloud project imposes hard effort to invest in

migrating the codebase to a more recent version of Java.

5. Conclusion. This paper investigated the suitability of the Alien4Cloud platform in managing the
configuration of container deployments on the Compute Continuum. In oder to achieve our goal, the TUFA
extension to the TOSCA specification has been used to define container-based applications, and an Orchestrator
plugin has been developed to interact with the Kubernetes API in order to deploy an application topology.

Our experimental setup involved two Kubernetes clusters, one with higher performance and internet band-
width, considered a Fog node, and one with lower performance, consisting of three Edge devices. A machine
learning application for anomaly detection in the manufacturing industry has been successfully been deployed
to both clusters. Moreover, the components of an application can access services deployed across clusters with
the help of the Orchestrator plugin developed.

If an official maintainer is found for the Alien4Cloud platform, it can be an important piece in the puzzle
of deploying applications on the Compute Continuum.
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