
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 67�84. http://www.spe.org ISSN 1895-1767© 2005 SWPSAN ADAPTIVE FILE DISTRIBUTION ALGORITHM FOR WIDE AREA NETWORKTAKASHI HOSHINO∗ , KENJIRO TAURA∗ , AND TAKASHI CHIKAYAMA∗Abstrat. This paper desribes a data distribution algorithm suitable for opying large �les to many nodes in multiple lustersin wide-area networks. It is a self-organizing algorithm that ahieves pipeline transfers, fault tolerane, salability, and an e�ientroute seletion. It works in the presene of today's typial network restritions suh as �rewalls and Network Address Translations,making it suitable in wide-area setting. Experimental results indiate our algorithm is able to automatially build a transfer routelose to the optimal. Propagation of a 300MB �le from one root node to over 150 nodes takes about 1.5 times as long as the besttime obtained by the manually optimized transfer route.Key words. Self-stabilizing distributed algorithm, fault tolerane, salability, wide-area network1. Introdution. This paper desribes a pratial algorithm for opying large data (typially in a �le)from a soure node(s) to many destination nodes in parallel. We seek a salable solution suitable both withina luster and aross many lusters in wide-area. By suitable within a luster, we mean that it fully utilizesthe available bandwidth of LAN/luster interonnet. For example, assuming 32 nodes are onneted via asu�iently high-throughput swith, it should be able to opy a single large �le to the 32 nodes in not muhmore than the time it takes to opy the �le to a single node. Suh an algorithm must at least perform manyone-to-one transfers in parallel. By suitable in wide-area, we mean it makes a good hoie in seleting transferroutes. If many nodes in a luster retrieve data from another luster, a link aross the two easily saturates.Thus suh an algorithm should have a mehanism to transfer data within a luster where possible.To be pratial, it should work with a simple and small manual on�guration that may not be very aurate.It won't be pratial to assume, for example, that the user gives a omplete and aurate information aboutphysial network topology, desirable paths for transferring data, or even logial network onnetivity (i.e.,network settings suh as �rewall and Network Address Translation (NAT)). Assuming suh information isnot pratial not only beause the user may not want to write them, but also beause suh information mayhange over time due to suh events as node/network failures. The system therefore must tolerate inaurateinformation and adapt to the onditions observed at runtime. Suh an adaptive system naturally supports faulttolerane in the sense that even if some nodes fail, remaining nodes aomplish their work and nodes that onefailed an join the transfer again.We believe suh a fault-tolerant and adaptive �le repliator is a mandatory building blok for luster andGrid omputing. It may be used for installing large program/data to many nodes. It may also be used in�le synhronizers [5℄ so they support synhronizing data among a large number of nodes in parallel. Perhapsmost important, repliating a large data to many nodes will be a pratial tehnique to �reset� a distributedomputation; it simply reinitializes all the involved nodes, so as to reover from some broken/inonsistent states.This observation aords with reent praties in large-sale luster management, where reinstalling operatingsystems from srath is onsidered as a normal operation, rather than the last resort, to �x broken lusters [13℄.To get an intuitive idea about how a good transfer route typially looks, onsider a network in Figure 1.1.There are two loal area networks (LANs) named A and B, eah inluding three lusters (A1, A2, and A3in A and B1, B2, and B3 in B). Assume nodes an onnet to eah other via the TCP layer.Suppose the data is on a node in luster A1 and should propagate to all other nodes. In the �gure, a smallirle is a node, a retangle a swith, and a line onneting a node and a swith a network able that an transferdata with 100Mbps.1Intuitively, the best strategy is to form a transfer route like the one shown in Figure 1.2. Figure 1.3represents the same route in the physial topology. Spei�ally, the following two properties are important.
• The number of onnetions that ross a LAN/luster boundary is small; there is only one onnetionaross the two LANs and �ve onnetions aross the six lusters.
• The entire transfer route forms a list. That is, no nodes serve data to two or more nodes.The reason why the �rst property is important will be lear. A simple alulation will reveal that if nodes arerandomly onneted without any e�ort to onnet nodes lose to eah other, links aross LANs/lusters will

∗University of Tokyo, {hoshino,tau,hikayama}�logos.t.u-tokyo.a.jp
1Of ourse, this limit may not be due to the apaity of the able per se, but due to NIC or swith.67

68 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Cluster B1 Cluster B2 Cluster B3

Cluster A1 Cluster A2 Cluster A3

Subnet A

Subnet B

Node Switch 100Mbps LineFig. 1.1. Typial network environment for whih our solution is suitable
Cluster A1 Cluster A2 Cluster A3

Cluster B2 Cluster B1Cluster B3

Subnet B

Subnet A

Root

Intra-cluster edge Intra-subnet edge
Inter-cluster edge

Inter-subnet edgeFig. 1.2. Best transfer route in appliation layereasily beome a bottlenek. This is espeially true in today's typial network on�guration where apaity oflong links (orporate-/ampus-/wide- area) is similar to or at best only an order of magnitude larger or so thantypial loal area links. For example, let us assume for the purpose of disussion that we have two 100Mbpsswithed LANs onneted via a 1Gbps link. In suh settings, we should be able to transfer data among allthe nodes in the two LANs approximately at the LAN bandwidth (100Mbps), but if onnetions are randomlyhosen, a link aross the two LANs an sustain only 10 suh onnetions at best. Thus the 1Gbps link won'tbe enough for supporting 10 or more nodes in eah side of it.The seond bullet may be less obvious. It is important for reduing the bottlenek in NICs. Suppose threenodes A, B, and C are linked via a 100Mbps swith. If data go from A to B to C, the throughput will belose to 100Mbps. If, on the other hand, A sends data both to B and C simultaneously, it an emit data at50Mbps to eah. Note that we assume A must send data to B and C separately, whih we believe is a reasonableassumption beause B and C may want di�erent portion of the entire data stream. This is important espeially

An Adaptive File Distribution Algorithm for Wide Area Network 69

Cluster B1 Cluster B2 Cluster B3

Cluster A1 Cluster A2 Cluster A3

Subnet A

Subnet B

Node Switch 100Mbps Line

Root

Fig. 1.3. Best transfer route aording to our guidelines in typial networkwhen links aross LANs are su�iently powerful, so they won't beome bottleneks as long as we maintain the�rst property.Our algorithm tries to build a transfer route lose to suh best routes. Note that it is not always possibleto onnet all nodes in a list. For example, if �rewalls do not allow some onnetions, it may be unavoidablefor some nodes to serve data to two or more hildren. Thus, our algorithm in general forms a transfer forest ,with some heuristis to onnet nodes lose to eah other and to make the tree deeper. It may be a forest,rather than a single tree, beause there may be multiple nodes that have omplete data in the beginning. Insuh ases, a separate tree will be formed rooted at eah soure node.The paper is organized as follows. Setion 2 desribes a model of the network and the goal of this researh.Then, we propose our algorithm and proof of e�ieny in Setion 3. And validation and evaluation are shownin Setion 4. In Setion 5, we explain related work. Finally, we onlude and summarize this researh andremark to future work in Setion 6.2. Problem Desription. In this setion, we de�ne goals of the algorithm and formalize the problem.2.1. Goals.Tolerate faults and adapt to resoure onditions: Copying a large �le to many nodes takes a long time.Therefore our solution must tolerate temporal/permanent network faults and node rashes. When anode rashes, nodes reeiving data from the rashed node must �nd a substitute so that the remainingnodes �nish their tasks. When a node reovers, it must be able to join the transfer network and ontinueits job, without waiting for the ongoing operation to �nish and then restarting from srath. In additionto being fault-tolerant, it must adapt to hanges in network onditions; it should hange the transferroute depending on hanges of onditions.Both of these requirements prelude a simplisti solution that statially onstruts a route in thebeginning and tries to retain the same route until they �nish. Nodes must ontinuously searh for abetter transfer route.Make an e�ient transfer route automatially: As motivated in Setion 1, our general riteria for �good�transfer route are (1) using a small number of �long� onnetions (i.e., onnetions that travel a largenumber of hops, suh as inter-subnet onnetions), and (2) having a small number of nodes that serve

70 Takashi Hoshino, Kenjiro Taura, Takashi Chikayamadata to multiple (more than one) hildren. This is based on our assumption that a bottlenek is typiallyaused by an inter-subnet edge or a node. Examples for the latter are disks and network interfaes.Our algorithm tries to optimize the number of long onnetions and the number of hildren for eahnode, with a very simple loal searh heuristis.Work on today's typial network on�gurations: Today's typial network on�gurations do not alloweah node to onnet to all other nodes. Firewalls may blok onnetions between LANs. Inside aLAN, it is ommon to plae all luster nodes but one (a master node) behind a NAT router, so thataesses to lusters need go through the master. With DHCP, it may even be impratial to assume allnodes to have persistent names.In short, we must model the network as a general graph where allowed onnetions are representedby its edges. Yet it is impratial to assume suh a graph is given by the user (or the administrator)either o�ine or in the beginning of the algorithm. Altogether, we must design an algorithm that beginswith a minimum amount of global information (e.g., partiipating nodes) and a loal knowledge of thenetwork (e.g., neighbors) in eah node.Do not assume physial network topology: Knowing physial network topology would help us to opti-mize transfer routes. Designing the algorithm assuming a omplete knowledge about it is, however,impratial for many reasons disussed so far. First it is umbersome for the user or the administra-tor to maintain suh information. We may be able to obtain suh information by using tools suhas traeroute, but suh tools tend to be unavailable these days for seurity onsiderations. It is alsodi�ult to obtain the topology of the network behind a single router with traeroute. Seond, evenif topology information is available, dynamially probing the network is always neessary to make thealgorithm fault-tolerant and adaptive. Algorithms based on probing onnetivity and proximity atruntime naturally work without detailed knowledge about network topology.Of ourse, we ould always use physial topology as hints to our algorithm, among many other hintssuh as IP address pre�x, lateny, and observed throughput.To ahieve these goals, eah node involved in our algorithm ontinuously seeks a parent, a node that servesdata to the node. When it faes suh events as parent rashes or disonnetions, it tries to �nd a new parent.Even without suh events, they ontinuously searh for a better parent to optimize the transfer route. Theriteria for a better parent are that (1) the loser a node is to itself the better, and (2) the fewer hildren a nodehas the better.Our algorithm is a simple loal searh algorithm that onverges to a satisfatory transfer in typial networkon�gurations of today. Ideally, we desire an algorithm to �nd a globally optimal solution for any given network.A plausible de�nition of the optimal would be to minimize the sum of seleted edge weights and the number ofbranhes (or equivalently, the number of leaves) in the graph. The two riteria may on�it for general weightedgraphs and even if they do not, they will require a omplex global optimization algorithm (e.g., fault-tolerantMST onstrution) whose pratial importane may not be very lear. In the following, we formulate ourproblem and prove our simple algorithm has a property whih translates to �a su�iently good� transfer routein typial real network on�gurations.2.2. Problem Formulation. As usual, we model the network by a direted graph G = 〈V, E〉, where V isa set of nodes partiipating in the repliation. E represents possible onnetions between nodes; (a, b) ∈ E ⇐⇒
a knows b's name and the urrent network status allows a to onnet to b.The graph is for modeling purposes only; in pratie, the network status may hange over time, so eahnode annot know the omplete status of the network. It may even be impratial to assume eah node knowsall the neighbors it an onnet to. In our implementation, eah node begins with knowing information abouta few of its neighbors and reeiving a ommand that instruts it to partiipate in the repliation of a �le. Theylearn other node names on the �y by propagating information along established onnetions. This way, theylearn other onnetions they may be able to make. They learn whether a partiular onnetion is allowed ornot by trying to establish a onnetion only when neessary. Nodes never maintain information about edgesthey are not adjaent to.Below, we prove our optimization algorithm eventually reahes a transfer forest that has some desirableproperties, assuming that the graph is �xed at some point. Note that our algorithm orretly �nishes its jobwithout this assumption. The assumption is essential only for stating the property of the forest our algorithmonverges to.

An Adaptive File Distribution Algorithm for Wide Area Network 71To de�ne the �goodness� of a transfer forest, we must introdue a notion of distane between nodes. Oneplausible formulation would be to give edges arbitrary weights, and to aim at reduing the total weights ofseleted edges (i.e., minimum spanning forest). We do not use this formulation but introdue a strongerassumption about the distanes between nodes whih we believe is a pratial approximation of real networks,and show a simpler loal searh obtains su�iently good results.We assume nodes an be deomposed into groups so that nodes lose to eah other onstitute a group. Ouroptimization algorithm does not assume that eah node knows the deomposition expliitly, but only assumesthat eah node an somehow ompare relative distanes from the loal node to other nodes. We show inSetion 3.3 suh a omparison indues a deomposition. It is suh a deomposition for whih our algorithm triesto redue the number of inter-group edges. Again, the repliation orretly �nishes with inaurate information,thus an implementation an use any su�iently aurate measurement. Our urrent implementation is given inSetion 3.2.1.We say a deomposition is omplete if nodes in eah group form a lique (a omplete subgraph) of G.That is, nodes inside a group an onnet to eah other without being bloked by, e.g., �rewalls. For anydeomposition whih may or may not be omplete, one an derive a omplete deomposition by dividing itsinomplete group into a number of groups so eah of them is a lique. We all suh a omplete deomposition aomplete subdivision of the original deomposition. Given a deomposition D, a omplete subdivision that hasthe minimum number of groups is alled the oarsest subdivision of D.Given a deomposition, the goal would be to make a transfer forest lose to the following best desirable,whih has1. the minimum number of edges onneting nodes in di�erent groups, and2. the minimum number of branhes.Our algorithm onverges to the optimal if eah node an onnet to any other node (i.e., the entire graphis omplete, or in pratial terms, �rewall, NAT, or DHCP do not deny any onnetion against us). In moregeneral graphs, our algorithm has the following property. Let D the deomposition indued by a heuristis usedto measure the relative distane between nodes, and D the oarsest omplete subdivision of D. Our algorithmahieves (1) the number of inter-group onnetions ≤ N − F and (2) the number of branhes ≤ N − 1, where
N is the total number of groups in D and F the number of groups in D ontaining at least one �nished node,a node whih has reeived the entire data.Our laim that the above property translates to a good result in pratie is based on the following obser-vations.

• A simple measurement an reasonably approximate the �loseness� between nodes. For example, givena node in the same LAN as the loal node and another not in the same LAN, it will be relatively easyfor the loal node to judge if one node is loser to the other, thus should be preferred. Therefore, onean obtain a deomposition eah group of whih has nodes lose to eah other.
• In typial network on�gurations, nodes lose to eah other tend to be allowed to onnet to eah other.Most typially, nodes within a LAN an onnet to eah other. Making a group of nodes lose to eahother thus tends to yield a subgraph that is nearly omplete.The �rst bullet implies that, if we group nodes based on a reasonably aurate measurement of distanes betweenthem, we will have groups eah of whih onsists of nodes lose to eah other. Eah suh group will be nearlyomplete (bullet #2), therefore N will be lose to N . Together, the number of onnetions rossing a groupboundary will be lose to N − F , and the number of branhes lose to N − 1.3. Algorithm. The algorithm has several features that we should remark.A simple, self-stabilizing distributed algorithm: Eah node works based on information about its neigh-bors and optimizes transfer routes with a small amount of loal information. Eah node ontinuouslyseeks a loser node that may serve data faster. This mehanism naturally makes our algorithm fault-tolerant and allows nodes to join or leave omputation at any time.Parallel and pipelined transfer: Transferring data from node A to B and from C to D an our in parallel.Moreover, transferring a piee of data from A to B and transferring another piee of data from B to

C an also take plae in parallel (pipelined transfer). This is espeially important for repliating large�les in swithed networks.A simple transfer loop avoidane: The algorithm naturally avoids deadlok due to a transfer loop simply byletting eah node beome a parent of another only when it has more data than others. This mehanism,

72 Takashi Hoshino, Kenjiro Taura, Takashi Chikayamatogether with the self-stabilizing nature of the algorithm, is enough to make it deadlok-free; when anode rashes, its hildren will eventually learn there is no progress for a long time, in whih ase theytry to onnet to another node that is ahead of it.01: /* Starting or After Reovered */02: o�set = urrent �lesize on disk;03: parent = invalid; /* the node self is getting data from.*/04: andidate = null;05: is_sending_giveme = false;06: hildren = none; /* nodes self is giving data to */07: siblings = none; /* used for Tree2List Suggestion */08: neighbors = list of neighbors (dead or alive);09: while (true) {10: /********** Searhing for Parent **********/11: (andidate == null && parent == invalid) ⇒12: andidate = a node in neighbors;13: send(andidate, ask(id , o�set));14: /* NearParent Heuristis */15: (andidate == null && a node in neighbors satis�es16: is_loser(self , node, parent)) ⇒17: andidate = node;18: send(andidate, ask(id ,o�set));19: /* Tree2List Heuristis */20: (andidate == null && a sibling in siblings satis�es21: !is_loser(self , parent , sibling)) ⇒22: andidate = sibling ;23: send(andidate, ask(id ,o�set));24: reeived(ask(wid , wo�set)) ⇒25: if ((o�set > wo�set) &&26: (MAX_NODE > number of hildren)) {27: add this node (wid , wo�set) to hildren;28: send(wid , ok(id , o�set));29: } else {30: send(wid , ng(id));31: }32: reeived(ok(wid , wo�set)) ⇒33: if (wo�set > o�set) {34: parent = wid ; andidate = null;35: }36: reeived(ng(wid)) ⇒37: if (wid == andidate) {38: andidate = null;39: } else if (wid == parent) {40: parent = invalid;

41: }42: /********** Data Transfer **********/43: (parent != invalid && o�set < �lesize &&44: !is_sending_giveme) ⇒45: is_sending_giveme = true;46: send(parent , giveme(id , o�set));47: reeived(giveme(hild , wo�set)) ⇒48: if (o�set > wo�set) {49: size = max(BLOCKSIZE, o�set�wo�set);50: buf = load(�lename, wo�set , size);51: send(hild , data(id , wo�set , size, buf));52: } else {53: send(hild , ng(id));54: }55: reeived(data(wid , wo�set , size, buf) ⇒56: if (wo�set == o�set) {57: is_sending_giveme = false;58: save(�lename, wo�set , size, buf);59: o�set += wo�set ;60: }61: (o�set == �lesize && parent != null) ⇒62: if (parent != invalid)63: send(parent , disonnet(id));64: parent = null;65: reeived(disonnet(hild)) ⇒66: delete the hild from hildren;67: /********** Tree2List Suggestion **********/68: (having more than one hild) ⇒69: foreah hild in hildren {70: send(hild , suggestion(id , hildren));71: }72: reeived(suggestion(parent , new_siblings)) ⇒73: siblings = new_siblings;74: /********** Fault Handling **********/75: (timeout(data, ng) from parent) ⇒76: parent = invalid;77: (timeout(giveme, disonnet) from hild) ⇒78: delete the hild from hildren;79: (timeout(ok, ng) from andidate) ⇒80: andidate = null;81: }Fig. 3.1. Pseudo-ode of our algorithmFigure 3.1 shows the loal algorithm running on eah node. Prior to running this algorithm, eah nodeknows its neighbors (neighbors) and the size of the �le eah node must eventually have (�lesize). In atualimplementation, eah node may begin with an inomplete list of neighbors. Nodes propagate their neighbors toother and learn from others.Inside the main while loop (line 9�81) is written as a list of the following form:ondition ⇒ ationwhere ondition is a preondition (or a guard) in whih the ation an take plae. The prediate reeived(X)evaluates to true if a message that mathes X is in the inoming message queue of the node. Eah iteration ofthe loop waits for at least one guard to beome true, and exeutes the orresponding ation. If multiple guards

An Adaptive File Distribution Algorithm for Wide Area Network 73are true, any one of them is hosen arbitrarily.First, we explain the base part of this algorithm in Setion 3.1. We ontinue with the route optimizationheuristis in Setion 3.23.1. The Base Algorithm. Eah node repeats the following until it gets the entire data.
• It seeks a node that is ahead of itself (i.e., has more data than itself). Let us all suh a node its parent .A parent may hange over time.
• One it �nds a parent, it asks the parent to send the data that should ome next to the data it urrentlyhas. For example, if a node has the �rst 1000 bytes of a �le, it will ask the parent to send some amountof data from o�set 1000.
• In addition,� Eah node, exept ones that have obtained the entire data, seeks a node that is loser to its urrentparent. Details are in Setion 3.2.1.� Eah node having two or more hildren tries to resolve this situation, by suggesting hildren toonnet to one of its siblings.When a node reeives an instrution to partiipate in a repliation, eah node heks how muh data ithas (line 2), searhes for a andidate node that has data grater than itself by onneting to some nodes inits neighbors list. Variable o�set indiates the size of data at that time, and satis�es the inequality 0 ≤o�set ≤ �lesize. During data transfer, the invariant hild's o�set ≤ parent's o�set is maintained (line 25, 33,and 48).A node searhing for a parent sends an ask message arrying its o�set (data size) to a andidate (line 11�13).If the reeiver has more data than the sender, it sends an ok message to the node sender (line 24�28, 32�35).At that time, the relation between parent-hild is established. After that, the hild sends a giveme message tothe parent (line 43�46) and the parent sends a hunk of data to the hild (line 47�51). This repeats until thehild either athes up the parent in data size (line 52�54), �nds a better andidate than the urrent parent, orreeives an error. If the reeiver of ask does not have more data than the sender, it sends an answer ng (line29�31) to the sender. Reeiving an ng message (line 36�41), the node ontinues to searh for a parent.A node an be a parent of some nodes and a hild of another at the same time. In e�et, we ahieve a pipelinetransfer through all nodes.When a parent beomes unreahable from its hild (due to a parent rash or a network failure), the hildmerely searhes for a new parent. When a node reovers, it an partiipate in the transfer from the o�set atthe time it has failed. Hene, this algorithm is fault-tolerant (line 74�80).3.2. Adaptive Transfer Route Optimization. Now, we explain optimizing heuristis on top of thebase algorithm (line 14�23, 67�73).

is_closer(A,B,C)

parent candidate

Sub
Tree

new
parent

A

C B C B

A

Sub
Tree

Sub
Tree

Sub
TreeFig. 3.2. NearParent Operation3.2.1. NearParent Heuristis. Eah node periodially tries to onnet to a node that is loser to itsurrent parent (andidate in Figure 3.2, line 15�18 in Figure 3.1). If the andidate node turns out to have moredata than the loal node (line 32�35), it selets the new node as the new parent. Figure 3.2 shows how thisheuristis modi�es a part of the transfer tree.

74 Takashi Hoshino, Kenjiro Taura, Takashi ChikayamaNote that even if eah node has onneted to its parent, it searhes for an even loser andidate periodially.We have not onduted an extensive study about the best frequeny. Frequent measurements will allow us to�nd a good transfer route fast at the ost of inreased network tra�. Our urrent implementation guaranteesthat there is at most one tra� from eah node for the measurement. It also guarantees eah node performs ameasurement at most one every 100ms. This will hardly a�ets CPU or network load.The prediate to judge if a node B is loser than C from the loal node A, is_loser(A, B, C), urrently usesthe following riteria in the listed order.Throughput observed in the past: Eah node reords throughput from eah of the nodes that have beenhosen as its parent. If A has hosen both B and C as its parent before, whihever produed a betterthroughput is onsidered loser.Observed lateny: The above riterion is not appliable when either B or C has never been hosen one as
A's parent. In this ase A uses latenies it takes to onnet to B and C.The length of the mathing IP address pre�x: When observed latenies are too lose to disriminate, weuse IP addresses of A, B, and C. We ompare the lengths of the ommon pre�xes of IP addresses of Aand B to that of A and C.For the purpose of proving the theoretial property of the algorithm mentioned in Setion 3.3 (also stated asTheorem 3.7), is_loser an be any prediate that satis�es the following properties.

• is_loser(A, B, C) and is_loser(A, C, B) do not beome true at the same time.
• For a given A, the binary relation:

RA(B, C)
def
= is_loser(A, B, C)is transitive. That is, is_loser(A, B, C) ∧ is_loser(A, C, D)

⇒ is_loser(A, B, D)

• is_loser(A, B, C) ⇒ is_loser(B, A, C)It will be lear that any reasonable de�nition of relative distane and an aurate measurement of it, inludingthe ones listed above, will satisfy the �rst two bullets. The third property may not sound very obvious. Examplesthat satisfy the property inlude:
• A de�nition based on the bottlenek edge on trees. That is, assume nodes are onneted via a weightedtree and let is_loser(A, B, C) be true i� the minimum weight on the path between A and B is largerthan that on the path between A and C.
• A de�nition based on the distane on trees. That is, assume nodes are onneted via a tree and letis_loser(A, B, C) be true i� the path between A and B is shorter than A and C.
• A de�nition based on address pre�xes. That is, assume nodes are assigned integer addresses and letis_loser(A, B, C) be true i� the length of the mathing address pre�x between A and B is larger thanthat between A and C.Therefore we expet that our urrent implementation of is_loser based on measured bandwidths betweennodes, measured latenies between nodes, and the length of IP address pre�xes, will satisfy the third propertyprovided measurements are aurate.Note that implementing suh a prediate does not require any a priori notion of groups. Just de�ning/mea-suring the relative loseness between nodes will su�e, as long as suh a de�nition/measurement satis�es theabove properties. In Setion 2.2, we show suh a prediate in general impliitly indues a distane betweennodes, whih in turn indues a deomposition of nodes based on the distane. Our algorithm redues thenumber of inter-group edges for a deomposition derived this way.3.2.2. Tree2List Heuristis. NearParent heuristis redues the number of edges that ross group bound-aries. It however is not useful for reduing the number of branhes. Another optimization, alled Tree2Listheuristis, omes into play to make the transfer route loser to a list.A node that has two or more hildren sends its hildren list to every hild (line 68�71). When a node reeives asuggestion message, whih e�etively ontains its urrent siblings, it hooses one in the list as the next andidateif the urrent parent is not loser to it (lines 72�73, 20�23). Figure 3.3 shows how Tree2List heuristis modi�esa part of the transfer tree. Intuitively, Tree2List pushes branhes in a transfer tree downwards, hoping the treeeventually beomes a list.

An Adaptive File Distribution Algorithm for Wide Area Network 75
Sub
TreeSub

Tree
Sub
Tree

Sub
Tree

Sub
Tree

Sub
Tree

A

B C

A

B C

!is_closer(C,A,B)

Fig. 3.3. Tree2List OperationAn important property about Tree2List, proved in the next setion, is that it never inreases the number ofinter-group edges. This guarantees that applying Tree2List does not impede the NearParent's e�ort of reduingthe number of inter-group edges. In the next setion, we state and prove properties of transfer forests afterapplying both heuristis in an arbitrary order.3.3. Properties of the Route Optimization Algorithm. Let is_loser satisfy the properties statedin Setion 3.2.1. We �rst show the following, that says is_loser(A, B, C) is equivalent to omparing a distanebetween A and B and between A and C, for some de�nition of a distane.Lemma 3.1. For is_loser satisfying the property stated in Setion 3.2.1, there exists a distane funtion dthat satis�es the following.
• For all nodes A and B, d(A, B) = d(B, A).
• For all nodes A, B, and C, is_loser(A, B, C) ⇐⇒ d(A, B) < d(A, C).Proof: See Appendix A.1.The following Lemma is important for guaranteeing Tree2List is appliable when we have many branhes.Lemma 3.2. For any d satisfying the ondition in Lemma 3.1,

max(d(A, B), d(A, C)) ≥ d(B, C)is true for all nodes A, B, and C. Proof: See Appendix A.2.A distane funtion d and a threshold t de�ne a natural deomposition of a graph. That is, we remove alledges (x, y) suh that d(x, y) > t from the original graph, and let a group be a onneted omponent of thegraph. We all suh a deomposition is derived from is_loser. Many deompositions an be derived from asingle de�nition of is_loser, depending on the hoie of d and t.We model our route optimization heuristis as a proess of rewriting the transfer forest aording to Near-Parent, Tree2List, or �nishing the transfer to a node.Definition 3.3. A state of omputation is a forest among partiipating nodes, indued by their parentpointers. Let S and S′ be states. We de�ne relations →n, →t, →f , and → by:1. S →n S′
def
⇐⇒ S′ is obtained by applying NearParent to S (Figure 3.2),2. S →t S′
def
⇐⇒ S′ is obtained by applying Tree2List to S (Figure 3.3),3. S →f S′
def
⇐⇒ S′ is obtained by �nishing a node and making its parent pointer null, and4. →

def
= →n ∪ →t ∪ →f . That is,

S → S′
def
⇐⇒ (S →n S′) or (S →t S′) or (S →f S′).Next, we de�ne some quantities of states. Below, we �x a deomposition D derived by is_loser, and let Dbe the oarsest subdivision of D. Let d and t the distane funtion and the threshold that indued D. Let Nbe the number of groups in D. When we say a group, it always means a group of D. Nodes in a single groupby de�nition form a lique.

76 Takashi Hoshino, Kenjiro Taura, Takashi ChikayamaDefinition 3.4.
• Let w(S) be the number of edges in forest S that ross group boundaries. For tehnial onveniene, weonsider an invalid parent pointer to ross a group boundary, and a null parent pointer not to rossany group boundary.
• Let f(S) be the number of �nished nodes (having parent = null) and F (S) be the number of groupsthat have at least one �nished node. We say suh a group is �nished. Note there may be un�nishednodes in a �nished group.
• Let l(S) be the number of leaves (i.e., nodes that are not pointed to by any parent pointer).Lemma 3.5. Transition paths are bounded. That is, the length of a path S0 → S1 → S2 → · · · is bounded.Proof: De�ne SUMDIST(S), SUMDEPTH(S), and Q(S) as follows.SUMDIST(S) =

∑
x : node d(x, x's parent),SUMDEPTH(S) =
∑

x : node depth(x), and
Q(S) = (f(S),−SUMDIST(S),SUMDEPTH(S)),where depth(x) is the number of hops from the root of the tree x belongs to. d(x, x's parent) is the distanebetween x and its parent. Again for tehnial onveniene, if x's parent pointer is invalid we onsider it hasa value larger than any other d(y, z) for z 6= invalid. Similarly, if x's parent is null, it takes a value smallerthan any other d(y, z) for z 6= null.If we introdue a lexiographial order among triples Q(S), it is easy to see Q(S) stritly inreases by a singletransition step. That is,

S → S′ ⇒ Q(S) < Q(S′).In fat, →f inreases f(S), →n does not hange f(S) and inreases −SUMDIST(S), and →t does not hange
f(S), never dereases −SUMDIST(S), and inreases SUMDEPTH(S).Sine all quantities of the triples are learly bounded above, we have proved transition paths are bounded.Lemma 3.6.1. If S satis�es w(S) > N −F (S), then →n is appliable to S. That is, there exists S′ suh that S →n S′.2. If S satis�es l(S) − f(S) ≥ N , f(S) ≥ 1, and →n is not appliable to S, then →t is appliable to S.Proof:1. If w(S) > N − F (S) (= the number of un�nished groups), either of the following must hold.

• There is an un�nished group having more than one outgoing inter-group edges.
• There is a �nished group having an outgoing inter-group inter-group edge.An outgoing edge is a parent pointer pointing to a node outside the group. In the former ase, let twoof suh edges be (A, B) and (C, D). A and C belong to one group, say X , while neither B nor D belongto X . Thus, a transition by →n that either makes A one of C's hildren or vie versa, is appliable. Inthe latter ase, let one suh edge be (A, B) and one �nished node in the group be P . Thus, a transitionby →n that makes A one of P 's hildren is appliable.2. We split the proof into two ases, (i) l(S) − f(S) > N , and (ii) l(S) − f(S) = N .(i) l(S) − f(S) > N :We have at least one group X that satis�es:

l − f > 1where l and f denote the number of leaves in X and the number of �nished nodes in X , respetively.Let a1, a2, · · · al be the leaves in X (l ≥ 2). Let ai,1 = ai and ~ai = (ai,1, ai,2, · · · , ai,ni
) (i = 1, · · · , l) behains of parent pointers starting from ai. That is, ai,j is a hild of ai,j+1) for all i and j (1 ≤ i ≤ l,

1 ≤ j ≤ ni − 1).We argue by ontradition that all but one of suh hains must be entirely in X . Let us assume w.o.l.g.neither of ~a1 nor ~a2 are in X . Then there are j and k (1 ≤ j ≤ n1 − 1 and 1 ≤ k ≤ n2 − 1) suh that
a1,j and a2,k ∈ X , and a1,j+1 and a2,k+1 6∈ X . Then a transition by →n that onnets a1,j and a2,kshould be appliable. This ontradits the assumption that →n is not appliable in S.Now we have l − 1 hains entirely in X . Sine l − f ≥ 2 (⇒ l − 1 ≥ f + 1), at least two of them mustmerge at some node in X . Let a node at whih two merges be A, and B and C the hildren of A on the

An Adaptive File Distribution Algorithm for Wide Area Network 77two hains. It remains to show we have either (¬is_loser(B, A, C)) or (¬is_loser(C, A, B)), so either
B or C an trigger →t. By Lemma 3.2, we havemax(d(A, B), d(A, C)) ≥ d(B, C),from whih we an derive: max(d(A, B), d(A, C)) ≥ d(B, C)

⇔ d(A, B) ≥ d(B, C) or d(A, C) ≥ d(B, C)
⇔ d(B, A) ≥ d(B, C) or d(C, A) ≥ d(C, B)
⇒ ¬is_loser(B, A, C) or ¬is_loser(C, A, B).(ii) l(S) − f(S) = N :If we have one group X that satis�es:

l − f > 1,then the same disussion as (i) applies. In the remaining ase all the groups satisfy:
l − f = 1.Let X be any group. As in (i), onsider the l hains starting from a node in X . If all the l hains areentirely in X , two of them must merge in X , and the following argument is the same as (i). Thereforeeah group has exatly one hain outgoing from the group. Then we have N inter-group edges, i.e.,

w(S) ≥ N . This implies, however, →n is appliable beause f(S) ≥ 1 ⇒ F (S) ≥ 1 ⇒ w(S) ≥ N >

N − F (S).Theorem 3.7. Along any path of state transitions starting from any state I, we reah within �nite steps astate S∞ satisfying:1. w(S∞) ≤ N − F (S∞), and2. l(S∞) − f(S∞) ≤ N − 1.Proof: From Lemma 3.5, any transition path I = S0 → S1 → · · · is bounded, therefore reahes a state S∞in whih neither →n nor →t (or →, for that matter) is appliable. Lemma 3.6 shows in this state we have bothof the above properties.Remark 1:. As a speial ase where D = D (i.e., no edges are bloked inside a group of D), we have N = N .In this ase the theorem implies that, for su�iently long transfers, the number of edges between groups reahesthe optimal N − F (S). Repliating a �le from F (S) groups to the rest will learly need N − F (S) inter-groupedges. For being lose to a list, the seond bullet of the theorem implies that the number of branhes, e�etivelyalulated by l(S)−f(S), is the optimal N−1. To see this is optimal in general, onsider a network on�gurationshown in Figure 3.4, whih fores inter-group edges to form a star.Remark 2:. Reall that the theorem applies to any deomposition derived from is_loser. If the network hasmultiple levels of hierarhies, (e.g., inside a luster, lusters inside a LAN, LANs in a ampus/orporate area,and LANs in wide area), and is_loser an desriminate all of them, our algorithm simultaneously optimizesall the levels. For example, let us say we have N1 LANs and N2 lusters and f(S) = 1 as the usual ase.If we assume is_loser an desriminate intra-luster, inter-luster but intra-LAN, and inter-LAN edges, andthe network on�guration allows all onnetions, our algorithm onverges to a state in whih we have N1 − 1inter-LAN edges and N2 − 1 inter-luster edges.4. Evaluation.4.1. Implementation. We have implemented the desribed algorithm in Java. This is exeutable onommon omputers supporting Java and TCP/IPv4 protool. We on�rmed the program runs on Solaris (spar),Linux (x86), Windows (x86), and Tru64Unix (Alpha). Stopping some nodes in the middle of a distribution taskdid not prevent any of the remaining nodes from �nishing the task, on�rming its fault-tolerane.

78 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

Finished Node (and only it can be connected to by other’s group.)

Leaf Node

N = 4
l(S) = 4
f(S) = 1
l(S)-f(S) = 3 = N-1

Data Flow
GroupFig. 3.4. An example where the optimal value of l(S) − f(S) is N − 14.2. Single Cluster Experiments. First, we ran some experiments in a single luster. The lusteronsists of 16 nodes. Eah node has two Alpha CPUs and a loal hard-disk. Network ables of nodes areonneted to a 100Mbps swith. Loal disk bandwidth is faster than network, so it does not reveal as abottlenek. CPU is also fast enough.We initially let one node have 500MB �le, and others have no data. Sine there is only a single luster,NearParent optimization does not play any role in this experiment. So this experiment is to see the e�etof Tree2List. In addition to Tree2List, we ran the base algorithm without any optimization, hanging themaximum number of hildren eah node an serve, from one to �ve. They learly demonstrate how importantis it to make the transfer tree lose to a list.The time whih the distribution tasks spent is shown in Figure 4.1.In this result, it is lear that the average distribution time inreases as the maximum number of hildreninreases. The graph also indiates that, in this partiular experiment, limiting the number of hildren to oneyields the best result. That is, restriting the shape of the transfer tree to a list in the �rst plae is better thanour Tree2List strategy whih �rst forms an arbitrary tree and then tries to develop it to a list. We believe,however, our strategy has several advantages. First, nodes may not be able to form a list in the presene of�rewalls et. In suh ases, one must fall bak to a tree. Seond, forming a list in the beginning may take muhlonger than forming a tree, espeially when the number of nodes beomes large, sine a list an only grow onenode at a time.4.3. Multiple Cluster Experiments. Next, we made experiments in seven lusters illustrated in Fig-ure 4.2. They are all plaed in the ampus of University of Tokyo.

• An IBM Linux luster alled �istbs� ontains 70 nodes. We used all of them for the experiment. Nodeswithin a luster are onneted via 1Gbps links. A node in this luster is the soure node in thisexperiment. Bandwidth from/to other lusters below is poor 100Mbps.
• A SunFire15K SMP alled �istsun� has 70 CPUs, of whih we used 20. We used this mahine as if itwere 20 separate nodes. It has a 100Mbps NIC shared by all CPUs. Repliation of 300MB data among20 nodes inside istsun takes about 70 se, where the throughput is about 34Mbps. This seems due todisk I/O bandwidth.

An Adaptive File Distribution Algorithm for Wide Area Network 79

 0

 50

 100

 150

 200

 250

tree2list children
limit 1

children
limit 2

children
limit 3

children
limit 4

children
limit 5

T
im

e
to

 D
is

tr
ib

ut
e

50
0M

B
 (

se
c)

Kinds of Making Transfer Tree

Plot of Experiments changing Children Limit in One Cluster

Fig. 4.1. Performane in a single luster
• A luster of lusters alled �kototoi� ontains three luster eah having 16 nodes. Network speed is100Mbps inside eah luster. Throughput between two of the three is several hundreds Mbps. Havingmore than one onnetion to a single luster easily saturates the link. No nodes outside kototoi annotdiretly onnet to inside it.
• An HP Alpha luster alled �oxen� ontains 16 nodes, whih is the same luster in Setion 4.2. Thereare two (and only two) gateway nodes that an onnet to and an be onneted from outside theluster.
• A Linux luster alled �marten� eah of whih runs Linux inside VMWare. Its on�guration is almostthe same as a luster in kototoi.
• For onnetivity, any node an onnet to istsun nodes and the gateways of oxen. Also, istsun andistbs are in the same virtual LAN, so nodes in the two lusters an diretly onnet to eah other.Connetions to remaining nodes from other lusters are bloked.We ompared the following algorithms.Random tree: The base algorithm without any heuristis, with no limit on the number of hildren for eahnode.NearParent only: The base algorithm + NearParent. No Tree2List.Tree2List only: The base algorithm + Tree2List. No NearParent.NearParent + Tree2List: Use both Tree2List and NearParent.Manual: Fix the transfer route that we onsider will be the best, as follows; istbs onnets to istsun via oneinter-luster edge. It is branhed into three inside istsun. They go to kototoi, oxen, and marten. Insidelusters, there are no branhes. The throughput should be lose to 100Mbps / 3 = 33Mbps, determinedby the three outgoing edges from istsun, whih share a single 100Mbps NIC.In Figure 4.3, the results are presented. Not surprisingly, �Manual� is the fastest. NearParent + Tree2Listahieved an overhead of 50-100% to the manually tuned transfer and more than four times faster than therandom tree.Figure 4.4 shows that the number of inter-luster edges and distribution time have a strong orrelation.This result on�rms that reduing inter-luster (and inter-subnet) edges strongly a�ets performane ofrepliation among many nodes.

80 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama

istbs 70 nodes

kototoi 16x3 nodes

istsun 20 nodes

Root

Max 100Mbps Data Route

oxen 16 nodes

marten 14 nodes

Internet

Gateway Node

Fig. 4.2. Condition of 7 lusters5. Related Work.5.1. Minimum Spanning Tree Constrution. MST onstrution is a ommonly used tehnique foroptimizing �ows in networks. There have been a number of published algorithms and their appliations [2, 6, 1℄.It is ompelling to model our problem by a general weighted graph, with the goal being a tree that has a smallweight and a small number of branhes.We onsidered approahes along this line and then abandoned them for several reasons. First, from theoretialpoint of view, minimizing the two riteria at the same time is impossible for general weighted graphs, so we mustmake a di�ult (and somewhat arbitrary) deision about how to trade one for the other. From the pratial side,building an MST for general weighted graph in fault-tolerant and self-stabilizing manner is already omplex toimplement. Finally, typial real networks have a relatively simple struture we an (and should) exploit. Thatis, nodes lose to eah other in terms of physial proximity an logially onnet to eah other at some leveland below. Therefore these nodes should be able to form a list entirely within the lique. We have shown thisis in fat possible with a very simple hill-limbing with fault-tolerane and adaptiveness.5.2. Appliation-Level Multiast and CDN. Our work is in spirit similar to a number of work onappliation-level multiast and ontent distribution networks (CDN). Our optimization riteria are di�erentfrom them, partiularly in that we try to redue the number of branhes.ALMI [9℄ uses a entralized tree management sheme and makes MST for good performane. End SystemMultiast [7℄ takes both lateny and bandwidth into aount when making a tree of end-hosts. In [12℄, CAN [11℄is used for the infrastruture of multiast. Bayeux [15℄ uses Tapestry [14℄ that is also ontent-addressablenetwork. Overast [8℄ is a multiasting system that ahieves both small latenies and high throughput. Themain appliation of these systems is multimedia streaming to widely distributed nodes. In suh settings, it isimportant to bound latenies beause the appliation may be an interative multimedia appliation. Also inCDNs, the main riteria are latenies and tra� load balaning, rather than delivering as muh bandwidthas possible. So researhes about CDN suh [10, 4, 3℄ mainly onern how to alloate replias of ontents,and how to rediret user requests to appropriate replias. On the other hand, it is less important for suhappliations to squeeze the available bandwidth of loal area networks, beause there are typially a smallnumber of partiipating nodes within eah network. In ontrast, our �le repliation does not have to optimize

An Adaptive File Distribution Algorithm for Wide Area Network 81

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

random
tree

nearparent
only

tree2list
only

nearparent
tree2list

ideal
fixed tree

T
im

e
to

 D
is

tr
ib

ut
e

30
0M

B
 (

se
c)

Kinds of Making Transfer Tree

Plot of Experiments using Verious Transfer Tree on 7 Clusters

Fig. 4.3. Performane on 7 lusters

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90

T
im

e
to

 D
is

tr
ib

ut
e

30
0M

B
 D

at
a(

se
c)

Number of Inter-cluster Edges

Edges Crossing over Clusters and Time to Distribute

Fig. 4.4. Correlation between number of inter-luster edges and distribution timelatenies aggressively, beause the �rst priority is on the ompletion time of transferring large �les. It is alsovery important to utilize LAN bandwidth as muh as possible, as the typial usage will be to opy large �lesto many nodes in lusters. These di�erenes lead them to di�erent optimization riteria, with ours inluding aunique Tree2List heuristis.

82 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama6. Summary and Future Work. We have desribed a large �le distribution algorithm that realizessalability, adaptiveness, fault-tolerane, and e�ient use of bandwidths. It is based on a simple distributedalgorithm with simple loal heuristis to optimize transfers. We formalized and proved the properties of ouralgorithm and argued that this gives a good result in pratial settings. Our system will be useful for settingup a number of lusters and preparing wide-area distributed omputations with a large data. Evaluationsshow that our implementation is e�etive in real environment onsisting of over 150 nodes aross seven lustersampus-wide.Our urrent implementation of the protool is not seure. Any maliious node an partiipate in the replia-tion and breaks the integrity. To be a useful tool for distributed omputing, we must use a suitable authentiationwhen nodes onnet to eah other. While introduing seure authentiations is possible, this may inrease theost of deploying suh tools, whose very purpose will be to help maintain a large number of nodes easily. Wemust study how to maintain ease of installation and use of this tool while ahieving a reasonable level of seurity.REFERENCES[1℄ Abhishek Agrawal and Henri Casanova. Clustering Hosts in P2P and Global Computing Platforms. In Proeedings of the 3rdIEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pages 367�373, 2003.[2℄ F. Bauer and A. Varma. Distributed Algorithms for Multiast Path Setup in Data Networks. Tehnial Report UCSC-CRL-95-10, University of California at Santa Cruz, August 1995.[3℄ A. Biliris, C. Cranor, F. Douglis, M. Rabinovih, S. Sibal, O. Spatshek, and W. Sturm. CDN brokering. In Proeedings ofWCW'01, June 2001.[4℄ Pei Cao and Sandy Irani. Cost-aware WWW proxy ahing algorithms. In Proeedings of the 1997 Usenix Symposium onInternet Tehnologies and Systems (USITS-97), Monterey, CA, 1997.[5℄ CVS home. http://www.vshome.org/.[6℄ Lisa Higham and Zhiying Liang. Self-Stabilizing Minimum Spanning Tree Constrution on Message-Passing Networks. InProeedings of the 15th Conf. on Distributed Computing, DISC, LNCS 2180, pages 194�208, 2001.[7℄ Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling Conferening Appliations on the Internet Usingan Overlay Multiast Arhiteture. In ACM SIGCOMM 2001, San Diago, CA, August 2001. ACM.[8℄ John Jannotti, David K. Gi�ord, Kirk L. Johnson, M. Frans Kaashoek, and James W. O'Toole, Jr. Overast: ReliableMultiasting with an Overlay Network. In Proeedings of the Fourth Symposium on Operating System Design andImplementation (OSDI), pages 197�212, Otober 2000.[9℄ Dimitris Pendarakis, Sherlia Shi, Dinesh Verma, and Marel Waldvogel. ALMI: An Appliation Level Multiast Infrastruture.In Proeedings of the 3rd USNIX Symposium on Internet Tehnologies and Systems (USITS '01), pages 49�60, SanFraniso, CA, USA, Marh 2001.[10℄ Lili Qiu, Venkata N. Padmanabhan, and Geo�rey M. Voelker. On the plaement of web server replias. In INFOCOM, pages1587�1596, 2001.[11℄ Sylvia Ratnasamy, Paul Franis, Mark Handley, Rihard Karp, and Sott Shenker. A salable ontent-addressable net-work. In Proeedings of the 2001 onferene on appliations, tehnologies, arhitetures, and protools for omputerommuniations (SIGCOMM 2001), pages 161�172. ACM Press, August 2001.[12℄ Sylvia Ratnasamy, Mark Handley, Rihard Karp, and Sott Shenker. Appliation-Level Multiast Using Content-AddressableNetworks. Leture Notes in Computer Siene, 2233, 2001.[13℄ Yasuhito Takamiya, Atsushi Manabe, and Satoshi Matsuoka. Luie: A fast installation and administration tool for large-saledlusters (in Japanese). In SACSIS 2003, pages 365�372, May 2003.[14℄ B. Y. Zhao, J. D. Kubiatowiz, and A. D. Joseph. Tapestry: An Infrastruture for Fault-tolerant Wide-area Loation andRouting. Tehnial Report UCB/CSD-01-1141, UC Berkeley, April 2001.[15℄ Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowiz. Bayeux: An Arhiteturefor Salable and Fault-tolerant Wide-area Data Dissemination. In Proeedings of the Eleventh International Workshopon Network and Operating System Support for Digital Audio and Video (NOSSDAV 2001), June 2001.Appendix A. Omitted Proofs. In this setion we abbreviate is_loser to C.A.1. Lemma 3.1. Let V be the set of all nodes. We introdue an unknown xAB for eah A, B ∈ V . Foreah triple (A, B, C) suh that C(A, B, C) is true, we generate a onstraint xAB < xAC . We then unify xABand xBA for all A, B ∈ V , replaing all ourrene of one with the other. We are going to show there are noloops of onstraints xAB < xCD < · · · < xAB, thus the onstraints are satis�able. When we have proved this,we let d(A, B) = xAB, for all A, B ∈ V .To begin with, we show the following:
xAB < · · · < xY Z

⇒ C(A, B, Z) or C(A, B, Y),by indution on the length (the number of inequalities) of the lefthand side n.

An Adaptive File Distribution Algorithm for Wide Area Network 831. n = 1:Observe we must have A = Y , A = Z, B = Y , or B = Z sine this onstraint was generated from C.When A = Y , xAB < xY Z ⇒ xAB < xAZ ⇒ C(A, B, Z). Other ases are similar.2. Assume the laim holds up to n − 1 and now we have
xAB < xCD < · · · < xY Zof length n. By indution hypothesis, we either have:(a) C(C, D, Z), or(b) C(C, D, Y).By xAB < xCD, we either have:(i) A = C and C(A, B, D),(ii) A = D and C(A, B, C),(iii) B = C and C(A, B, D), or(iv) B = D and C(A, B, C).Sine (a) and (b) are similar we only prove the ase (a) by analyzing the four ases (i)�(iv).(i) C(A, B, D) and C(A, D, Z)

⇒ C(A, B, Z)(ii) C(A, B, C) and C(C, A, Z)
⇒ C(A, B, C) and C(A, C, Z)
⇒ C(A, B, Z).(iii) C(A, B, D) and C(B, D, Z)
⇒ C(B, A, D) and C(B, D, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).(iv) C(A, B, C) and C(C, B, Z)
⇒ C(B, A, C) and C(B, C, Z)
⇒ C(B, A, Z) ⇒ (A, B, Z).Now we prove by ontradition there are no loops:

xAB < · · · < xY Z < xAB .By the above indution, we either have:(a) C(A, B, Z) or,(b) C(A, B, Y).By xY Z < xAB, we either have:(i) Y = A and C(A, Z, B),(ii) Y = B and C(B, Z, A),(iii) Z = A and C(A, Y, B), or(iv) Z = B and C(B, Y, A).We see ombining any of (a)�(b) and any of (i)�(iv) will lead to ontradition. We only prove ase (a) sine (b)is similar.(i) C(A, B, Z) and C(A, Z, B)
⇒ false.(ii) C(A, B, Z) and C(B, Z, A)
⇒ C(B, A, Z) and C(B, Z, A)
⇒ false.(iii) C(A, B, Z) and Z = A ⇒ false.(iv) Same as (iii).A.2. Lemma 3.2. Analyze the three ases, (i) d(A, C) < d(A, B), (ii) d(A, B) < d(A, C), and (iii)

d(A, B) = d(A, C). Prove eah ase by ontradition.(i) Let us assume d(A, C) < d(A, B) < d(B, C). Then,
d(A, C) < d(A, B) and d(A, B) < d(B, C)
⇒ d(A, C) < d(A, B) and d(B, A) < d(B, C)
⇒ C(A, C, B) and C(B, A, C)
⇒ C(A, C, B) and C(A, B, C)
⇒ false.

84 Takashi Hoshino, Kenjiro Taura, Takashi Chikayama(ii) Similar to (i).(iii) Let us assume d(A, B) = d(A, C) < d(B, C). Then,
d(A, B) = d(A, C) and d(A, C) < d(B, C)
⇒ d(A, B) = d(A, C) and d(C, A) < d(C, B)
⇒ d(A, B) = d(A, C) and C(C, A, B)
⇒ d(A, B) = d(A, C) and C(A, C, B)
⇒ d(A, C) = d(A, B) and d(A, C) < d(A, B)
⇒ false.Edited by: Wilson Rivera, Jaime Seguel.Reeived: July 3, 2003.Aepted: September 1, 2003.

