
Scalable Computing: Practice and Experience

Volume 7, Number 2, pp. 87–91. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

PARALLEL STANDARD ML WITH SKELETONS

NORMAN SCAIFE∗, GREG MICHAELSON† , AND SUSUMU HORIGUCHI‡

Abstract. We present an overview of our system for automatically extracting parallelism from Standard ML programs using
algorithmic skeletons. This system identifies a small number of higher-order functions as sites of parallelism and the compiler uses
profiling and transformation techniques to exploit these.

Key words. automated parallelization, higher-order functions, algorithmic skeletons.

1. Introduction. The exploitation of parallelism in programs is greatly eased by tools based on implicit
parallelism. The PMLS compiler realises higher order functions (HOFs) in Standard ML (SML) programs as
parallel algorithmic skeletons. An SML program is treated as a prototype of the final parallel implementation.
Static analysis and dynamic instrumentation, combined with performance models for skeletons, enable the
identification of useful parallelism. Prototype transformation is employed to try and optimise parallelism.
Where exploitable parallelism cannot be identified, program synthesis is used to introduce new instances of
HOFs. Here, we describe the compiler and the methodology it is intended to support.

2. A Skeletons Methodology. The compiler was originally motivated by extensive exploration of algo-
rithmic skeletons for the construction of parallel computer vision systems from functional prototypes [12, 17].
Since that time our compiler has matured into a more general-purpose parallel programming language based on
SML, a mature functional language with a stable formal definition [13]. Although our methods are applicable to
low-level programming such as image processing they are most useful for high-level programming with complex
algorithmic structures. For prototyping, SML provides closeness to formalisms for proof and transformation.
For parallel prototyping, SML’s strictness is better suited than the laziness of Haskell [10] as it results in more
predictable behaviour.

We focus on common low-level HOFs such as map and fold which are ubiquitous in functional programs.
Explicit HOF names are used as the basis for identification:

fun map f [] = []

| map f (h::t) = f h::map f t

fun fold (f:’a*’a->’a) b [] = b

| fold f b (h::t) = f (h,fold f b t)

fun filter p [] = []

| filter p (h::t) = if p h then filter p t else h::filter p t

fun compose (f:’b list -> ’c list) (g:’a list -> ’b list) x = f (g x)

fun tuple2 (fa,fb) = (fa (),fb ())

map and fold HOFs may be synthesised from arbitrary recursive functions [7], and implemented in parallel in
a variety of ways [9]. filter can be implemented constructively from map with minimal overhead. Function
composition can be realized in parallel provided the argument is a decomposable datatype. Tuple parallelism
can be implemented by turning tuples into suspensions:

(a,b) ⇔ tuple2 (fn => a,fn => b)

Transformations may be defined over these base functions to implement simple identification, distribution
and equivalences. For example, we can mitigate communications costs by aggregation:

(map f) o (map g) ⇔ map (f o g)

If a fold function argument is not associative, we can sometimes extract partial parallelism using map:

fold (fn (h,t) => f (g h) t) b l ⇔ fold f b (map g l)

∗School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan, 923-1292
(norman@jaist.ac.jp).

†Department of Computing and Electrical Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS,
(greg@cee.hw.ac.uk).

‡School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa, Japan 923-1292
(hori@jaist.ac.jp)

87



88 N. Scaife et al.

We can switch between alternative implementations of the same skeleton:

map f ⇔ fold (fn (h,t) => f h::t) []

Finally, we can move sites of argument instantiation to allow pre-computation before distribution:

hof (f x) ⇔ let val x’ = f x in hof x’ end

Given the high computational complexity of program transformation systems we need a fast method of
assessing the impact of transformations upon parallel performance. Using the SML definition in conjunction
with an SML interpreter we can accurately summarise the semantic behaviour of an executing SML program.
This behaviour can then be related to the execution times of compiled programs.

Cost models for algorithmic skeletons have been well-studied [16, 14]. Combining the profiling information
with data size measurements results in the ability to instantiate these cost models giving predictions of the
effect of transformations.

Partitioning transformations into; identification, optimisation, and restructuring, we propose a methodology
for parallel functional prototyping which can be summarised as follows:

1. A sequential prototype is transformed using restructuring and identification transformations to lift as
many HOF instances from arbitrary code as possible.

2. The computational loads for HOF instance functions and communication costs for their arguments and
results are determined.

3. This data is applied to models for the equivalent algorithmic skeletons to determine the viability of
potential parallel implementations.

4. If no parallelism is predicted, the prototype is transformed using optimisation and retsructuring trans-
formations. to optimise the computational versus communication costs in the models.

5. Where useful parallelism is predicted the HOFs should be realised as, possibly nested, algorithmic
skeleton instantiations.

3. The Parallel SML with Skeletons (PMLS) Compiler.

3.1. Design. Our experience with the PUFF [4] and SkelML [3] compilers, combined with that gained in
developing parallel computer vision systems led to the design of a more general parallelizing compiler for SML
[11], with the following properties:

• The full SML Core language is supported.
• Dynamic profiling provides parallel performance prediction.
• Heuristics-guided transformations drive performance optimisation.
• Transformations may be generated using automated proof synthesis.
• Skeletons can be nested but are not first-class objects.
• The compiler targets a broad range of general-purpose parallel computers.

The spine of the PMLS compiler was constructed from 1997 to 2000, incorporating map and fold skeletons.
The performance prediction has been developed to a state where usably accurate predictions are provided for
these two skeletons. Further skeletons are under development but are not currently modelled. At present we
can present results for the manual analysis of exemplars and are currently automating this process.

3.2. Implementation. The host compilers are the ML Kit [2] for the front end, profiling and transfor-
mation systems, and Objective Caml [5] for backend compilation and execution. This combination allows the
transformational compiler to be implemented on a separate machine so that the backend can be kept small and
retargetable.

3.3. Analysis. During our analysis, the SML syntax tree is mapped onto a static network of processors.
We generate an abstract network description of the program which defines the relationship between the HOFs
in the sequential prototype and between executing skeletons in the parallel version. A two-phase algorithm is
implemented whereby the skeleton information is added to the existing types and then the type information is
stripped out leaving the network description:

val ff3 = map (fn x => x + 1) [1,2,3]

val ff3 :: node(map,base list,[(int->base),base list])



Parallel SML With Skeletons 89

The handling of free values complicates our analysis. We wish to avoid the transmision of functional data at
runtime as large free value bindings can overload the communications. For non-functional free values, lambda-
lifting [8] is sufficient. Functions are augmented with additional formal parameters for their free variables
and calls to those functions are extended with the corresponding free variables as the actual parameters. For
skeleton instances, the free values are registered with the runtime system and transmitted to the point of
function application.

For free functionals we use defunctionalization [1]. In this technique, closures are lifted to the top level of the
language and represented by datatypes. This allows free functionals to be handled in the same way as free data
but creates a global overhead of a datatype dereference for every function application. The defunctionalization
of SML is problematical, however. The published algorithms all require forward code-references which would
necessitate runtime registration of functions with attendant jump tables for SML. We adopt a solution whereby
the entire program is turned into a single mutually-recursive block.

Finally, we generate launch-code for the skeletons which replace HOFs. This involves detecting free values,
replacing the HOF with the skeleton call and reconstructing the type information. Our analysis thus converts
the following code:

fun ff (y,z) = x + y + z

val result = fold ff (~x) [1,2,3]

into:

fun ff1 (x) (y,z) = x + y + z

val _ = register ‘‘ff1" ff1

val result =

(fn _ => (pfold : string -> int -> int list -> int) ‘‘ff1" (~x) [1,2,3])

(register ‘‘ff1_fvs" (x))

3.4. Dynamic profiling. PMLS includes an integrated dynamic profiling mechanism [15]. The ML Kit
interpreter has been modified to annotate the syntax tree with counts of rules in the semantics which are fired
during execution. Given a suitable set of training programs it is possible to assign a weight to each rule in
the semantics. The test programs cause as many of the different rules to be fired as possible and the actual
execution times for the test programs form the dependent variable for weight determination. This system can
be expressed in matrix form as Pw = x, where P is an r×n matrix where r is the number of rules and n the
number of program executions, w is a vector of weights and x is the vector of execution times. We solve this
equation for the training-set, giving a set of weights which can be applied to a new, unknown profile of rule
counts to give a predicted execution time. It is important to select a suitable set of test programs whereby each
rule has a significant representation and no rules dominate the entire data set.

Currently, we can use either numerical analysis methods or genetic algorithm techniques to solve the above
equation for our training-set. The numerical methods give more accurate fits but suffer from numerical instability
which limits the range of validity of the generated weights. The genetic solution is extremely slow and much
less accurate but has less numerical instability. At best this technique only gives a rule-of-thumb estimate of the
sequential performance of an arbitrary section of code, typically within about a 200% margin. This is sufficient,
however, to drive a performance-improving transformation system.

3.5. Transformation. PMLS transformations are defined by associating equivalent SML constructs (ei-
ther expressions or declarations). The transformations are elaborated and type information is preserved on
transformation application. The resulting system allows simple identification and optimization:

dtrans T2008 (FF,F,H,T,TAIL) = fun FF [] = TAIL

| FF (H::T) = F::FF T

==> fun FF l = (map (fn H => F) l)@TAIL

end

trans T202 (F,G,L) = fn (F,G,L) => map F (map G L)

==> fn (F,G,L) => map (fn x => F (G x)) L

We are currently constructing the transformation engine using the performance prediction results to rank
improving transformations and prune non-useful ones.



90 N. Scaife et al.

3.6. HOF Synthesis. To support the programmer with automatic detection of HOFs, Cook investigated
automatic extraction of HOFs using proof-planning techniques [7]. The λ-CLAM proof-planner is employed to
locate instances of map, fold and scan using higher-order unification and middle-out reasoning. Currently, we
use the HOF synthesizer as a pre-processor. For example, the following functions:

fun squares [] = []

| squares ((h:int)::t) = h*h::squares t

fun squs2d [] = []

| squs2d (h::t) = squares h::squs2d t

yield the following equivalent programs:

fn x => map (fn y => map (fn (z:int) => z*z) y) x

fn x => map (fn y => foldr (fn (z:int,u) => z*z::u) [] y) x

fn x => map (fn y => squares y) x

4. Performance. We have employed PMLS to parallelise a wide range of SML programs. Substantial
exemplars include island model genetic algorithms, arbitrary length integer matrix multiplication, linear equa-
tion solving and ray tracing. In general, skeleton parallelism tends to be coarse grain. For such exemplars,
PMLS offers useful, scalable speedup, typically on up to 16 processors. These applications are all regular par-
allelism but we hope to tackle more complex irregular problems with future enhancements to the compiler.
The performance of our compiler compares favourably with other similar approaches [9]. The following table
summarizes the comparison on a Beowulf class workstation cluster (SRT=sequential runtime, PRT=parallel
runtime, SP=speedup):

Eden GpH PMLS

SRT PRT SP SRT PRT SP SRT PRT SP
matmult 38.5s 13.2s 2.9 30.3s 8.9s 3.4 22.8s 4.3s 5.2
linsolv 491.7s 35.1s 14.0 307.9s 25.9s 11.9 190.8s 16.1s 11.9
raytracer 177.4s 13.4s 13.3 163.3s 24.1s 6.8 172.1s 11.4s 15.2

PMLS can generate native code for a variety of CPUs. Consistent cross-platform performance as been
shown on the Cray T3E, Fujitsu AP3000, Sun Enterprise, IBM SP2 and Beowulf-class workstation clusters.

5. Concluding Remarks. PMLS demonstrates the potential of exploiting implict parallelism through
the combination of a variety of static and dynamic program analysis techniques targeted at skeleton-oriented
parallel implementation. This results in a simple method of introducing parallelism with minimal burdens upon
the programmer. Our approach is novel in; matching parallel topology to algorithm rather than algorithm to
topology, basing profiling on semantic entities rather than absolute or simulated times, and closely coupling
instrumentation, analysis and transformation. PMLS is primarily a research vehicle. Current challenges include;
combining speed with stability in performance prediction, broadening the range of exploitable HOFs, and
exploiting parallelism in the presence of conditionals.

Acknowledgement. This work was supported by the Japan JSPS Postdoctoral Fellowship P00778 and
UK EPSRC grants GR/J07884 and GR/L42889.

REFERENCES

[1] J. M. Bell, F. Bellegarde, and J. Hook, Type-driven defunctionalization, In Proceedings of the ACM SIGPLAN ICFP
’97, pages 25–37. ACM, Jun 1997.

[2] L. Birkedal, N. Rothwell, M. Tofte, and D. N. Turner, The ML Kit (Version 1), Technical Report 93/14, Department
of Computer Science, University of Copenhagen, 1993.

[3] T. Bratvold, Skeleton-based Parallelisation of Functional Programmes, PhD thesis, Dept. of Computing and Electrical
Engineering, Heriot-Watt University, 1994.

[4] D. Busvine, Detecting Parallel Structures in Functional Programs, PhD thesis, Heriot-Watt University, Riccarton, Edinburgh,
1993.

[5] E. Chailloux, P. Manoury, and B. Pagano, Développement d’applications avec Objective Caml, O’Reilly, Paris, Apr 2000.
[6] A. Cook, A. Ireland, and G. Michaelson, Higher-order Function Synthesis through Proof Planning, In Proceedings of

16th Annual International Conference on Automated Software Engineering (ASE 2001), pages 307–310, San Diego, USA,
Nov 2001. IEEE Computer Society.



Parallel SML With Skeletons 91

[7] A. Cook, A. Ireland, G. Michaelson and N. Scaife, Discovering Applications of Higher Order Functions Through Proof
Planning, Formal Aspects of Computing, V. 17(1), pp. 38–57,2005.

[8] T. Johnsson, Lambda Lifting: Transforming Programs to Recursive Equations, In J.-P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture, volume 201 of LNCS, pages 190–302. Springer, 1985.

[9] H-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J. Michaelson, R. Peña,

Á. J. Rebón Portillo, S. Priebe, and P. W. Trinder, Comparing Parallel Functional Languages: Programming and
Performance, Higher-order and Symbolic Computation, 16(3), pp. 203–251, 2003.

[10] H-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L Peyton Jonem es, Engineering Parallel
Symbolic Programs in GPH, Concurrency—Practice and Experience, 11:701–752, 1999.

[11] G. Michaelson, N. Scaife, P. Bristow, and P. King, Nested Algorithmic Skeletons from Higher-Order Functions. Parallel
Algorithms and Applications special issue on High Level Models and Languages for Parallel Processing, 16(2–3):181–206,
2001.

[12] G. J. Michaelson and N. R. Scaife, Prototyping a parallel vision system in Standard ML. Journal of Functional Program-
ming, 5(3):345–382, Jul 1995.

[13] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Standard ML (Revised), MIT Press, 1997.
[14] R. Rangaswami, A Cost Analysis for a Higher-Order Parallel Programming Model, PhD thesis, University of Edinburgh,

1995.
[15] N. Scaife, S. Horiguchi, G. Michaelson and P. Bristow, A Parallel SML Compiler Based on Algorithmic Skeletons,

Journal of Functional Programming, V. 15(4), pp. 615–650, 2005.
[16] D. B. Skillicorn and W. Cai, A Cost Calculus for Parallel Functional Programming, Journal of Parallel and Distributed

Programming, 28(1):65–84, 1995.
[17] A. M. Wallace, G. J. Michaelson, N. Scaife, and W. J. Austin, A Dual Source, Parallel Architecture for Computer

Vision, The Journal of Supercomputing, 12(1/2):37–56, Jan/Feb 1998.

Edited by: H. Shen.
Received: June 3, 2002.
Accepted: December 19, 2002.


