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AFPAC: ENFORCING CONSISTENCY DURING THE ADAPTATION OF A PARALLEL

COMPONENT

JÉRÉMY BUISSON∗, FRANÇOISE ANDRÉ†, AND JEAN-LOUIS PAZAT‡

Abstract. Grid architectures are execution environments that are known to be at the same time distributed, parallel, hete-
rogeneous and dynamic. While current tools focus solutions for hiding distribution, parallelism and heterogeneity, this approach
does not fit well their dynamic aspect. Indeed, if applications are able to adapt themselves to environmental changes, they can
benefit from it to achieve better performance. This article presents Afpac, a tool for designing self-adaptable parallel components
that can be assembled to build applications for Grid. This model includes the definition of a consistency criterion for the dynamic
adaptation of SPMD components. We propose a solution to implement this criterion. It has been evalued using both synthetic and
real codes to exhibit the behavior of several proposed strategies.
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1. Introduction. Grid is an architecture that can be considered as a large-scale federation of pooled
resources. Those resources might be processing elements, storage, and so on; they may come from parallel
machines, clusters, or any workstation. One of the main properties of Grid architectures is to have variable
characteristics even during the lifetime of an application. Resources may come and go; their capacities may
vary. Moreover, resources may be allocated then reclaimed and reallocated as applications start and terminate
on the Grid. To sum up, Grid is an architecture that is at the same time distributed, parallel, heterogeneous
and dynamic. This is why we think distributed assemblies of parallel self-adaptable components is a suitable
model for Grid applications.

In our context, we just see the component as a unit that explicitly specifies the services it provides (“provide
ports”) and the ones it requires (“use ports”). Required resources are one kind of required services. Service
specifications can be qualitative (type specification); they can also be quantitative (quality of the provided or
used services). A parallel component is simply a component that encapsulates a parallel code. For example,
GridCCM [15] extends CORBA Component Model to support parallel components. A self-adaptable component
is a component that is able to modify its behavior depending on the changes of the environment: it may use
different algorithms that use services differently and provide different qualities of services. The choice of the
algorithm is a component-dependent problem and cannot be solved in a general way at some middleware level.
Nevertheless, some generic mechanisms exist in adaptable components that are independent of the component
itself. Our research focuses on the design of an adaptation framework for parallel components that provides
all those common mechanisms. One of the main problems consists in providing a mechanism for choosing a
point in the execution to perform the adaptation in a consistent manner. This article aims at addressing this
problem.

Section 2 presents our model of dynamic adaptation for parallel codes to set the context of this article up.
Section 3 gives few mathematical definitions that are useful in the remaining text of this paper. Sections 4 and 5
describe how the future of the execution path is predicted to choose the adaptation point at which the adaptation
code is inserted. Section 6 discusses the results obtained from our experiments. Section 7 compares our work
to others in the area of dynamic adaptation. It also shows similarities with computation steering and fault
tolerance. Finally, section 8 concludes this paper and presents some perspectives.

2. Model of self-adaptable components. The dynamic adaptability of a component is its ability to
modify itself according to constraints imposed by the execution environment on which it is deployed. It aims
at helping the component to give the best performance given its allocated resources. Moreover, it makes the
component aware of changes in resource allocation. Resources may be allocated and reclaimed dynamically
during the lifetime of the component.

2.1. Structure of a self-adaptable component. With our model of dynamic adaptation Dynaco [3],
parallel self-adaptable components can split in several functional boxes (some of them being independent of the
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Fig. 2.1. Model of a parallel self-adaptable component

component itself). Figure 2.1 shows the architecture of a parallel self-adaptable component. A short description
of the boxes follows.

The monitors provide the information service about the environment of the component. They should offer
two interfaces: a subscription-based event source and a query interface. Monitors are not restricted to collect
information about the outside world of the component: the component itself and its activity can be relevantly
monitored (for example for estimating its current service rate). Furthermore, nothing prevents the component
from being one of its own monitors.

The service of the component is the functionality it provides. The service can be implemented by several
algorithms that might be used to solve a single problem. Each of these algorithms uses differently the resources;
thus, there is one preferred algorithm for each configuration of the resources allocated to the component.

The actions are the ways to modify the component. They modify the way the service is implemented,
replacing the algorithm with another one, adjusting its parameters or anything else. Typically, actions use
reflective programming techniques to affect the component.

A strategy is an indication of the way the component should behave: it states the algorithm that should be
executed and the values that its parameters should adopt. The decider makes the decisions about adaptability.
It decides when the component should adapt itself and which strategy should be adopted. In order to decide,
it relies on the policy and on information provided by monitors. The policy describes component-specific
information required to make the decisions. For example, the policy can be an explicit set of rules or the
collection of the performance models of the algorithms implemented by the component.

A plan is a program whose instructions are invocations of actions and control instructions. Thus, plans are
programs that modify the component. The planner establishes an adaptation plan that makes the component
adopt a given strategy. To do so, it relies on the guide. The guide gives component-specific information required
to build plans. It can consist in predefined plans; or in specifications of how actions can be composed (their
preconditions and postconditions for example).

The executor is the virtual machine that interprets plans. In addition to forwarding invocations to actions,
it is responsible for concerns such as atomicity of plan execution. The executor embeds a coordinator for
synchronizing the execution of the plan with the processes that execute the service. To do so, the coordinator

chooses a point (an instantaneous statement that annotates a special state) within the execution path of the
service in order to insert the action.

In the context of parallel components, the service can be implemented either sequentially (exactly one
execution thread) or in parallel (several communicating execution threads). In the latter case, the coordinator
must implement a parallel algorithm.

Our parallel adaptable components are split in 3 parts. The decider, planner and executor form the Dynaco
framework (in blue): they provide the general functionalities of dynamic adaptation. The coordinator is part
of the Afpac framework (in green) that is specific to parallel components. Finally, service, actions, policy and
guide are specific to the component: they are not included in any framework.

2.2. Contracts between components. Because the quality of the services used by a component is of
greater importance to the adaptation, we attach to each port link a contract that describes the effective quality
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of the provided service. Moreover, for the sake of uniformity, our model abstracts resources as “provide ports”
of some component called the environment. The execution environment of a component is thus completely
described by the contracts attached to its “use ports”. Consequently, any change in the execution environment
is reflected by a change in those contracts, triggering the adaptation.

Contracts are dynamically negotiated and renegotiated: a component negotiates sufficient quality of service
with its subcontractors in order to respect the contracts with its clients; it negotiates with its clients the quality
of the provided services according to the ones contracted with its subcontractors. In that way, any renegotiation
of one contract automatically propagates to the entire assembly of components (the application) to adjust the
quality of all the provided services of all components. Consequently, it propagates the trigger of the adaptation
to the components that require it.

2.3. Performance model. The goal of dynamic adaptation is to help the component to give the best
performance. Thus, the model assumes that adaptation occurs when the component runs a non-optimal service
given its allocated resources. This means that the completion time is worse than it could be. In a general way,
the conceptual performance model of a single-threaded component that adapts itself is shown by figure 2.2. The
x-axis is the execution flow of the component with adaptation points labelled from 1 to 5; the curve gives the
expected completion time if the component adapts itself at the corresponding point in its execution flow. The
lower the expected completion time is for a given adaptation point, the better that adaptation point is.

Fig. 2.2. Conceptual performance model of an adapting component

The adaptation can occur in either the future or the past of the current state. In the case of adapting in
the past, it requires the restoration of a checkpoint (that has a cost r on the curve). At the extremes, adapting
in the future is adapting once the execution has ended (or equivalently not adapting at all); while adapting
in the past consists in restarting from the begining (purely static adaptation). It appears that whatever the
search direction, the best point will always be the nearest one from the current state. In figure 2.2, the best
adaptation point is the one labelled 3.

In the case of a parallel component, several curves are superimposed. Because the threads of the component
are not necessarily synchronized, the curves are slightly shifted (the present time is not at the same distance of
adaptation points for all threads). The global completion time is thus the maximum of the ones for all threads.
In this case, the best point can be in the future for some threads and in the past for some others.

In this paper, we arbitrarily chose to consider only the search direction towards the future of the execution.
In the case of a parallel component, we look for a global point that belongs to the future of all threads.

2.4. Consistency model. In the case of a parallel service, the coordinator must enforce the consistency
of the adaptation. We defined one consistency model, which we called the “same state” consistency model. In
this model, the adaptation is said to be consistent if and only if all threads execute the reaction from the same
state (this logical synchronization does not require an effective synchronization of the execution threads).

This model only makes sense in the case of SPMD codes (parallel codes for which all threads share the
same control flow graph). It has been further discussed in [5].

2.5. Scenario of dynamic adaptation. From time to time, possibly due to some external event, the
decider determines whether the component should adapt itself according to the policy. It thus orders the planner
to find a suitable plan for achieving the decided strategy. This plan is sent to the executor for execution. When
the executor needs to execute an action in the context of the parallel execution of the service, it orders the
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coordinator to choose an adaptation point. This point is the next one in the future of the execution path.
When the threads of the service reach that adaptation point, their control flow is hooked in order to insert the
execution of the requested action.

In this paper, we will concentrate on the coordinator. Section 4 describes how the point can be computed;
section 5 depicts how an algorithm can be built. In the remaining text of the document, we will call “candidate
points” the points at which a reaction can be executed. The one that has been chosen by the coordinator will
be called the “adaptation point”.

3. Definitions. This section recalls few definitions about partial orders that are useful in understanding
the remaining text of this paper.

Definition 3.1 (poset). A poset (or partially-ordered set) is a pair (P, R) where P is a set and R is a
binary relation over P that is (1) reflexive, (2) antisymmetric and (3) transitive.

(1) ∀x · (x ∈ P ⇒ xRx)
(2) ∀x, y ·

(

x, y ∈ P 2 ⇒ ((xRy ∧ yRx)⇒ x = y)
)

(3) ∀x, y, z ·
(

x, y, z ∈ P 3 ⇒ ((xRy ∧ yRz)⇒ xRz)
)

Definition 3.2 (supremum). Given a poset (P, R), the supremum sup (S) of any subset S ⊂ P of P is
the least upper bound u of S in P such that: (1) u succeeds all elements of S and (2) u precedes any element v
of P succeeding all elements of S

(1) ∀x · (x ∈ S ⇒ xRu)
(2) ∀v · (v ∈ P ⇒ ((∀x · (x ∈ S ⇒ xRv))⇒ uRv))

Definition 3.3 (infimum). Symmetrically to the supremum, given a poset (P, R), the infimum inf (S) of
any subset S ⊂ P of P is the greater lower bound l of S in P such that:

∀x · (x ∈ S ⇒ lRx) ∧ ∀v · (v ∈ P ⇒ (∀x · (x ∈ S ⇒ vRx))⇒ vRl)

The infimum of S in the poset (P, R) is the supremum of S in
(

P, R−1
)

.
Definition 3.4 (lattice). A lattice L is a poset (P, R) such that for any pair x, y ∈ P 2, both the supremum

sup ({x, y}) and the infimum inf ({x, y}) exist. This defines two internal composition laws:

sup ({x, y}) = x ∨ y (join)
inf ({x, y}) = x ∧ y (meet)

4. Computing the future. The coordinator needs to find a global point such that it represents the same
state for all threads. As it restricts consideration to points in the future of execution paths this point should
be the first one in the future for all threads, given the assumption on the performance model depicted in § 2.3.

4.1. Local prediction of the next point. For each thread, the coordinator needs to find the next
candidate point in the future of the execution path. This point would be the one at which the coordinator is
going to execute the reaction in the case of a single-threaded component.

4.1.1. General schema. An execution path can be seen as a path in the control flow graph that models
the code. If loops are unrolled (for example by tagging nodes with indices in iteration spaces), the control
flow graph defines a “precedes” partial order between the points of a code. Given this relation, each thread
of the parallel component is able to locally predict its next point at least in trivial cases, when no conditional
instruction is encountered (in this case, nodes in the control flow graph have at most one successor).

4.1.2. Uncertain predictions. In the general case, predicting the future of an execution path is undeci-
dable due to conditional instructions: their behavior is unpredictable since it depends on runtime computations.
This occurs for both conditions and loops, which appear as nodes having several successors in the control flow
graph.

Three strategies may be used when such a node is encountered during the computation of the adaptation
point.
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• Postpone. The computation of the adaptation point can be postponed until the effective behavior of
the instruction is known. Once the unpredictable instruction has been executed, the computation of
the adaptation point resumes with a new start point (the one that is being entered).
• Skip. The computation of the point can move forward in the control flow graph until all control

subflows merge. In this case, the prediction jumps over loops and conditions.
• Force. The behavior of the conditional instruction can be guessed when additional static information is

available. With this strategy, one branch of the conditional instruction is assumed accordingly to some
application-dependent knowledge; then some application-level mechanism enforces that the execution
path respects this assumption.

Two examples that follow illustrate the usage of the “force” strategy. Firstly, it is possible for some loops
to insert unexpected empty iterations; in this case, it can be guessed that the conditional instruction will
execute the branch that stays in the loop; this behavior can be enforced by making one more empty iteration
on-demand. Secondly, if the code includes assertions to detect error cases, it could be reasonably assumed that
those assertions hold; in this case, it can be guessed that the corresponding conditional instruction will execute
the branch leading to error-free cases. As mispredictions exactly match detected runtime errors, error handlers
invoked upon assertion failures can be used to handle effects of mispredictions.

The above examples exhibit two interpretations of the “force” strategy. In the first example, the coordinator
changes the execution behavior of the component in order to fit its requirements. The coordinator uses the static
knowledge about the component to ensure that this change does not have any semantic impact on produced
results. In the second example, the coordinator let the component execute its normal behavior and simply
exploits static knowledge to make its prediction.

4.2. Characterization of the chosen global point. The point that should be chosen is the supremum
u, if it exists, of the set S of the next local points for each thread with respect to the “precedes” partial order
(noted �). Indeed, the property ∀x · (x ∈ S ⇒ x � u) guarantees that u is in the future of all threads; the
property ∀v · (v ∈ P ⇒ ((∀x · (x ∈ S ⇒ x � v))⇒ u � v)) means that u is the first point amongst those in the
future of all threads.

Even if loops are unrolled, the control flow graph is not a lattice as it may contain patterns such as the one
of figure 4.1(a). In this example, the supremum sup ({P1, P2}) does not exist. This pattern captures a subset
of conditional instructions. The three strategies that has been identified for locally predicting the next point
can be used to work-around non-existence of the supremum.

• Postpone. Postponing the computation of the adaptation point until the unpredictable instruction
has been executed can be seen as inserting a special node that models that instruction in the control
flow graph. For example, in figure 4.1(b), a node C has been inserted to represent the conditional
instruction. When such a node is chosen, a new round for finding a satisfying point is started once the
corresponding instruction has been executed.
• Skip. Skiping the conditional block is equivalent to compute the supremum within the subset defined

by:

{a|∀y · ((∀x · (x ∈ S ⇒ x � y))⇒ (a � y) ∨ (y � a))}

This set contains the points that are related to all successors of all points in S. Those points are
guaranteed to be traversed by any execution thread starting from any point in S. The definition of that
set ensures that upper bounds of S in that set are totally ordered by �. Consequently, the supremum
of S in that set ordered by � exists if at least one upper bound exists. In the given example, it restricts
to compute the supremum sup ({P1, P2}) in {P1, P2, P5}; this supremum exists.
• Force. Forcing one branch of a conditional instruction removes all out edges but one of the correspon-

ding node. This is sufficient to make the supremum exist. For example, on figure 4.1(c), the conditional
instruction that follows P1 has been forced such that it always leads to P3.

Each conditional instruction may use a distinct strategy. In such a case, several strategies are combined.

4.3. Comparison of the strategies. These three strategies have their own drawbacks. The “postpone”
one shortens the time between choosing a point and reaching the chosen point. It may result in an increase of
the risk that the execution thread tries to get through the locally chosen point before it has been globally either
confirmed or evicted. The “skip” one chooses an adaptation point further in the future of the execution path
(and possibly falls back at the end of the code). The “force” one modifies the code of the execution thread.
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(a) Pattern which
prevents the supremum
from existing

(b) Inserting nodes for
conditionals

(c) Removing branches
of conditionals

Fig. 4.1. Example of control flow graph with non-existent supremum

5. Building an algorithm. In order to solve the problem of finding a point in the case of a parallel
service, an algorithm has been designed.

5.1. Identification of the candidate points. Having a good identification system for the points is a
key issue. Indeed, as § 4.2 has shown, the case of parallel self-adaptable components requires the computation
of the supremum of a set of points. This requires to be able to compare easily candidate points with respect
to the “precedes” partial order. However, with naive point identification, deciding whether a candidate point
precedes, succeeds, or is not related to another one requires the computation of the transitive closure of the
control flow graph with unrolled loops. The same apply for the join composition law. This is why a smarter
identification system for the points is needed.

5.1.1. Description of the identification system. We think that the good representation to use is
a tree view of the hierarchical task graph. Figure 5.1 gives an example algorithm that has been annotated
with candidate points; figure 5.2 shows the control flow graph between annotated points; figure 5.3 shows the
corresponding tree view. The edges of the tree are labelled as follows:

• out edges of loop nodes are labelled with the value of the indice within the iteration space of the loop;
• out edges of condition nodes are labelled with either the symbol “then” (the condition is true) or the

symbol “else” (the condition is false);
• other edges (out edges of block nodes) are labelled with the execution order number in the control flow.

Algorithm gcd (a, b) :
loop until ((a mod b) = 0)

if (a < b) then

// candidate point P1
tmp← a
a← b
b← tmp

else

// candidate point P2
a← (a mod b)

end if

end loop

// candidate point P3
return (b)

Fig. 5.1. An examplary algorithm

Considering the tree view of the hierarchical task graph, one can see that the nodes of the control flow
graph are the leaves of the tree. Each candidate point is identified by the sequence composed of the labels of
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Fig. 5.2. Control flow graph of the algorithm 5.1

Fig. 5.3. Tree view of the hierarchical task graph of

the algorithm 5.1

the edges traversed by the path from the root to the leaf corresponding to it. For example, the node “P3” is
identified by 〈2〉; the node “P1” is identified by the sequence 〈1, (a, b) , 1, else, 1〉.

5.1.2. Order on points. The set of edge labels in the tree is E = N∪I∪{then, else}, where N is the set of
execution order numbers (natural numbers) and I the iteration space partially ordered by an application-specific
relation �I . We define the following partial order over the set E of edge labels of the tree:

∀x, y ·
(

x, y ∈ E2 ⇒
(

x �E y ⇔
((

x, y ∈ N
2 ∧ x ≤ y

)

∨
(

x, y ∈ I2 ∧ x �I y
))))

Notably, the two constants “then” and “else” are set not comparable to other values and values in iteration
spaces (such as (a, b) in the example) are partially ordered by an application-specific relation.

The edges of the control flow graph (that represent the “precedes” partial order between points) are (gra-
phically) transverse to those of the tree. Consequently, the lexicographical partial order �n

E
on the sequences

is equivalent to the partial order on points defined by the control flow graph. Thus, with this identification
system, deciding whether a point precedes, succeeds, or is not related to another one can be computed as a
direct lexicographical comparison (not requiring the computation of the transitive closure of the control flow
graph anymore). Moreover, this ordering directly takes into account the loop indices in iteration spaces, whereas
the control flow graph does not.

5.1.3. Discussion. This identification system makes sense only in the case of a parallel component in which
all threads are allowed to have different dynamic behaviors (different behavior of conditionnal instructions and
loop indices desynchronization). Otherwise, a simple counting identification system is sufficient. Furthermore,
in the case of a non-parallel component, no identification system is required.

In the above description of the identification system, in the tree view of the hierarchical task graph, leaves
are candidate points and internal nodes are “sequence”, “loop” and “if” control structures. This restricts the
expressivity for writing programs. Function calls can be represented as leaves that connect to the root the target
function tree, as long as the function is bound statically. Thanks to that connection, the sequence identifying a
point includes the complete call stack used to reach that point. Problems arise with runtime function binding
upon calls (for example calls through pointers) and with “goto” like instructions. In those cases, the proposed
order relation does not respect the control flow graph. As programs can be rewritten in order to respect those
restrictions, further discussion about control structures is beyond the scope of this paper.

5.2. Computation of the local adaptation point. Because we restricted consideration to candidate
points in the future of the execution path, the local adaptation point is the next point in the path. Computing
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this point simply consists in following the edges of the control flow graph. This corresponds to a depth-first
traversal of the tree from the left to the right. This traversal begins at a start point that is at least the one
being executed at the time of the computation.

5.3. Instrumentation of the code. In order to predict the next candidate point in the future of the
execution path, the coordinator must be able to locate the actual execution progress in the space of the candidate
points. As it must be able to build the sequence identifying the candidate point that is being executed by the
execution thread, the coordinator requires an instrumentation of the code.

The instrumentation of the code consists in inserting some pieces of code at each node of the tree view
of the hierarchical task graph as presented at the preceding section. The figure 5.4 shows an example of an
instrumented algorithm.

Algorithm instrumented gcd (a, b) :
enter function (gcd (a, b))
enter loop (a, b)
loop until (leave loop ((a mod b) = 0))

iteration loop (a, b)
if (enter condition (a < b)) then

candidate point (P1)
tmp← a
a← b
b← tmp

else

candidate point (P2)
a← (a mod b)

end if

leave condition ()
end loop

candidate point (P3)
return (leave function (b))

Fig. 5.4. Instrumented version of the algorithm 5.1

The process of inserting the instrumentation statements in the source code of the component can be largely
automated using aspect-oriented programming (AOP [13]) techniques. We have proposed in [18] a static aspect
weaver whose join points are the control structures. This weaver has been successfully used to insert the
instrumentation statements. It relies on candidate points, which are placed by hand by the developer, to detect
which control structures need to be instrumented (those that contain at least one candidate point).

5.4. Protocol for computing the supremum. Many trivial protocols might be designed to compute
this supremum (for example, centralized). Many already exist to compute a maximum (in particular for leader
election); they can easily be modified to compute a supremum instead of a maximum. However, we think that
a specific protocol suits better this case.

5.4.1. Motivation for designing a specific protocol. The full set of the local adaptation points is not
always necessary to compute the supremum. The idea is to superimpose the agreement protocol and the local
computations of the next candidate point in order to exempt some of the execution threads from computing
their local adaptation point. In particular, it is interesting to exempt those whose prediction is postponed due to
conditional instructions. Indeed, it allows the computation of the local adaptation point to resume sooner with
a start point that is further in the execution path. Moreover, superimposing the protocol and the computation
evicts the earliest adaptation points sooner than if the whole set of local adaptation points must be computed.
This avoids situations in which the execution thread tries to execute through a locally chosen point that has
not been either confirmed or evicted yet.

5.4.2. Informal description of the protocol. The key idea of the protocol is to let the threads negotiate.
Each thread can propose to the others its view of what the common adaptation point is, namely the point it
has chosen locally. If it has not chosen one (because of unpredictable instructions such as conditions), it can
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give clues to the other threads. These clues can be for example the root node of the subtree representing the
conditional block. When a thread receives a proposition or a clue, it may take different actions depending on
how it compares to its own proposition.

• If its own proposition is better (that is to say in the future of the received one), it rejects the received
proposition.
• If the received one is better, it is adopted.
• If the two propositions are not comparable, the thread retracts its proposition and computes a new

one that takes into account the two previous ones. The computation starts at the point at which the
control subflows merge (the supremum of the two points).
• If both propositions are the same, the thread agrees with the sending thread.

The protocol also progresses when an execution thread provides new information. For example when the
functional thread executes a conditional instruction, it may retract its clue and propose some new information.

The protocol ends when all threads agree with each other’s and when the agreement is on a true proposition
(not just a clue). This means that they all have adopted the same point.

5.4.3. Anatomy of the protocol. We have designed a specific protocol to solve this problem. This
protocol is based on a unidirectional ring communication scheme. Each thread confronts its proposition with
the one of its predecessor and sends it only to its successor in the ring. The end of the protocol, namely the
reach of the agreement, is detected using a Dijkstra [6]-like termination algorithm. Our protocol distinguishes
strong propositions (values that can be chosen by the agreement) from weak propositions (values that forbid
the agreement to conclude, previously called clues). The protocol allows threads to retract their proposition. It
strictly defines the criteria of the consistency of retraction.

Our protocol is pessimistic. If an execution thread tries to get through a point thought to be the chosen
one, the algorithm refuses to speculate whether it should allow the execution thread to continue or execute the
reaction. It rather suspends the execution thread until it gets certainty. As a result, because the “postpone”
strategy eases such situations (as described in § 4.3), this strategy tends to increase the risk of suspending the
execution thread.

6. Experiments. The experiments presented here aim at comparing the strategies described at § 4.1.2
with regard to functional code suspension and delay before the execution of the reaction. The goal is to exhibit
and validate the expected behaviors described in § 4.3. This characterization would help developers to choose
the right strategy depending on their code.

Three experiments have been made: synthetic loop code, synthetic condition code and NAS Parallel Bench-
mark 3.1 [14] FFT code. Only the results of the latter will be presented and discussed.

6.1. Experimental protocol. The experimental protocol consists in trigerring adaptation many times at
random intervals (with uniform distribution to avoid implicit synchronization between the functional code and
the adaptation trigger) while the code is being executed by a 4 processors cluster. Experiments result in two
data series: one indicates for each adaptation the time elapsed between the trigger and the effective execution
of the reaction; the other gives the time during which the functional thread has been suspended while choosing
the point at which to adapt. For each data series, one curve is drawn that gives an approximate measure of the
density of samples for each observed value.

6.2. Observations. Figures 6.1 and 6.2 show the results with the FFT code. This experiment aims at
comparing the “postpone” and “skip” strategies for conditional instructions within a main loop. The main loop
has the “force” strategy so that the synchronization and communication statements induced by our algorithm
are exclusively related to the inner instructions. This prevents distortions of the observations.

Figure 6.1 shows that the “postpone” strategy tends to select an adaptation point that arrives sooner in
the execution path than the “skip” strategy. Conversly, figure 6.2 shows that the “postpone” strategy tends to
suspend the functional code for a longer time than the “skip” strategy. Indeed, the “postpone” strategy leads
to higher density of samples up to about 0.5 s of functional code suspension. However, this observation has to
be balanced as it appears that both strategies do not suspend the functional code in most of the samples.

6.3. Discussion. These results and those we obtained with synthetic codes confirm the behaviors we
expected in section 4.3. Namely, the choice between the “postpone” and the “skip” strategies, is a trade-off
between the precision of the prediction and the risk to uselessly suspend the functional code.
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Fig. 6.2. Density curve for suspension time

The observations are explained by the fact that the “postpone” strategy tends to delay the agreement in
order to choose a more precise point (closer to the current state), in comparision to the “skip” strategy. It
makes the “postpone” strategy increase the risk for other threads to reach that point before the agreement is
made, and thus to suspend their execution. On the other side, the “skip” strategy tends to choose a point that
is further in the future of the execution path; it results in a lower risk for other threads to reach that point
before the agreement is made and thus to suspend their execution.

Consequently, if the time between a conditional instruction and the following point is large enough to balance
the delay of the agreement, the “postpone” strategy should be preferred as it results in a sooner adaptation.
Otherwise, the “skip” strategy should be used in order to avoid the suspension of the execution thread.

7. Related works and domains.

7.1. Other projects on dynamic adaptation of parallel codes. Most of the projects that faced the
problem of dynamic adaptation such as DART [16] do not consider parallelism. Other projects such as SaNS [8]
and GrADSolve [17] build adaptive components for Grid. Those projects target adaptation only at the time
of component invocation. This supposes a fine-grain encapsulation in components; otherwise, if methods are
too long, adaptation is defeated because it cannot occur during execution. Within the context of Commercial-
Off-The-Shelf (COTS) component concept, sufficiently fine-grained encapsulation for the dynamic adaptation
to make sense only at invocation level does not appear valuable enough; whereas sufficiently coarse-grained
encapsulation for valuable COTS components are not able to really dynamically adapt themselves if they do so
only at each invocation. This is why we think that components should be able to adapt themselves not only at
method calls, but also during the execution of methods.

The Grid.It project [2] also faces the problem of dynamically adapting parallel components. The followed
approach is based on structured parallelism provided by high-level languages. The compiler generates code for
virtual processes that are mapped to processing elements at run-time. An adaptation consists in dynamically
modifying this mapping. This adaptation can be done within language constructs transparently to the deve-
lopper. In this case, the consistency enforcement mechanism can rely on assumptions on the overall structure
of the program as it is generated by a compiler.

PCL [1] focuses on the reflective programming tools for the dynamic adaptation of parallel applications.
This project considers dynamic adaptation as modifications on a static task graph modeling the code and
provides at runtime primitive operators on that graph. It gives a full framework for reflective program-
ming that is useful to implement reactions. The problem of the coordination of the reaction and the exe-
cution threads of the functional code has been studied with PCL in [9]. Their approach to the problem of
the coordination is similar to ours: the adaptation is scheduled to be executed at an adaptation point in
the future of the execution path. However, the problem of dealing with unpredictable conditional instruc-
tions is not addressed. Furthermore, the consistency model is different from ours. In PCL, each reaction
is triggered at any point of the specified region. For example, on figure 7.1, tasks B and D are not di-
stinguished. According to the consistency model, in a two-threads component, if one is executing A and
the other C, a “region in” reaction targeting region RGN1 is scheduled at the A → B edge for the first
thread and at the C → D edge for the second one. We think that it is a better consistency model to
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Fig. 7.1. Example of a region in a PCL static task graph

schedule the reaction at the C → D edge for both threads (our “same state” consistency). One solution
might be to put B and D in two different regions; but in this case, PCL fails specifying that the reaction
can be scheduled either before B or before D, but at the same edge for all threads. Furthermore, PCL is
unable to handle the case of thread desynchronization in loops (one thread doing more iterations than ano-
ther does) for regions being in such a loop. The simple region counter is not sufficient to solve this pro-
blem.

7.2. Resource management in Grid infrastructures. The dynamic characteristic of Grid architecture
appears well accepted, as reflected by the presence of monitoring services such as Globus MDS. On the other
side, job management usually considers that the set of resources allocated to one job remains constant for the
whole lifetime of the job. Approaches such as AppLeS [4] and GridWay [12] show that even Grid applications
can benefit from non-constant schedules. With those two projects, when the scheduler or the application detects
that a better schedule can be found, the application checkpoints itself, then the job is cancelled and resubmitted
with new resource constraints. Our approach is slightly different. We assume that the resource management
system is able to modify job schedules without having to cancel and resubmit jobs. Thanks to this assumption,
checkpointing and restarting the application is not required, potentially leading to lower cost for the adaptation
in particular when the intersection before and after the rescheduling is not empty.

7.3. Computation steering. The problem of steering a parallel component is very close to our problem
of adapting this component. Indeed, in both cases, we need to insert dynamically code at some global state.
The EPSN project [10] aims at building a platform for online steering and visualization of numerical simula-
tions. In [11], the authors describe the infrastructure they built to do the steering. Their structured dates is
similar to our candidate point identification system. Both systems are based on similar representations of the
code. Moreover, steering like dynamic adaptation tries to find the next candidate point in the future of the
execution path. Thus, computation steering and dynamic adaptation may benefit from fusionning in a single
framework.

7.4. Fault tolerance. Fault tolerance might be seen as a particular case of dynamic adaptation. Indeed,
it is the adaptation to the “crash” of some of the allocated resources. However, things are not that simple.
Fault tolerance encompasses two different problems: the recovery of the fault and the adaptation to the new
situation. Only the second one really belongs to the problem of dynamic adaptation. Many strategies can be
used to recover from faults. The closest one from dynamic adaptation is probably checkpointing in the sense it
requires some global points. Whereas dynamic adaptation can look for a point in the future of the execution
path, checkpointing requires a point in the past. Nevertheless, mechanisms required by dynamic adaptation
may be useful to implement recovery strategies based on checkpointing. The instrumentation of the code can
be used as hooks at which checkpoints can be taken. Indeed, it implicitly statically coordinates the checkpoints
of all threads, avoiding the problem of computing a global consistent state. Reciprocally, dynamic adaptation
can take advantage of the techniques that have been developped to checkpoint and restart computations in the
area of fault-tolerance.

8. Conclusion. In this paper, we have briefly described the overall model we introduced to build self-
adaptable parallel components. This paper essentially focuses on the coordinator functional box of the Afpac
framework. This coordinator is responsible for scheduling the reaction in the execution path of the several
execution threads.
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The protocol we designed follows a pessimistic approach with regard to the fact that the execution thread
may go through a confirmed point. In the future of our work, we will study how optimistic approaches can be
designed. For example, when the functional code reaches a point suspected to be chosen but not yet confirmed,
it may continue its execution instead of waiting for the point to be either confirmed or evicted. If at the end
that point is confirmed, the situation may be repaired by rolling-back the functional code.

Moreover, our coordinator searches adaptation points exclusively in the future of the execution path. Ho-
wever, this is an arbitrary choice that has no other justification than simplifying algorithms. In our upcoming
researches, we will study how algorithms can be generalized in order to allow the coordinator to look for adap-
tation points in in both directions (future and past). Thanks to this, chosen adaptation points may be closer
to the optimum.

Finally, our “same state” consistency model has to be extended to the case of non-SPMD components: we
have already thought of another consistency model defined by a customizable correspondence relation between
the candidate points of the threads.

As a longer term research, we are working on completing our architecture in order to build a complete
platform. In particular, we are studying how generic engines can be used within our Dynaco framework. We
are also investigating protocols for adaptation within assemblies of components. Endly, we are studying how a
resource manager could take advantage of applications able to adapt themselves.
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