
Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 31�41. http://www.spe.org ISSN 1895-1767© 2005 SWPSE.V.E., AN OBJECT ORIENTED SIMD LIBRARYJOEL FALCOU AND JOCELYN SEROT∗Abstrat. This paper desribes the eve (Expressive Veloity Engine) library, an objet oriented C++ library designed to easethe proess of writing e�ient numerial appliations using AltiVe, the SIMD extension designed by Apple, Motorola and IBM.AltiVe-powered appliations typially show o� a relative speed up of 4 to 16 but need a omplex and awkward programmationstyle. By using various template metaprogramming tehniques, E.V.E. provides an easy to use, STL-like, interfae that allowsdeveloper to quikly write e�ient and easy to read ode. Typial appliations written with E.V.E. an bene�t from a largefration of theorial maximum speed up while being written as simple C++ arithmeti ode.1. Introdution.1.1. The AltiVe Extension. Reently, SIMD enhaned instrutions have been proposed as a solutionfor delivering higher miroproessor hardware utilisation. SIMD (Single Instrution, Multiple Data) extensionsstarted appearing in 1994 in HP's MAX2 and Sun's VS extensions and an now be found in most of miropro-essors, inluding Intel's Pentiums (MMX/SSE/SSE2) and Motorola/IBM's PowerPCs (Altive). They havebeen proved partiularly useful for aelerating appliations based upon data-intensive, regular omputations,suh as signal or image proessing.AltiVe [10℄ is an extension designed to enhane PowerPC1 proessor performane on appliations handlinglarge amounts of data. The AltiVe arhiteture is based on a SIMD proessing unit integrated with thePowerPC arhiteture. It introdues a new set of 128 bit wide registers distint from the existing generalpurpose or �oating-point registers. These registers are aessible through 160 new �vetor� instrutions thatan be freely mixed with other instrutions (there are no restrition on how vetor instrutions an be intermixedwith branh, integer or �oating-point instrutions with no ontext swithing nor overhead for doing so). Altivehandles data as 128 bit vetors that an ontain sixteen 8 bit integers, eight 16 bit integers, four 32 bitintegers or four 32 bit �oating points values. For example, any vetor operation performed on a vetor haris in fat performed on sixteen har simultaneously and is theoretially running sixteen times faster as thesalar equivalent operation. AltiVe vetor funtions over a large spetrum, extending from simple arithmetifuntions (additions, subtrations) to boolean evaluation or lookup table solving.Altive is natively programmed by means of a C API [5℄. Programming at this level an o�er signi�antspeedups (from 4 to 12 for typial signal proessing algorithms) but is a rather tedious and error-prone task,beause this C API is really �assembly in disguise�. The appliation-level vetors (arrays, in variable numberand with variable sizes) must be expliitly mapped onto the Altive vetors (�xed number, �xed size) and theprogrammer must deal with several low-level details suh as vetor padding and alignment. To orretly turn asalar funtion into a vetor-aelerated one, a large part of ode has to be rewritten.Consider for example a simple 3x1 smoothing �lter (Fig. 1.1):void C_filter(har* d, short* r){ for(int i=1; i<SIZE-1; i++)r[i℄ = (d[i-1℄+2*d[i℄+d[i+1℄)/4;} Fig. 1.1. A simple 3x1 gaussian �lter written in standard C.This ode an be rewritten (�vetorized") using Altive vetor funtions. However, this rewriting is nottrivial. We �rst have to look at the original algorithm in a parallel way. The C_filter funtion is based on aniterative algorithm that runs trough eah item of the input data, applies the orresponding operations and writesthe result into the output array. By ontrast, AltiVe funtions operate on a bunh of data simultaneously.We have to reraft the algorithm so that it works on vetors instead of single salar values. This is done by
∗LASMEA, UMR 6602 CNRS / U. Clermont Ferrand, Frane (falou, jserot�lasmea.univ-bplermont.fr).
1PPC 74xx (G4) and PPC 970 (G5). 31

32 J. Falou and J. Serotloading data into AltiVe vetors, shifting these vetors left and right, and performing vetor multipliation andaddition. The resulting ode�whih is indeed signi�antly longer than the original one�is given in Appendix A.We have benhmarked both the salar and vetorized implementation on a 2 GHz PowerPC G5 and obtainedthe results shown in Table 1.1. Both ode were ompiled using g 3.3 using -O3. On this example, a ten foldaeleration an be observed with the AltiVe extension. However, the time spent to rewrite the algorithm in a�vetorized" way and the somehow awkward Altive API an hinder the development of larger sale appliations.Table 1.1Exeution time and relative speed-up for 3x1 �lters.SIZE value C_filter AV_filter Speed Up
16 K 0.209 ms 0.020 ms 10.5
64 K 0.854 ms 0.075 ms 11.4

256 K 3.737 ms 0.322 ms 11.6
1024 K 16.253 ms 1.440 ms 11.32. AltiVe in high level API. As evidened in the previous setion, writing AltiVe-based appliationsan be a tedious task. A possible approah to irumvent this problem is to enapsulate Altive vetors andthe assoiated operations within a C++ lass. Instantiating this lass and using lassi in�x notations willprodue the AltiVe ode. We atually built suh a lass (AVetor) and used it to enode the �ltering exampleintrodued in setion 1.1. The resulting ode is shown below.AVetor<har> img(SIZE);AVetor<short> res(SIZE);res = (img.sr(1)+2*img+img.sl(1))/4;In this formulation, expliit iterations have been replaed by appliation of overloaded operators on AVetorobjets. The sr and sl methods implements the shifting operations. The performane of this ode, however,is very disappointing. With the array sizes shown in Table 1.1, the measured speed-ups never exeed 1. Thereasons for suh behaviour are given below.Consider a simple ode fragment using overloaded operators as shown below:AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);r = x + y + z;When a C++ ompiler analyses this ode, it redues the suessive operator alls iteratively, resolving �rsty+z then x+(y+z) where y+z is in fat stored in a temporary objet. Moreover, to atually ompute x+y+z,the involved operations are arried out within a loop that applies the ve_add funtion to every single vetorelement of the array. An equivalent ode, after operator redution and loop expansion is:AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);AVetor<har> tmp1(SIZE),tmp2(SIZE);for(i=0;i<SIZE/16);i++) tmp1[i℄ = ve_add(y[i℄,z[i℄);for(i=0;i<SIZE/16);i++) tmp2[i℄ = ve_add(x[i℄,tmp1[i℄);for(i=0;i<SIZE/16);i++) r[i℄ = tmp2[i℄;Fig. 2.1. Expanded ode for overloaded operator ompilationThis ode an be ompared to an �optimal", hand-written Altive ode like the one shown on �gure 2.2. Theode generated by the �naive" AltiVe lass learly exhibits unneessary loops and opies. When expressionsget more omplex, the situation gets worse. The time spent in loop index alulation and temporary objetopies quikly overomes the bene�ts of the SIMD parallelization, resulting in poor performanes.This an be explained by the fat that all C++ ompilers use a dyadi redution sheme to evaluateoperators omposition. Some ompilers2 an output a slightly better ode when ertain optimisations are

2Like Code Warrior or g.

E.V.E., An Objet Oriented SIMD Library 33AVetor<har> r(SIZE),x(SIZE),y(SIZE),z(SIZE);for(i=0;i<SIZE/16);i++) r[i℄ = ve_add(x[i℄,ve_add(y[i℄,z[i℄));Fig. 2.2. Optimal, hand written AltiVe ode for x+y+z omputationturned on. However, large expressions or omplex funtions all an't be totally optimised. Another fator isthe impat of the order of AltiVe instrutions. When writing AltiVe ode, one have to take in aount thefat that ahe lines have to be �lled up to their maximum. The typial way for doing so is to pak the loadinginstrutions together, then the operations and �nally the storing instrutions. When loading, omputing andstoring instrutions are mixed in an unordered way, AltiVe performanes generally drop.The aforementioned problem has already been identi�ed�in [13℄ for example�and is the major inon-venient of the C++ language when it is used for high-level sienti� omputations. In the domain of C++sienti� omputing, it has led to the development of the so-alled Ative Libraries [15, 2, 14, 1℄, whih bothprovide domain-spei� abstrations and dediated ode optimisation mehanisms. This paper desribes howthis approah an be applied to the spei� problem of generating e�ient Altive ode from a high-level C++API.It is organized as follows. Set. 3 explains why generating e�ient ode for vetor expressions is not trivialand introdues the onept of template-based meta-programming. Set. 4 explains how this onept an used togenerate optimised Altive ode. Set. 5 rapidly presents the API of the library we built upon these priniples.Performane results are presented in Set. 6. Set. 7 is a brief survey of related work and Set. 8 onludes.3. Template based Meta Programming. The evaluation of any arithmeti expression an be viewedas a two stages proess:
• A �rst step, performed at ompile time, where the struture of the expression is analysed to produe ahain of funtion alls.
• A seond step, performed at run time, where the atual operands are provided to the sequene offuntion alls and the a�erent omputations are arried out.When the expression struture mathes ertain pattern or when ertain operands are known at ompile time, itis often possible to perform a given set of omputations at ompile time in order to produe an optimised hainof funtion alls. For example, if we onsider the following ode:for(int i=0;i<SIZE;i++){ table[i℄ = os(2*i);} If the size of the table is known at ompile time, the ode ould be optimised by removing the loop entirelyand writing a linear sequene of operations:table[0℄ = os(0);table[1℄ = os(2);// later \dotstable[98℄ = os(196);table[99℄ = os(198);Furthermore, the value os(0), . . . , os(198) an be omputed one and for all at ompile-time, so thatthe runtime ost of suh initialisation boils down to 100 store operations.Tehnially speaking, suh a �lifting� of omputations from runtime to ompile-time an be implementedusing a mehanism known as template-based metaprogramming. The sequel of this setion gives a brief aountof this tehnique and of its entral onept, expressions templates. More details an be found, for example, inVeldhuizen's papers [11, 12, 13℄. We fous here on how this tehnique an be used to remove unneessary loopsand objet opies from the ode produed for the evaluation of vetor based expressions.The basi idea behind expressions templates is to enode the abstrat syntax tree (AST) of an expressionas a C++ reursive template lass and use overloaded operators to build this tree. Combined with an array-like

34 J. Falou and J. Serotontainer lass, it provides a way to build a stati representation of an array-based expression. For example, ifwe onsider an �oat Array lass and an addition funtor add, the expression D=A+B+C ould be represented bythe following C++ type:Xpr<Array,add,Xpr<Array,add,Array>>Where Xpr is de�ned by the following type:template<lass LEFT,lass OP,lass RIGHT>lass Xpr{ publi:Xpr(float* lhs, float* rhs) : mLHS(lhs), mRHS(rhs) {}private:LEFT mLHS;RIGHT mRHS;}; The Array lass is de�ned as below:lass Array{ publi:Array(size_t s) { mData = new float[s℄; mSize = s;}~Array() {if(mData) delete[℄ mData; }float* begin() { return mData; }private:float *mData;size_t mSize;}; This type an be automatially built from the onrete syntax of the expression using an overloaded versionof the '+' operator that takes an Array and an Xpr objet and returns a new Xpr objet:Xpr< Array,add,Array> operator+(Array a, Array b){ return Xpr<T,add,Array>(a.begin(),b.begin());} Using this kind of operators, we an simulate the parsing of the above ode (�A+B+C") and see how thelasses get ombined to build the expression tree:Array A,B,C,D;D = A+B+C;D = Xpr<Array,add,Array> + CD = Xpr<Xpr<Array,add,Array>,add,Array>Following the lassi C++ operator resolution, the A+B+C expression is parsed as (A+B)+C. The A+Bpart gets enoded into a �rst template type. Then, the ompiler redue the X+C part, produing the �nal type,enoding the whole expression.Handling the assignation of A+B+C to D an then be done using an overloaded version of the assignmentoperator:template<lass XPR> Array& Array::operator=(onst XPR& xpr){ for(int i=0;i<mSize;i++) mData[i℄ = xpr[i℄;return *this;}

E.V.E., An Objet Oriented SIMD Library 35The Array and Xpr lasses have to provide a operator[℄ method to be able to evaluate xpr[i℄:int Array::operator[℄(size_t index){ return mData[index℄;}template<lass L,lass OP,lass R>int Xpr<L,OP,R>::operator[℄(size_t index){ return OP::eval(mLHS[i℄,mRHS[i℄);} We still have to de�ne the add lass ode. Simply enough, add is a funtor that exposes a stati methodalled eval performing the atual omputation. Suh funtors an be freely extended to inlude any otherarithmeti or mathematial funtions.lass add{ stati int eval(int x,int y) { return x+y; }} With these methods, eah referene to xpr[i℄ an be evaluated. For the above example, this gives:data[i℄ = xpr[i℄;data[i℄ = add::eval(Xpr<Array,add,Array>,C[i℄);data[i℄ = add::eval(add::apply(A[i℄,B[i℄),C[i℄);data[i℄ = add::eval(A[i℄+B[i℄,C[i℄);data[i℄ = A[i℄+B[i℄+C[i℄;4. Appliation to e�ient AltiVe ode generation. At this stage, we an add AltiVe supportto this meta-programming engine. If we replae the salar omputations and the indexed aesses by vetoroperations and loads, we an write an AltiVe template ode generator. These hanges a�et all the lasses andfuntions shown in the previous setions.The Array lass now provides a load method that return a vetor instead of a salar:int Array::load(size_t index) { return ve_ld(data_,index*16); }The add funtor now use ve_add funtions instead of the standard + operator:lass add{ stati vetor int eval(vetor int x,vetor int y){ return ve_add(x,y); }} Finally, we use ve_st to store results:template<lass XPR> Array& Array::operator=(onst XPR& xpr){ for(size_t i=0;i<mSize/4;i++) ve_st(xpr.load(i),0,mData);return *this;} The �nal result of this ode generation an be observed on �gure 4.1.b for the A+B+C example. Figure 4.1.agives the ode produed by g when using the std::valarray lass.For this simple task, one an easily see that the minimum number of loads operation is three and theminimum number of store operations is one. For the standard ode, we have seven extraneous lwz instrutionsto load pointers, three lsfx to load the atual data and one stfs to store the result. For the optimised ode,we have replaed the salar lsfx with the AltiVe equivalent lvx, the salar fadds with vaddfp and stfsxwith the vetor stvx. Only three load instrutions and one store instrutions, reduing opode ount from 17to 9.

36 J. Falou and J. Serot(a) std::valarray ode (b) optimized odeL253: L117:lwz r9,0(r3) slwi r2,r9,4slwi r2,r12,2 addi r9,r9,1lwz r4,4(r3) lvx v1,r5,r2addi r12,r12,1 lvx v0,r4,r2lwz r11,4(r9) lvx v13,r6,r2lwz r10,0(r9) vaddfp v0,v0,v1lwz r7,4(r11) vaddfp v1,v0,v13lwz r6,4(r10) stvx v1,r2,r8lfsx f0,r7,r2 bdnz L117lfsx f1,r6,r2lwz r0,4(r4)fadds f2,f1,f0lfsx f3,r2,r0fadds f1,f2,f3stfs f1,0(r5)addi r5,r5,4bdnz L253 Fig. 4.1. Assembly ode for a simple vetor operation5. The EVE library. Using the ode generation tehnique desribed in the previous setion, we haveprodued a high-level array manipulation library aimed at sienti� omputing and taking advantage of theSIMD aeleration o�ered by the Altive extension on PowerPC proessors. This library, alled eve (forExpressive Veloity Engine) basially provides two lasses, vetor and matrix�for 1D and 2D arrays �, and arih set of operators and funtions to manipulate them. This set an be roughly divided in four families:1. Arithmeti and boolean operators, whih are the diret vetor extension of their C++ ounterparts.For example:vetor<har> a(64),b(64),(64),d(64);d = (a+b)/;2. Boolean prediates. These funtions an be used to manipulate boolean vetors and use them asseletion masks. For example:vetor <har> a(64),b(64),(64);// [i℄ = a[i℄ if a[i℄<b[i℄, b[i℄ otherwise = where(a < b, a, b);3. Mathematial and STL funtions. These funtions work like their STL or math.h ounterparts.The only di�erene is that they take an array (or matrix) as a whole argument instead of a oupleof iterators. Apart from this di�erene, eve funtions and operators are very similar to their STLounterparts (the interfae to the eve array lass is atually very similar to the one o�ered by the STLvalarray lass. This allows algorithms developed with the STL to be ported (and aelerated) with aminimum e�ort on a PowerPC platform with eve. For example:vetor <float> a(64),b(64);b = tan(a);float r = inner_produt(a, b);4. Signal proessing funtions. These funtions allow the diret expression (without expliit deom-position into sums and produts) of 1D and 2D FIR �lters. For example:matrix<float> image(320,240),res(320,240);filter<3,horizontal> gauss_x = 0.25, 0.5, 0.25;res = gauss_x(image);

E.V.E., An Objet Oriented SIMD Library 37The eve API allows the developer to write a large variety of algorithms as long as these algorithm an beexpressed as a serie of global operation on vetor.6. Performane. Two kinds of performane tests have been performed: basi tests, involving only onevetor operation and more omplex tests, in whih several vetor operations are omposed into more omplexexpressions. All tests involved vetors of di�erent types (8 bit integers, 16 bit integers, 32 bit integers and32 bit �oats) but of the same total length (16 Kbytes) in order to redue the impat of ahe e�ets on theobserved performanes3. They have been onduted on a 2GHz PowerPC G5 with g 3.3.1 and the followingompilation swithes: -faltive -ftemplate-deph-128 -O3. A seletion of performane results is given inTable 6.1. For eah test, four numbers are given: the maximum theoretial speedup4 (TM), the measuredspeedup for a hand-oded version of the test using the native C Altive API (N.C), the measured speedup witha �naive� vetor library�whih does not use the expression template mehanism desribed in Set. 3 (N.V),and the measured speedup with the eve library. Table 6.1Seleted performane resultsTest Vetor type TM N.C N.V EVE1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.42. v2=tan(v1) 32 bit �oat 4 3.6 2.0 3.53. v3=v1/v2 32 bit �oat 4 4.8 2.1 4.64. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.05. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.26. v3=inner_prod(v1,v2) 32 bit �oat 4 14.1 4.8 13.87. 3x1 Filter 8 bit integer 8 7.9 0.1 7.88. 3x1 Filter 32 bit �oat 4 4.12 0.1 4.089. v5=sqrt(tan(v1+v2)/os(v3*v4)) 32 bit �oat 4 3.9 0.04 3.9It an be observed that, for most of the tests, the speedup obtained with eve is lose to the one obtainedwith a hand-oded version of the algorithm using the native C API. By ontrast, the performanes of the �naive�lass library are very disappointing (espeially for tests 7-10). This learly demonstrates the e�etiveness of themetaprogramming-based optimisation.Tests 1�3 orrespond to basi operations, whih are mapped diretly to a single AltiVe instrution. In thisase, the measured speedup is very lose to the theoretial maximum. For test 3, it is even greater. This e�etan be explained by the fat that on G5 proessors, and even for non-SIMD operations, the Altive FPU isalready faster than the salar FPU5. When added to the speedup o�ered by the SIMD parallelism, this leadsto super-linear speedups. The same e�et explains the result obtained for test 6. By ontrast, test 4 exhibitsa situation in whih the observed performanes are signi�antly lower than expeted. In this ase, this is dueto the asymmetry of the Altive instrution set, whih does not provide the basi operations for all types ofvetors. In partiular, it does not inlude division on 16 bit integers. This operation must therefore be emulatedusing vetor �oat division. This involves several type asting operations and pratially redues the maximumtheoretial speedup from 8 to 4.Tests 5-9 orrespond to more omplex operations, involving several AltiVe instrutions. Note that fortests 5 and 7, despite the fat that the operands are vetors of 8 bit integers, the omputations are atuallyarried out on vetors of 16 bit integers, in order to keep a reasonable preision. The theoretial maximumspeedup is therefore 8 instead of 16.6.1. Realisti Case Study. In order to show that eve an be used to solve realisti problems, while stilldelivering signi�ant speedups, we have used it to vetorize several omplete image proessing algorithms. Thissetion desribes the implementation of an algorithm performing the detetion of points of interest in grey saleimages using the Harris �lter [7℄.
3I.e. the vetor size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers and 4K for 32 bits integers or �oats.
4This depends on the type of the vetor elements: 16 for 8 bit integers, 8 for 16 bit integers and 4 for 32 bit integers and �oats.
5It has more pipeline stages and a shortest yle time.

38 J. Falou and J. SerotStarting from an input image I(x, y), horizontal and vertial gaussian �lters are applied to remove noiseand the following matrix is omputed:
M(x, y) =

(

(∂I
∂x

)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(∂I
∂y

)2

)Where (∂I
∂x

) and (∂I
∂y

) are respetively the horizontal and vertial gradient of I(x, y). M(x, y) is �lteredagain with a gaussian �lter and the following quantity is omputed:
H(x, y) = Det(M) − k.trace(M)2, k ∈ [0.04; 0.06]

H is viewed as a measure of pixel interest. Loal maxima of H are then searhed in 3x3 windows and the
nth �rst maxima are �nally seleted. Figure 6.1 shows the result of the detetion algorithm on a video framepituring an outdoor sene.

In this implementation, only the �ltering and the pixel detetion are vetorized. Sorting an array annotbe easily vetorized with the AltiVe instrution set. It's not worth it anyway, sine the time spent in the �nalsorting and seletion proess only aounts for a small fration (around 3%) of the total exeution time of thealgorithm. The ode for omputing M oe�ients and H values is shown in Fig. 6.1. It an be split into threesetions:1. A delarative setion where the needed matrix and filter objets are instantiated. matrix objetsare delared as float ontainers to prevent over�ow when �ltering is applied on the input image and to speedup �nal omputation by removing the need for type asting.2. A �ltering setion where the oe�ients of the M matrix are omputed. We use eve �lter objets,instantiated for gaussian and gradient �lters. Filter support an overloaded * operator that is semantially usedas the omposition operator.3. A omputing setion where the �nal value of H(x, y) is omputed using the overloaded versions ofarithmeti operators.The performanes of this detetor implementation have been ompared to those of the same algorithmwritten in C, both using 320*240 pixels video sequene as input. The tests were run on a 2GHz Power PC G5and ompiled with g 3.3. As the two steps of the algorithm (�ltering and detetion) use two di�erent partsof the E.V.E. API, we give the exeution time for eah step along with the total exeution time.Step Exeution Time Speed UpFiltering 1.4ms 5.21Evaluation 0.45ms 4.23Total Time 1.85ms 4.98The performane of both parts of the algorithm are satisfatory. The �ltering setion speed-up is near 65%of maximum speed-up while the seond part bene�ts from a superlinear aeleration.7. Related Work. Projets aiming at simplifying the exploitation of the SIMD extensions of modernmiro-proessors an be divided into two broad ategories: ompiler-based approahes and library-based ap-proahes.

E.V.E., An Objet Oriented SIMD Library 39// Delarations#define W 320#define H 240matrix<short> I(W,H),a(W,H),b(W,H);matrix<short> (W,H),t1(W,H),t2(W,H);matrix<float> h(W,H);float k = 0.05f;filter<3,horizontal> smooth_x = 1,2,1;filter<3,horizontal> grad_x = 1,0,1;filter<3,vertial> smooth_y = 1,2,1;filter<3,vertial> grad_y = -1,0,1;// Computes matrix M://// | a |// M = | b |t1 = grad_x(I);t2 = grad_y(I);a = (smooth_x*smooth_y)(t1*t1);b = (smooth_x*smooth_y)(t2*t2); = (smooth_x*smooth_y)(t1*t2);// Computes matrix HH = (a*b-*)-k*(a+b)*(a+b);Fig. 6.1. The Harris detetor, oded with eveThe swar (SIMD Within A register, [4℄) projet is an example of the �rst approah. Its goal is to proposea versatile data parallel C language making full SIMD-style programming models e�etive for ommodity mi-roproessors. An experimental ompiler (s) has been developed that extends C semantis and type systemand an target several family of miroproessors. Started in 1998, the projet seems to be in dormant state.Another example of the ompiler-based approah is given by Kyo et al. in [8℄. They desribe a ompiler fora parallel C dialet (1d, One Dimensional C) produing SIMD ode for Pentium proessors and aimed at thesuint desription of parallel image proessing algorithms. Benhmarks results show that speed-ups in therange of 2 to 7 (ompared with ode generated with a onventional C ompiler) an be obtained for low-levelimage proessing tasks. But the parallelization tehniques desribed in the work�whih are derived from the oneused for programming linear proessor arrays�seems to be only appliable to simple image �ltering algorithmsbased upon sweeping a horizontal pixel-updating line row-wise aross the image, whih restrits its appliability.Moreover, and this an be viewed as a limitation of ompiler-based approahes, retargeting another proessormay be di�ult, sine it requires a good understanding of the ompiler internal representations.The vast ode optimiser [3℄ has a spei� bak-end for generating Altive/Power PC ode. This ompilero�ers automati vetorization and parallelization from onventional C soure ode, automatially replaing loopswith inline vetor extensions. The speedups obtained with vast are laimed to be losed to those obtained withhand-vetorized ode. vast is a ommerial produt.There have been numerous attempts to provide a library-based approah to the exploitation of SIMDfeatures in miro-proessors. Apple velib [6℄, whih provides a set of Altive-optimised funtions for signalproessing, is an example. But most of these attempts su�er from the weaknesses desribed in Set. 2; namely,they annot handle omplex vetor expressions and produe ine�ient ode when multiple vetor operationsare involved in the same algorithm. MaSTL [9℄ is the only work we are aware of that aims at eliminating theseweaknesses while keeping the expressivity and portability of a library-based approah. MaSTL is atuallyvery similar to eve in goals and design priniples. This C++ lass library provides a fast valarray lass

40 J. Falou and J. Serotoptimised for Altive and relies on template-based metaprogramming tehniques for ode optimisation. Theonly di�erene is that it only provides STL-ompliant funtions and operators (it an atually be viewed asa spei� implementation of the STL for G4/G5 omputers) whereas eve o�ers additional domain-spei�funtions for signal and image proessing.8. Conlusion. We have shown how a lassial tehnique�template-based metaprogramming�an be ap-plied to the design and implementation of an e�ient high-level vetor manipulation library aimed at sienti�omputing on PowerPC platforms. This library o�ers a signi�ant improvement in terms of expressivity overthe native C API traditionally used for taking advantage of the SIMD apabilities of this proessor. It allows de-velopers to obtain signi�ant speedups without having to deal with low level implementation details. Moreover,The eve API is largely ompliant with the STL standard and therefore provides a smooth transition path forappliations written with other sienti� omputing libraries. A prototype version of the library an be down-loaded from the following URL: http://wwwlasmea.univ-bplermont.fr/Personnel/Joel.Falou/eng/eve.We are urrently working on improving the performanes obtained with this prototype. This involves, forinstane, globally minimizing the number of vetor load and store operations, using more judiiously Altive-spei� ahe manipulation instrutions or taking advantage of fused operations (e. g. multiply/add). Finally, itan be noted that, although the urrent version of eve has been designed for PowerPC proessors with Altive,it ould easily be retargeted to Pentium 4 proessors with MMX/SSE2 beause the ode generator itself (usingthe expression template mehanism) an be made largely independent of the SIMD instrution set.REFERENCES[1℄ The BOOST Library. http://www.boost.org/.[2℄ The POOMA Library. http://www.odesourery.om/pooma/.[3℄ VAST. http://www.psrv.om/vast_altive.html/.[4℄ The SWAR Home Page http://shay.en.purdue.edu/~swar Purdue University[5℄ Apple, The AltiVe Instrutions Referenes Page. http://developer.apple.om/hardware/ve.[6℄ Apple, VeLib framework. http://developer.apple.om/hardware/ve/vetor_libraries.html[7℄ C. Harris and M. Stephens, A ombined orner and edge detetor. In 4th Alvey Vision Conferene, 1988.[8℄ S. Kyo and S. Okasaki and I. Kuroda, An extended C language and a SIMD ompiler for e�ient implementation ofimage �lters on media extended miro-proessors. in Proeedings of Aivs 2003 (Advaned Conepts for Intelligent VisionSystems), Ghent, Belgium, Sept. 1998[9℄ G. Low, Ma STL. http://www.pixelglow.om/mastl/.[10℄ I. Ollman, AltiVe Veloity Engine Tutorial. http://www.simdteh.org/altive. Marh 2001.[11℄ T. Veldhuizen, Using C++ Template Meta-Programs. In C++ Report, vol. 7, p. 36-43,1995.[12℄ , Expression Templates. In C++ Report, vol. 7, p. 26-31, 1995.[13℄ , Tehniques for Sienti� C++. http://osl.iu.edu/ tveldhui/papers/tehniques/.[14℄ , Arrays in Blitz++. In Dr Dobb's Journal of Software Tools, p. 238-44, 1996.[15℄ T. Veldhuizen and D. Gannon, Ative Libraries: Rethinking the roles of ompilers and libraries Pro. of the SIAMWorkshop on Objet Oriented Methods for Inter-operable Sienti� and Engineering Computing. SIAM Press, 1998

E.V.E., An Objet Oriented SIMD Library 41Appendix A. A simple 3x1 gaussian �lter written with the Altive native C API .void AV_filter(har* img, short* res){ vetor unsigned har zu8,t1,t2,t3,t4;vetor signed short x1h,x1l,x2h;vetor signed short x2l,x3h,x3l;vetor signed short zs16 ,rh,rl,v0,v1,shift;// Generate onstantsv0 = ve_splat_s16(2);v1 = ve_splat_s16(4);zu8 = ve_splat_u8(0);zs16 = ve_splat_s16(0);shift = ve_splat_s16(8);for(int j = 0; j< SIZE/16 ; j++){ // Load input vetorst1 = ve_ld(j*16, img); t2 = ve_ld(j*16+16, img);// Generate shifted vetorst3 = ve_sld(t1,t2,1); t4 = ve_sld(t1,t2,2);// Cast to shortx1h = ve_mergeh(zu8,t1); x1l = ve_mergel(zu8,t1);x2h = ve_mergeh(zu8,t3); x2l = ve_mergel(zu8,t3);x3h = ve_mergeh(zu8,t4); x3l = ve_mergel(zu8,t4);// Atual filteringrh = ve_mladd(x1h,v0,zs16);rl = ve_mladd(x1l,v0,zs16);rh = ve_mladd(x2h,v1,rh);rl = ve_mladd(x2l,v1,rl);rh = ve_mladd(x3h,v0,rh);rl = ve_mladd(x3l,v0,rl);rh = ve_sr(rh,shift);rl = ve_sr(rl,shift);// Pak and store result vetort1 = ve_paksu(rh,rl);ve_st(t1,j,out);}}Edited by: Frédéri LoulergueReeived: June 26, 2004Aepted: June 5, 2005

