
SCALABLE COMPUTING: PRACTICE AND EXPERIENCE

Volume 7, Number 4, pp. 13–35. http://www.scpe.org

ISSN 1895-1767

c© 2006 SWPS

IMPLEMENTING MOBILE AND DISTRIBUTED APPLICATIONS IN X-KLAIM∗

LORENZO BETTINI, ROCCO DE NICOLA AND MICHELE LORETI

Abstract. In this paper we present X-KLAIM, an experimental programming language specifically designed to program distributed systems com-

posed of several components interacting through multiple distributed tuple spaces and mobile code. The language consists of a set of coordination

primitives inspired by Linda, a set of operators for building processes borrowed from process algebras and a few classical constructs for sequential

programming. We present some programming examples in X-KLAIM, dealing with mobile code programming paradigms, such as client-server, code

mobility and mobile agents.

1. Introduction. Technological advances of both computers and telecommunication networks, and development

of more efficient communication protocols are leading to an ever increasing integration of computing systems and to

diffusion of so called Global Computers [19]. These are massive networked and dynamically reconfigurable infrastructure

interconnecting heterogeneous, typically autonomous and mobile components, that can operate on the basis of incomplete

information. Designing and implementing applications over a global network is inherently different from designing and

implementing stand–alone ones. Network programming has to deal with the following additional issues [20]:

• the physical distribution of hosts and data can be essential, and local and remote behaviors can be significantly

different;

• systems are asynchronous and less predictable: a temporary disconnection of a remote host cannot be distin-

guished from a system fault;

• different forms of program termination have to be considered; applications can terminate due to missing permis-

sions or to the low level of quality of services.

Global Computers are thus fostering a new style of distributed programming that has to take into account variable

guarantees for communication, cooperation and mobility, resource usage, security policies and mechanisms for dealing

with failures. This has stimulated the proposal of new theories, computational paradigms, linguistic mechanisms and

implementation techniques. We have thus witnessed the birth of many calculi and kernel languages intended to support

programming according to the new style and to provide tools for formal reasoning over the modeled systems.

In this paper we present X-KLAIM, an experimental programming language specifically designed to program dis-

tributed systems composed of several components interacting through multiple tuple spaces and mobile code (possibly

object-oriented). X-KLAIM is based on KLAIM the Kernel Language for Agents Interaction and Mobility [23, 8]. The dis-

tinguishing features of the approach is the explicit use of localities for accessing data or computational resources. KLAIM

can be seen as an asynchronous higher–order process calculus whose basic actions are the original Linda [28] primitives

enriched with explicit information about the location of the nodes where processes and tuples are allocated.

The blackboard approach, of which tuple space based models are variants, is one of the most appreciated model for

dealing with mobile agents (see, e.g., [26], that examines several messaging models for mobile agents) also because of its

flexibility. The Linda asynchronous communication model permits

• time uncoupling: tuples’ life time is independent of the producer process’ life time,

• destination uncoupling: the creator of a tuple is not required to know the future use or the destination of that

tuple,

• space uncoupling: communicating objects need to know a single interface, i. e., the operations over the tuple

space. This approach is also called flow-of-objects [4] as opposed to method invocation, which requires many

interfaces for the operations supplied by remote objects.

When moving to open distributed systems and large-scale, multi-users applications, the Linda coordination model

suffers from the lack of modularity and scalability: identification tags of tuples, which are conceptually part of different

contexts, may collide. In other words, processes of different computations could interfere and a mechanism to structure

communication and hide information, e.g., to create areas restricted to a subset of the processes, is needed. Explicit

localities enable the programmer to distribute and retrieve data and processes to and from the sites of a net and to structure

the tuple space as multiple, located spaces. Moreover, localities, considered as first–order data, can be dynamically created

and communicated over the network. The overall outcome is a powerful programming formalism that, for example, can

easily be used to model encapsulation. In fact, an encapsulated module can be implemented as a tuple space at a private

locality, and this ensures controlled accesses to data.

∗The work presented in this paper has been partially supported by EU Project Software Engineering for Service-Oriented Overlay Computers

(SENSORIA, contract IST-3-016004-IP-09).

13

14 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

In the rest of the paper we present the main features of X-KLAIM, and some programming examples dealing with

code and agent mobility (e.g., a load balancing system, Section 3.3, and a mobile agent based information retrieval,

Section 3.2) and with distributed applications in general (a chat system, Section 5). The last two examples show two more

involved systems: a mobile agent based system for distributed document updates (Section 6; this is a modified version of

the system presented in [12]) and an distributed implementation of the strategy game Cluedo (Section 7).

For a more complete description of the programming language X-KLAIM we refer the interested reader to the tutorial

that can be found in [10] (from where we borrow modified versions of some examples shown in this paper).

2. An overview of X-KLAIM. X-KLAIM (eXtended KLAIM) [11, 10] is an experimental programming language

specifically designed to program distributed systems composed of several components interacting through multiple tuple

spaces and mobile code. It is based on the kernel language KLAIM (Kernel Language for Agent Interaction and Mobility)

[8] and is inspired by the coordination language Linda [28], hence it relies on the concept of tuple space. A tuple space is

a multiset of tuples; these are sequences of information items (called fields). There are two kinds of fields: actual fields

(i. e., expressions, processes, localities, constants, identifiers) and formal fields (i. e., variables). Syntactically, a formal

field is denoted with !ide, where ide is an identifier. Tuples are anonymous and content-addressable; pattern-matching is

used to select tuples in a tuple space:

• two tuples match if they have the same number of fields and corresponding fields have matching values or

formals;

• formal fields match any value of the same type, but two formals never match, and two actual fields match only if

they are identical.

For instance, tuple ("foo", "bar", 100 + 200) matches with ("foo", "bar", !val). After matching, the variable of a

formal field gets the value of the matched field: in the previous example, after matching, val (an integer variable) will

contain the value 300.

In Linda there is only one global shared tuple space; KLAIM extends Linda by handling multiple distributed tuple

spaces. Tuple spaces are placed on nodes (or sites), which are part of a net. Each node contains a single tuple space and

processes in execution, and can be accessed through its locality. There are two kinds of localities:

• Physical localities are the identifiers through which nodes can be uniquely identified within a net.

• Logical localities are symbolic names for nodes. A distinct logical locality, self, can be used by processes to

refer the node where they are executing on.

Physical localities have an absolute meaning within the net, while logical localities have a relative meaning depending

on the node where they are interpreted and can be thought of as aliases for network resources. Logical localities are

associated to physical localities through allocation environments, represented as partial functions. Each node has its own

environment that, in particular, associates self to the physical locality of the node. An allocation environment has the

shape {. . . , li ∼ si, . . .}, where li are logical localities and si are physical localities.

KLAIM processes may run concurrently, both at the same node or at different nodes, and can execute the following

operations over tuple spaces and nodes:

• in(t)@l: evaluates tuple t and looks for a matching tuple t ′ in the tuple space located at l. Whenever a matching

tuple t ′ is found, it is removed from the tuple space. The corresponding values of t ′ are then assigned to the

formal fields of t and the operation terminates. If no matching tuple is found, the operation is suspended until

one is available.

• read(t)@l: differs from in(t)@l only because the tuple t ′ selected by pattern-matching is not removed from the

tuple space located at l.

• out(t)@l: adds the tuple resulting from the evaluation of t to the tuple space located at l.

• eval(proc)@l: spawns process proc for execution at node l.

• newloc(l): creates a new node in the net and binds its physical locality to l. The node can be considered a

“private” node that can be accessed by the other nodes only if the creator communicates the value of variable l,

which is the only means to access the fresh node.

X-KLAIM extends KLAIM with the typical constructs of high level programming languages: variable declarations,

assignments, conditionals, sequential and iterative process composition. Moreover, X-KLAIM provides specific state-

ments to simplify multiple access to tuple spaces (forall). Please notice that, all the X-KLAIM constructs can be en-

coded within KLAIM. However, introducing the new statements in the X-KLAIM syntax makes the programmers life

easier.

The implementation of X-KLAIM is based on KLAVA, a Java [5] package that provides the run-time system for

X-KLAIM operations, and on a compiler, which translates X-KLAIM programs into Java programs that use KLAVA. The

Implementing Mobile and Distributed Applications in X-Klaim 15

package Klava

Java

program

Java

program

X−Klaim

program X−Klaim

compiler

javac

compiler

Java

application Java

interpreter

FIG. 2.1. The framework for X-KLAIM.

structure of the KLAIM framework is outlined in Figure 2.1. X-KLAIM can be used to write the highest layer of dis-

tributed applications while KLAVA can be seen both as a middleware for X-KLAIM programs and as a Java framework

for programming according to the X-KLAIM paradigm. With this respect, by using KLAVA directly, the programmer is

able to exchange, through tuples, any kind of Java object, and implement a more fine-grained kind of mobility, as shown

in [14]. X-KLAIM provides both weak mobility (via operation eval) and strong mobility (via operation go, explained later

in this section). Conversely, KLAVA supports weak mobility only; indeed, Java does not allow to save and restore the

execution state. X-KLAIM and KLAVA are available on line at http://music.dsi.unifi.it. KLAVA is presented in

detail in [14, 7].

TABLE 2.1

X-KLAIM process syntax. Syntax for other standard expressions is omitted.

RecProcDefs ::= rec id formalparams procbody | rec id formalparams extern

| RecProcDefs ; RecProcDefs

formalParams ::= [] | [paramlist]

paramlist ::= id : type | ref id : type | paramlist , paramlist

procbody ::= declpart begin proc end

declpart ::= ε | declare decl

decl ::= const id := expression | locname id | var idlist : type | decl ; decl

idlist ::= id | idlist , idlist

proc ::= KAction | nil | id := expression | var id : type | proc ; proc

| if boolexp then proc else proc endif

| while boolexp do proc enddo

| forall Retrieve do proc enddo

| procCall | call id | (proc) | print exp

KAction ::= out(tuple)@id | eval(proc)@id | Retrieve | go@id | newloc(id)

Retrieve ::= Block | NonBlock

Block ::= in(tuple)@id | read(tuple)@id

NonBlock ::= inp(tuple)@id | readp(tuple)@id | Block within numexp

boolexp ::= NonBlock | standard bool exp

tuple ::= expression | proc | ! id | tuple , tuple

procCall ::= id (actuallist)

actuallist ::= ε | expression | proc | id | actuallist , actuallist

expression ::= ∗ expression | standard exp

id ::= string

type ::= int | str | loc | logloc | phyloc | process | ts | bool

X-KLAIM syntax is shown in Table 2.1. We just briefly recall the more relevant features. Local variables of pro-

cesses are declared in the declare section of the process definition. Standard base types are available (str, int, etc.) as

well as X-KLAIM typical types: loc for generic locality variables (without specifying whether it is logical or physical),

logloc (resp. phyloc) for logical (resp. physical) localities, process for process variables and ts, i. e., tuple space, for

implementing data structures by means of tuple spaces, e.g., lists, that can be accessed through standard tuple space

operations. Logical locality constants are declared by using the type locname. Finally, Comments start with the sym-

bol #.

A locality variable can be initialized with a string that will correspond to its actual value. Logical localities are

basically names, while physical localities must have the form <IP address>:<port>, so a physical locality variable has

to be initialized with a string corresponding to an Internet address.

16 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

Logical locality resolution can be performed by putting the operator ∗ in front of the locality that has to be evaluated:

l := ∗output; # retrieve the physical locality associated to output

out(∗output)@self; # insert the physical locality associated to output

However, logical localities used as “destination” are still evaluated automatically in both network models, i. e., if the

locality used after the @ is a logical one, it is first translated to a physical locality.

Apart from standard KLAIM operations, X-KLAIM also provides non-blocking version of the retrieval operations,

namely readp and inp; these act like read and in, but, in case no matching tuple is found, the executing process does not

block but false is returned. Indeed, readp and inp can be used where a boolean expression is expected. These variants,

used also in some versions of Linda [21], are useful whenever one wants to search for a matching tuple in a tuple space

with no risk of blocking. For instance, readp can be used to test whether a tuple is present in a tuple space.

A timeout (expressed in milliseconds) can be also specified for in and read, through the keyword within; the op-

eration becomes a boolean expression that can be tested in order to establish if the operation succeeded (these boolean

expressions can be combined in order to execute more complex retrieval operations):

if in(!x, !y)@l within 2000 then

... success!

else

... timeout occurred

endif

Time-outs can be used when retrieving information to avoid that processes block because of network latency or of missing

tuples.

X-KLAIM provides the construct forall that can be used for iterating actions through a tuple space by means of a

specific template. Its syntax is:

forall Retrieve do

proc

enddo

We refer the reader to Table 2.1 for the syntax of “Retrieve”. The informal semantics of this operation is that the loop

body “proc” is executed each time a matching tuple is available. Even duplicate tuples are repeatedly retrieved by the

forall primitive; it is however guaranteed that each tuple is retrieved only once. Thus, instead of the while-based code

above, we write:

forall readp(!i, !s)@self do

out(i + 1, s)@l

enddo

Now, if the tuple space contains three matching tuples (of which two are identical): (10, "foo"), (10, "foo"), (20,

"bar"), after the execution of the loop instruction the tuple space at l will contain the tuples (11, "foo"), (11, "foo"),

(21, "bar").

Notice however that the tuple space is not blocked when the execution of the forall is started, thus this operation

is not atomic: the set of tuples matching the template can change before the command completes. A locked access to

such tuples can be explicitly programmed (see, e.g., Listing 6.3). Our version of forall is different from the one proposed

in [17] since parallel processes are not created for each retrieved tuple (this would not be consistent with the “iterating”

nature of forall; a similar functionality could be easily achieved by using eval in the loop body). Our forall is similar to

the all variations of retrieval operations in PLinda [3].

The forall primitive has a different semantics depending on the nature of the retrieval operation: if a blocking action

is used the process executing forall is blocked until another (never retrieved) tuple becomes available; instead, when a

nonblocking action is used, the process exits from the forall loop and continues its execution when no other matching

tuple is available.

Data structures can be implemented by means of the data type ts; a variable declared with such type can be considered

as a tuple space and can be accessed through standard tuple space operations, apart from eval that would not make sense

when applied to variables of type ts. Furthermore newloc has a different semantics when applied to such a variable: it

empties the tuple space.

forall is then useful for iterating through such data structures; for instance the following piece of code transforms a

list, stored in the variable list of type ts, containing data of the shape (str, int) into a list containing data of the shape

(int, str):

Implementing Mobile and Distributed Applications in X-Klaim 17

declare

var s : str;

var i : int;

var list : ts;

...

forall inp(!s, !i)@list do

out(i, s)@list

enddo

Notice that the non-blocking version of in is used, otherwise the process would be blocked when it finishes iterating

through the list.

The action go@l [9] makes an agent migrate to l and resume its execution at l from the instruction following the

migration. This action permits modeling strong mobility. Thus in the following piece of code an agent retrieves a tuple

from the local tuple space, then migrates to the locality l and inserts the retrieved tuple into the tuple space at locality l:

in(!i, !j)@self;

go@l;

out(i, j)@self

I/O operations are implemented as tuple space operations. For instance the logical locality screen is actually attached

to the output device. Hence, operation out("foo\n")@screen corresponds to printing the string "foo\n" on the screen.

Similarly, the locality keyboard can be attached to the input device, so that a process can read what the user typed with a

in(!s)@keyboard. Further I/O devices, such as files, printers, etc., can also be handled through the locality abstraction.

A node of an X-KLAIM net can be specified as follows:

physloc :: { ... , l˜ s, ... } init processes

where physloc is the physical locality of the node and { ... , l ~ s, ... } is its allocation environment. Notice

that self is automatically associated to the physical locality of the node and it does not have to be specified in the

environment. init_processes are the processes executed automatically when the node is started; basically they have

the same functionality of main in C and Java. Throughout the paper we will omit the definition of nodes when it is not

strictly relevant.

3. Mobility Examples. In this section we show a few programming examples taking advantage of process mobility,

implemented in X-KLAIM.

News gathering. The first example is a news gatherer, that relies on mobile agents for retrieving information on

remote sites. We assume that some data are distributed over the nodes of an X-KLAIM net and that each node either

contains the information we are searching for, or, possibly, the locality of the next node to visit in the net.

The agent NewsGatherer first tries to read a tuple containing the information we are looking for, if such a tuple is

found, the agent returns the result back home; if no matching tuple is found within 10 seconds, the agent tests whether a

link to the next node to visit is present at the current node; if such a link is found the agent migrates there and continues

the search, otherwise it reports the failure back home.

The implementation of the agent exploiting strong mobility (by means of the migration operation go) is reported in

Listing 3.1. Notice that the use strong mobility makes the source quite clear.

Information retrieval. The next example is still an autonomous information retrieval agent in the context of a virtual

market place: suppose that someone wants to buy a specific product at a market made of geographically distributed shops.

To decide at which shop to buy, she/he activates a migrating agent which is programmed to find and return the name of the

closest shop (i. e., the shop within the chosen area, determined by a maximal distance parameter) with the lowest price.

The implementation of the agent MarketPlaceAgent is shown in Listing 3.2.

The MarketPlaceAgent takes as parameters the product name, the maximal distance and the locality where the

result of the search must be returned. The agent is sent (by means of an eval not shown here) for execution at the

node containing the marketplace directory, where it asks for the list of the shops in the selected shopping area. Then,

MarketPlaceAgent migrates to the first shop in the list. At each shop, MarketPlaceAgent checks the price of the

wanted product, possibly updating the information about the lowest price and the shop that offers it, and migrates to the

next shop in the list. If there are no more shops to visit, MarketPlaceAgent sends the result of the search back to the

locality received as parameter. The list of nodes to visit is stored in a list (implemented through a ts) and forall is used

for iterating over this list.

18 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 3.1

X-KLAIM implementation of a news gatherer using strong mobility.

rec NewsGatherer[item : str, retLoc : loc]
declare

var itemVal : str ;
var nextLoc : loc ;
var again : bool

begin
again := true;
while again do
if read(item, !itemVal)@self within 10000 then
go@retLoc;
print "found " + itemVal;
again := false;

else
if readp(item, !nextLoc)@self then

go@nextLoc
else

go@retLoc;
print "search failed";
again := false

endif
endif

enddo
end

LISTING 3.2

X-KLAIM implementation of an agent visiting shops of a virtual market place searching for an item with the lowest price.

rec MarketPlaceAgent[ProductMake : str, retLoc : loc, distance : int]
declare
var shopList : TS ;
var nextShop, CurrentShop, thisShop : loc ;

var CurrentPrice, newCost : int ;
locname screen

begin
out("cshop", distance)@self; # ask for a list of shops within a distance

in("cshop", !shopList)@self;
out("retrieved list: ", shopList)@screen;
CurrentPrice := 0 ;
CurrentShop := self ;

forall inp(! nextShop)@shopList do # while there are shops to visit
thisShop := nextShop ;
go@nextShop ; # migrate to the next shop ;

out("AgentClient: searching for ", ProductMake)@screen ;

if read(ProductMake, ! newCost)@self within 10000 then
if (CurrentPrice = 0 OR newCost < CurrentPrice) then

CurrentPrice := newCost; # update the best price

CurrentShop := thisShop
endif

endif
enddo ;
out(ProductMake, CurrentShop, CurrentPrice)@retLoc # OK, let’s send the results

end

Screenshot 3.1 shows a client that performs some searches through the MarketPlaceAgent in two shops. In this

example there are two shops affiliated to the market place: Shop1 at physical locality 127.0.0.1:11000with a distance

of 3, and Shop2 at physical locality 127.0.0.1:11005 with a distance of 5; this information is shown in the window

of the market place directory (up left). The client sends the agent searching for a camera within a distance of 10, so the

market place directory provides the agent with a list made of the localities of the two shops, and after visiting both, the

agent reports home that the first shops sells the searched item at the lower cost. The second query has basically the same

parameters but the agent has to search for a radio and this time the second shop sells it at the lower price. Then it still

searches for a radio but within a closer distance (e.g., 4) and this time the second shop is not even visited (since its distance

is 5, so the market place directory does not put it into the list communicated to the agent). Finally a cd is searched for

(within a wider distance) and when visiting the second shop a timeout is raised, since that shop does not sell that item.

Implementing Mobile and Distributed Applications in X-Klaim 19

SCREENSHOT 3.1. The market place directory (up left), the market client (down left) and two shops of the virtual market place.

Load balancing. We conclude this section by presenting an example that uses the remote evaluation paradigm,

thus, the code does not to autonomously migrate: it is moved by another process. This example implements a load

balancing system that dynamically redistributes mobile code among several processors: we suppose that remote clients

send processes for execution to a server node that distributes the received processes among a group of processors by using,

each time, the (estimated) idlest one. Each processor sends a number of “credits” to the server (this number corresponds

to the processor availability to perform computations on behalf of the server); the server stores the number of credits in a

database and, when needed, it chooses the processor with the highest number of credits and decreases this number.

When a processor receives a process, it immediately starts executing the process (in a parallel thread) and sends a

credit back to the server. Indeed, the system is based on the heuristic that if a processor is busy, it cannot send a credit

back, or at least it does not send a credit immediately (this is also known as Leaky Bucket Of Credits pattern [2]).

This example is implemented by the code fragment in Listing 3.3 that shows the server that dispatches the received

process to the idlest processor (left) and the processor that receives a process for execution from the server and sends a

credit back to it. The code presented here is simplified in order to concentrate on the code mobility related parts (e.g., it

does not handle cases such as all credits are exhausted for all processors). Notice that processes are exchanged by means

of out and in.

4. Node Connectivity in X-KLAIM. The original KLAIM model of [23] has been extended in [15] to deal more

directly with open nets. The original formalism is enriched with explicit connectivity actions and with a new kind of

processes, that we called Node Coordinators, which are the only ones allowed to perform privileged connectivity actions.

This distinction provides a fine-grain separation between the coordination level and the standard action execution level.

Furthermore, the allocation environment can be modified dynamically with the primitive bind.

In the hierarchical model, any node plays both the role of computational environment (for processes and tuples),

and a gateway, (for managing subnets of other nodes). Nodes can act both as clients (belonging to a specific subnet)

and as servers (taking charge of, possibly private, subnets). Logical localities represent the names that client nodes can

specify when entering the subnet of a server node, and allocation environments, that can be dynamically updated with

such information, actually represent dynamic tables mapping logical names (possibly not known in advance) into physical

addresses; these mappings are allowed to change during the evolution. The client-server relation among nodes smoothly

leads to a hierarchical model, also because of the way logical names are “resolved”: in order to find the mapping for a

20 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 3.3

Load balancing: (left) the server receives a process and dispatches it to the idlest processor; (right) the processor node receives a process and

executes it locally and sends a credit back to the server.

rec DeliverProcess[ProcessorDB : ts]
declare
var P : process ;
var HighestCredit, Credits : int ;
var Processor, HighestProcessor : loc

begin
while (true) do
in(!P)@self ; # wait for a process
HighestCredit := 0 ;
forall readp(!Processor, !Credits)@ProcessorDB do
if (Credits > HighestCredit) then

HighestCredit := Credits ;
HighestProcessor := Processor

endif
enddo ;
out(P)@HighestProcessor ;
update its credits
in(HighestProcessor, HighestCredit)@ProcessorDB ;
out(HighestProcessor, HighestCredit − 1)@ProcessorDB

enddo
end

rec ReceiveProcess[server : loc]
declare
var P : process ;
locname screen

begin
while (true) do

in(!P)@self ;
eval(P)@self ;
out("SERVER", "CREDIT",

self)@server
enddo

end

locality, allocation environments of nodes in this hierarchy are now inspected from the bottom upwards. This resembles

name resolution within DNS servers. We shall consider further this issue in Section 4, where we will describe how node

connectivity is managed in X-KLAIM.

X-KLAIM provides all the primitives for explicitly dealing with node connectivity. Consistently with the hierarchical

model of KLAIM such actions can be performed only by node coordinators. The syntax of node coordinators is shown

in Table 4.1, and is basically the same of standard X-KLAIM processes (Table 2.1) apart from the new privileged actions.

We briefly comment these new actions:

TABLE 4.1

X-KLAIM node coordinator syntax. This syntax relies on standard process syntax shown in Table 2.1.

NodeCoordinator ::= rec NodeCoordDef

NodeCoordDef ::= nodecoord id formalparams declpart nodecoordbody

| nodecoord id formalparams extern

nodecoordbody ::= begin nodecoordactions end

nodecoordaction ::= standard process action | login(id) | logout(id)

| accept(id) | disconnected(id) | disconnected(id , id)

| subscribe(id , id) | unsubscribe(id , id)

| register(id , id) | unregister(id)

| newloc(id) | newloc(id , nodecoordactions)

| newloc(id , nodecoordactions , num , classname)

| bind(id , id) | unbind(id)

• login(loc), where loc is an expression of type loc, logs the node where the node coordinator is executing at the

node at locality loc; logout(loc) logs the node out from the net managed by the node at locality loc. login can be

used as a boolean expression in that it returns true if the login succeeds and false otherwise.

• accept(l) is the complementary action of login and indeed, the two actions have to synchronize in order to

succeed; thus a node coordinator on the server node (the one at which other nodes want to log) has to execute

accept. This action initializes the variable l to the physical locality of the node that is logging. disconnected(l)

notifies that a node has disconnected from the current node; the physical locality of such node is stored in the

variable l. disconnected also catches connection failures. Notice that both accept and disconnected are blocking

in that they block the running process until the event takes place. Instead, logout does not have to synchronize

with disconnected.

An example of these four operations is shown in Listing 4.1, where the node coordinators executing on the client

are presented on the left, and the complementary ones executing on the server are presented on the right. Notice that the

process that executes the login communicates with the one that has to execute the logout by using a tuple. accept and

disconnected are initializers for the corresponding variables.

Implementing Mobile and Distributed Applications in X-Klaim 21

LISTING 4.1

An example showing login and logout (left) and the corresponding accept and disconnected.

rec nodecoord SimpleLogin[server : loc]
begin

print "try to login to " +
server + "...";

if login(server) then
print "login successful";
out("logged", true)@self

else
print "login failed!"

endif
end

rec nodecoord SimpleLogout[server : loc]
begin

in("logged", true)@self;
print "logging off from " +

server + "...";
logout(server);
print "logged off."

end

rec nodecoord SimpleAccept[]
declare
var client : phyloc

begin
print "waiting for clients...";
accept(client);
print "client " + client + " logged in"

end

rec nodecoord SimpleDisconnected[]
declare
var client : phyloc

begin
print "waiting for disconnections...";
disconnected(client);
print "client " + client +

" disconnected."
end

• subscribe(loc, logloc) is similar to login, but it also permits specifying the logical locality (logloc is an expression

of type logloc) with which a node wants to become part of the net coordinated by the node at locality loc; this

request can fail also because another node has already subscribed with the same logical locality at the same

server. unsubscribe(loc, logloc) performs the opposite operation.

• register(pl, ll), where pl is a physical locality variable and ll is a logical locality variable, is the complementary

action of subscribe that has to be performed on the server; if the subscription succeeds pl and ll will respectively

contain the physical and the logical locality of the subscribed node. The association pl ∼ ll is automatically

added to the allocation environment of the server. unregister(pl, ll) records the unsubscriptions. Notice that an

alternative version of disconnected, namely disconnected(pl, ll) is supplied, in order to detect lost connections

with nodes, that also specifies the logical locality with which a node was subscribed. As the other disconnected

explained above, this action is more powerful in that it is able to catch also connections brutally closed without

an unsubscribe. Let us observe that disconnected catches also the events of unregister so if program uses both,

it is up to the programmer to coordinate the two notification actions (an example of such a scenario is shown in

Section 5).

bind(logloc, phyloc) allows to dynamically modify the allocation environment of the current node: it adds the map-

ping logloc ∼ phyloc. On the contrary, unbind(logloc) removes the mapping associated to the logical locality logloc.

These two operations privileged and only node coordinators can execute them.

In this version of X-KLAIM newloc has become a privileged action and is supplied in three forms in order to make

programming easier: apart from the standard form that only takes a locality variable, where the physical locality of the

new created node is stored, also the form newloc(l, nodecoordinator) is provided. Since newloc does not automatically

logs the new created node in the net of the creating node, this second form allows to install a node coordinator in the new

node that can perform this action (or other privileged actions).

Notice that this is the only way of installing a node coordinator on another node: due to security reasons, node

coordinators cannot migrate, and cannot be part of a tuple. In order to provide better programmability, this rule is slightly

relaxed: a node coordinator can perform the eval of a node coordinator, provided that the destination is self.

Finally the third form of newloc takes two additional arguments: the port number where the new node is going to be

listening (and this also determines its physical locality, since the IP address will be the same of the creator node), and the

(Java) class of the new node. Since I/O devices can be abstracted into nodes, this form of newloc enables to construct, for

instance, the graphical interface of a node, made up of several I/O sub-nodes. For an example, see Section 5, where some

I/O logical localities are used as interfaces for text areas, and input text boxes and lists.

5. A Chat System with Connectivity Actions. In this section we present the implementation in X-KLAIM of a chat

system. The chat system we present in this section is simplified, but it implements the basic features that are present in

several chat systems. The system consists of a ChatServer and many ChatClients.

The system is dynamic because new clients can enter the chat and existing clients may disconnect. The server

represents the gateway through which the clients can communicate, and the clients logs in the chat server by specifying

their “nickname”, represented here by a logical locality. A client that wants to enter the chat must subscribe at the chat

22 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 5.1

Node coordinators of the chat server dealing with clients’ subscriptions.

rec nodecoord HandleLogin[usersDB : ts]
declare
var nickname : logloc ;
var client : phyloc ;
locname users, screen, server

begin
while (true) do
if register(client, nickname) then
out(nickname, client)@usersDB ;
out(true)@client ;
SendUserList(client, usersDB) ;
out((str)nickname)@users ;
out("Entered Chat : ")@screen ;
out(nickname, client)@screen ;
BroadCast("USER", "ENTER",

nickname, server, usersDB)
endif

enddo
end

rec SendUserList[newEnter : phyloc, usersDB : ts]
declare
var nickname : logloc ;
var userLoc : phyloc ;
var userList : ts

begin
newloc(userList) ;

forall readp(!nickname, !userLoc)@usersDB do
if (userLoc != newEnter) then
out(nickname)@userList

endif
enddo ;
out(userList)@newEnter

end

rec nodecoord HandleDisconnected[usersDB : ts]
declare

var nickname : logloc ;
var client : phyloc ;
locname screen

begin
while (true) do
disconnected(client, nickname);
out("disconnected: ", nickname, client)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec nodecoord HandleUnregister[usersDB : ts]
declare

var nickname : logloc ;
locname screen

begin

while (true) do
unregister(nickname);
out("unsubscription: ", nickname)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec RemoveClient[nickname : logloc, usersDB : ts]
declare

var client : phyloc ;
locname screen, users, server

begin
if inp(nickname, !client)@usersDB and

inp((str)nickname)@users then
out("Left Chat : ")@screen ;
out(nickname, client)@screen ;
BroadCast("USER", "LEAVE",

nickname, server, usersDB)
endif

end

server. The server must keep track of all the registered clients and, when a client sends a message, the server has to deliver

the message to every connected client. If the message is a private one, it will be delivered only to the clients in the list

specified along with the message.

The Chat Server. When a new client issues a subscription request, the server accepts it only if there is no other

client with the same nickname, and in case the access is granted, every client is notified about the new client; moreover

the new client is also provided with the list of the clients currently in the chat (Listing 5.1). The server keeps a database

of all connected clients in a variable usersDB of type ts where there is a tuple of the shape (nickname, locality) for

each client, where nickname is a logical locality and locality is a physical one. Notice that all the processes running

on the chat server share this database.

The server uses two (node coordinator) processes for intercepting clients’ disconnections: HandleUnregister and

HandleDisconnected. The second one would be useless if the network communications are reliable (i. e., no communi-

cation suddenly crashes without further notice); however, this assumption may be too strong in a realistic scenario. Thus

HandleDisconnected intercepts also this kind of disconnections. As we said above the disconnected action returns

even after an ordinary unsubscription, so the process RemoveClient has to further check whether a client has already

been removed from the database.

The broadcasting of messages to clients is managed by two processes running on the ChatServer node: BroadCast

and BroadCastTo (Listing 5.2): the former sends a message to all connected clients while the latter sends a message only

to the clients specified in the list to. This second version is useful when delivering personal messages.

All messages have the following tuple shape:

(communication_type, message_type, message, from)

where communication_type and message_type specify the type of message (e.g., the values "USER" together with

"ENTER" indicate that a user entered the chat, while "MESSAGE" and "ALL" indicate a chat message that is destined to

every client). message is the content of the message (e.g., the nickname of the user that entered the chat or the body of a

chat message) and from is the nickname (logical locality) of the client that originated the message.

Implementing Mobile and Distributed Applications in X-Klaim 23

LISTING 5.2

Processes on the server dealing with message dispatching.

rec HandleMessage[usersDB : ts]
declare
var message : str ;
var sender : logloc ;
var from : phyloc

begin
while (true) do
in("MESSAGE", !message, !from)@self ;

if readp(!sender, from)@usersDB then
BroadCast("MESSAGE", "ALL",

message, sender, usersDB)

endif # ignore errors
enddo

end

rec HandlePersonal[usersDB : ts]
declare
var message : str ;
var sender : logloc ;
var from : phyloc ;
var to : ts

begin
while (true) do

in("PERSONAL", !message, !to, !from)@self ;
if readp(!sender, from)@usersDB then
BroadCastTo("MESSAGE", "PERSONAL",

message, to, sender, usersDB)
endif

enddo
end

rec BroadCast[communication type : str, message type : str,
message : str, from : logloc, usersDB : ts]

declare
var nickname : logloc ;
var user : phyloc

begin
forall readp(!nickname, !user)@usersDB do
out(communication type, message type,

message, from)@user
enddo

end

rec BroadCastTo[communication type : str, message type : str,
message : str, to : ts, from : logloc, usersDB : ts]

declare
var nickname : str ;
var user : phyloc

begin
forall inp(!nickname)@to do
recipients are specified as strings in the ”to” list

so we have to convert them first

if readp((logloc) nickname, !user)@usersDB then
out(communication type, message type,

message, from)@user
endif

enddo
end

Messages are received by the chat server by means of two processes HandleMessage and HandlePersonal (re-

spectively for standard chat messages and for personal messages) also shown in Listing 5.2. When a client wants to send

a personal message it has to specify also a list (a ts tuple field) containing the nicknames of the clients it is destined to).

These processes are responsible for delivering a message to all the recipient clients.

The Chat Client. A chat client executes two processes for handling messages dispatched by the server (Listing 5.3):

HandleMessages takes care of processing chat messages and HandleServerMessageshandles server messages inform-

ing of new clients joining the chat or existing clients leaving (the list of connected clients is updated accordingly). This

information is printed on the screen of the client (attached to the locality screen).

The user can insert messages for the server (i. e., commands for entering and exiting from the chat) and standard

chat messages in two text fields that are attached, respectively, to the localities serverKeyb and messageKeyb. For

each of these localities there is a process, respectively HandleServerKeyboard and HandleMessageKeyboard (also

in Listing 5.3) that read the input of the user and communicate with the server. When HandleServerKeyboard reads

a tuple of the shape ("ENTER", nickname) it tries to subscribe at the chat server with that specific nickname. On the

contrary, if the tuple contains "LEAVE" it unsubscribes.

A user can specify that a chat message is destined only to a restricted number of clients by selecting them from the

list of connected clients. Such list is indeed attached to the locality usersList that, in turn, is a special tuple space

that provides a sort of interface for accessing the items of such list (in the KLAVA implementation this tuple space is an

interface for a java.awt.List object). Thus a process can access the elements of such a list through tuples that start

with the string "command" and consist of a specific command and its arguments. For each command the template of

the tuple is different. If the result of a command has to be retrieved the request is issued with an out and the response

retrieved with an in. An identifier has to be provided so that a process does not retrieve the result of the request of another

process. For instance the following two lines retrieve multiple selected items in the list (the result is stored in the ts

variable selected):

out("command", "getSelectedItem", ID)@usersList ;

in("command", "getSelectedItem", ID, !selected)@usersList ;

If there is some client selected in this list, the message is sent as "PERSONAL" and the list of recipients is sent along with

the message; otherwise the message is considered destined to all connected clients.

Screenshot 5.1 shows three chat clients and the chat server.

6. A mobile agent based system for document update. In this section, we describe how to use mobile agents

to develop a prototype system that permits maintaining up to date different documents stored on several heterogeneous

24 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 5.3

Node coordinators and processes running on a chat client.

rec HandleMessages[]
declare
locname screen ;
const standard message := "MESSAGE";
var message, message type : str ;
var from : logloc

begin
while (true) do

in(standard message, !message type,
!message, !from)@self ;

if message type = "PERSONAL" then
out("PERSONAL ")@screen

endif;

out("(")@screen ;
out((str)from)@screen ;
out(") ")@screen ;

out(message)@screen ; out("\n")@screen
enddo

end

rec HandleServerMessages[]
declare
locname screen, usersList ;
const user message := "USER" ;
var command, nickname : str;
var from : logloc

begin
while (true) do
in(user message, !command,

!nickname, !from)@self ;
if command = "ENTER" then
out(nickname)@screen ;

out(" entered chat\n")@screen ;
if not readp(nickname)@usersList then
out(nickname)@usersList

endif
else
if command = "LEAVE" then
out(nickname)@screen ;
out(" left chat\n")@screen ;

inp(nickname)@usersList
ignore non existing names

endif

endif
enddo

end

rec nodecoord HandleServerKeyboard[]
declare
locname server, screen, serverKeyb, usersList;
var command, nick : str ;
var nickname : logloc ; var chat server : phyloc ;
var response : bool ; var userList : ts

begin
chat server := ∗server;
while (true) do
in(!command, !nick)@serverKeyb ;

if (command != "ENTER" and command != "LEAVE") then
out("Unknown command: ")@screen ;
out(command)@screen ;

out("\n")@screen
else
nick was entered as a string
nickname := (logloc) nick;

if command = "ENTER" then
if subscribe(chat server, nickname) then
out("Succeeded command: ")@screen ;
in(!userList)@self ;
UpdateUserList(userList)

else
out("Failed command: ")@screen

endif
else # it is a LEAVE

unsubscribe(chat server, nickname) ;
out("command", "removeAll")@usersList

endif ;
out(command, nickname)@screen

endif
enddo

end

rec HandleMessageKeyboard[]
declare
const ID := "messageKeyboard" ;
var message, selected : str ;
var selectedUsers : ts ;
locname messageKeyb, usersList, server

begin
while (true) do
in(!message)@messageKeyb ;
out("command", "getSelectedItem", ID)@usersList ;
in("command", "getSelectedItem", ID, !selected)@usersList ;

if (selected != "") then
newloc(selectedUsers) ;
out(selected)@selectedUsers ;
out("PERSONAL", message, selectedUsers, ∗self)@server

else
out("command", "getSelectedItems", ID)@usersList ;
in("command", "getSelectedItems",

ID, !selectedUsers)@usersList ;
if readp(!selected)@selectedUsers then
out("PERSONAL", message, selectedUsers, ∗self)@server

else
out("MESSAGE", message, ∗self)@server

endif

endif
enddo

end

computers distributed over a network. Documents are installed and updated only on the central server, where clients

register for them. When a new version of a document is stored on the server, some agents are scattered along the network

to update the corresponding documents on the clients. These mobile agents implement a push strategy: subscribed

customers are provided with the latest software as soon as it is available.

Upon subscription the client will get the most recent version of the requested documents. Subscription may require

a registration and possibly a payment, but we are not addressing these issues, that can be easily added to the system.

The delivery of a document and of new versions are made by means of mobile agents, that will migrate to the client’s

site, and install all the necessary modules. We want to avoid distributed transactions for guaranteeing the correct stor-

age of documents and of new versions. One of the advantages of mobile agents is that they encapsulate transactions,

which will take place locally, with no other network connections, apart from the one for sending the agent to a remote

computer.

Implementing Mobile and Distributed Applications in X-Klaim 25

SCREENSHOT 5.1. Three chat clients and the chat server.

Client Server

Subscription

subscribe for ‘‘Doc’’

send an agent for
storing ‘‘Doc’’

the agent stores

the document

UpdateAgent stores

the new version

a new release of

‘‘Doc’’ is uploaded

send UpdateAgent

Client

Update

Server

the agent stores

the document

the client disconnects

from the server

a new release of

‘‘Doc’’ is uploaded

send an agent for
storing ‘‘Doc’’

the agent stores

the document

the client reconnects

to the server

Client Server

Disconnection and Reconnection

send an agent for
storing ‘‘Doc’’

subscribe for ‘‘Doc’’

FIG. 6.1. Subscription and Update

When the update agent arrives at the client’s site, if the document is currently opened, the agent also notifies that a

new version of the document is available. Please notice that, the client may decide to disconnect from the server; indeed

another advantage of mobile agents is the easy implementation of disconnected operations. When the client reconnects

to the server, all the documents, which in the meantime have been updated, are sent to the client. Subscription and update

(even after disconnection and reconnection) are depicted in Figure 6.1.

6.1. A prototype implementation in X-KLAIM. Since this is to be intended as a prototype system, and we are

just interested in the design of this kind of applications, not in the details of the implementation, we are not considering

advanced features that can be added to the system afterwards. In the X-KLAIM implementation the server waits for

connections from clients by executing process AcceptAgent (Listing 6.1).

When a new client gets connected with the server, agent AcceptAgent verifies if this client has been already regis-

tered. Indeed, a list of registered clients is stored in the tuple space clientlist where, together with client location, is

also maintained the status of the client connection (e.g. "ON-LINE" or "OFF-LINE"). If the client has been already con-

nected to the server, the status of the connection is changed and a process that updates the documents stored in the client

26 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 6.1

The process that waits for client connections at the server

rec nodecoord AcceptAgent[]
declare
var client : phyloc;
locname screen, clientlist
begin
while(true) do
out("Waiting for incoming connections...\n")@screen;
accept(client);
out("Connection established with "+client+"\n")@screen;
if (inp(client , "OFF-LINE")@clientlist) then
eval(CheckForClientUpdate(client))@self;
out(client , "ON-LINE")@clientlist

else
eval(SubscriptionAgent(client))@self

endif
enddo
end

LISTING 6.2

The process that handles document subscriptions

rec SubscriptionAgent[ClientLoc : loc]
declare

locname ClientDB ;
var Version : int ;
var foo: int ;
var Document: process ;
var DocumentName : str ;
locname screen

begin
while(true) do
in("SUBSCRIBE" , !DocumentName)@ClientLoc;
chooses the document, according to DocumentName,
and the current version
if read(DocumentName, !Document , !Version)@ClientDB within 2000 then
out("A new request for "+DocumentName+" has been received\n")@screen;
inp(ClientLoc , DocumentName, !foo)@ClientDB;
out(ClientLoc , DocumentName, Version)@ClientDB;
out("Client "+ClientLoc+

" informations have been successfully stored\n")@screen;
eval(

out(DocumentName , true)@self ;
out(DocumentName, Version)@self;

eval(Document)@self
)@ClientLoc;
out("Document "+DocumentName+

" has been successfully sent remotely\n")@screen
else
out(DocumentName , false)@ClientLoc

endif
enddo

end

is executed (see below). Otherwise, when a new client gets connected, its location is stored in the client list. Moreover,

process SubscriptionAgent is activated Listing 6.2.

When connected, a client can subscribe a document named docname by inserting tuple ("SUBSCRIBE",docname) in

its tuple space. The SubscriptionAgent of the client will retrieve such a tuple and, if the document exists, an agent that

will store the document is evaluated at client side. The client subscription is also stored at ClientDB.

ClientDB is a logical locality that is mapped, on the server, to a private physical locality which is known only to the

server. It is used to register all the clients and to store information about them (e.g., the documents they subscribed to and

Implementing Mobile and Distributed Applications in X-Klaim 27

SCREENSHOT 6.1. A document update

their current version numbers). Since this locality is not known to the other clients, the server is sure that a client is not

able to know the documents installed in another client, and that clients cannot interfere with each other. The secrecy of

this locality is obtained by exploiting the locality evaluation mechanism provided by KLAIM. Indeed, that locality will

only be mapped to a physical locality dynamically (at run time), through the allocation environment of the server, which

is unaccessible by the other nodes.

Each document stored in the server is wrapped inside an agent (Document in Listing 6.2). This agent, when executed

at a locality, first stores the document into a temp file, hence looks (at self) for a tuple of the form:

("OPEN" , app , name)

where app is the application to use for viewing the document, while name is the actual name of the document. For

instance, to view a document named scpe.ps with gv, the following tuple has to be used:

("OPEN" , "gv" , "scpe.ps")

An agent wrapping document can receive an update through the tuple

("UPDATE",DocName, CurrentVersion, NewVersion)

at the private locality. At this point, if the current document is opened, the user is notified that a new version of the

document is available. Finally, the agent containing the old version of the document produces tuple ("UPDATE_OK",

DocumentName) and then terminates its execution. The update agent can so store the latest version of the document.

6.2. The update agents. When a new release of a document is installed on the server, by inspecting ClientDB, the

server will be able to know all the clients that have to be updated, and an update agent is spawned on every such client’s

site (Listing 6.3).

Upon arrival on the client’s site, the update agent (Listing 6.4) first of all verifies that the its version is really new with

respect to the one stored locally. If so, it notifies its presence, so that it can be granted permission to update the document.

When this update is completed the agent also records that a new version is installed in this node, and then notifies the

server that this client has the new version.

28 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 6.3

The process for spawning an agent on every registered agent.

rec CheckUpdate[]
declare

var DocumentName : str ;
var Version, ClientVersion : int ;
var ClientLoc : loc;
var Document: process;
var OldDocument: process;
locname updateKeyb;
locname ClientDB;
locname screen

begin
while (true) do
in("STORE" , !DocumentName , !Document)@ClientDB ;
if inp(DocumentName, !OldDocument, ! Version)@ClientDB then
Version := Version + 1

else
Version := 1

endif ;
out(DocumentName, Document , Version)@ClientDB ;
forall readp(!ClientLoc , DocumentName , !ClientVersion)@ClientDB do
if Version > ClientVersion then

eval(UpdateAgent(DocumentName, Version, Document , ∗self))@ClientLoc
endif

enddo
enddo

end

LISTING 6.4

The update agent.

rec UpdateAgent[DocumentName : str, Version : int, Document : process, server : loc]
declare

var CurrentVersion : int;
var flag: bool

begin
in(DocumentName, ! CurrentVersion)@self;
if (CurrentVersion < Version) then

out("UPDATE", DocumentName , Version)@self ;
in("UPDATE_OK", DocumentName)@self ;
eval(Document)@self ;
out(DocumentName, Version)@self ;
out("UPDATED", DocumentName, Version, self)@server

else
out(DocumentName , CurrentVersion)@self

endif
end

6.3. Handling client disconnections. Each client can disconnect from the server for work off-line (for instance

the client can use a dial-up connection). When off-line, a client will use the local version of the document. Client

disconnections are handled by process DisconnectionManager (Listing 6.5) that takes care of changing the client status

in clientlist.

Obviously, when a client works off-line, it cannot receive new updates. However, when a client reconnects to the

server, process AcceptAgent (Listing 6.1) will execute agent CheckForClientUpdate (Listing 6.6) that, by inspecting

ClientDB, sends to the clients all the documents that have been updated.

7. Implementing Cluedo in X-KLAIM: XKLUEDO. In this section we show how X-KLAIM can be used for de-

veloping an agent based implementation of the Cluedo game.

7.1. The game. Cluedo is a crime fiction board game where a set of players have to solve a murder. The board

represents a mansion (Figure 7.1 (a)) composed of nine rooms: Kitchen, Ball Room, Conservatory, Dining Room, Billiard

Implementing Mobile and Distributed Applications in X-Klaim 29

LISTING 6.5

The agent that handles clients disconnection.

rec nodecoord DisconnectionManager[]
declare
var client : phyloc;
locname screen, clientlist

begin
while (true) do
disconnected(client);
out("Client "+client+" is now disconnected.\n")@screen;
in(client , "ON-LINE")@clientlist;
out(client , "OFF-LINE")@clientlist;
enddo

end

LISTING 6.6

The update procedure after a client connection.

rec CheckForClientUpdate[ClientLoc : loc]
declare
var DocumentName : str ;
var Version, ClientNum, ClientVersion : int ;
var Document : process;
locname ClientDB,screen

begin
forall readp(ClientLoc, !DocumentName, !ClientVersion)@ClientDB do

read(DocumentName, !Document , !Version)@ClientDB ;
if (ClientVersion<Version) then

eval(UpdateAgent(DocumentName, Version, Document , ∗self))@ClientLoc
endif

enddo
end

Room, Library, Lounge, Hall and Study. Each player represents a character (Miss Scarlet, Professor Plum, Colonel

Mustard, Rev. Green, Mrs. White and Mrs. Peacock) that has to discover who killed Mr. Brown, the weapon used and the

room where murder has taken place. Possible murder weapons are The Rope, The Lead Pipe, The Knife, The Spanner,

The Candlestick and The Revolver.

To play the game a pack of cards is used. This consists of 21 cards, each for each room, weapon and character. At the

beginning, three cards (one character, one weapon, and one room) are randomly chosen and put into a special envelope,

so that no-one knows the content of the envelope. The selected cards represent the true facts of the case. The remainder

of the cards are distributed among the players.

The aim of the game is to deduce the details of the murder, i. e., the cards in the envelope. To do that, each player

announces suggestions to other players, for instance “I suggest it was Mrs. White, in the Library, with the Rope.” The other

players must then disprove the suggestion, if they can, by showing a card containing one of the suggestion components.

Once a player thinks to know the solution, he/she can make an accusation. The accusing player checks the validity

of the accusation by verifying the cards. If the player made a correct accusation, the solution cards are shown to the other

players and the game ends. Conversely, if the accusation is incorrect, the player can continue the game but can not submit

new accusations (hence he/she cannot win).

7.2. X-KLAIM implementation. The idea is to develop an agent-based game where each player executes an agent

which migrates among the rooms for implementing a specific game strategy. Please notice that in the standard Cluedo

players use dices for moving from a room to another. For the sake of simplicity, we let agent free to move among different

rooms.

7.2.1. The pack of cards. Each card is modelled as a tuple composed of two fields (type,name). The former indi-

cates the kind of the card and can assume a value among "ROOM", "CHARACTER" and "WEAPON". The latter (name) con-

tains the name of the card, e.g., “Conservatory”, “Miss Scarlet”, “The Revolver”, etc. For instance, ("ROOM", "Kitchen")

denotes the card corresponding to the room Kitchen.

30 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

Kitchen Ball Room Conservatory

Billiard Room

Dining Room Envelope

Library

StudyHallLounge

(a) (b)

FIG. 7.1. Cluedo board and X-KLAIM topology

The pack of cards is implemented by means of a tuple space referenced by a local variable of type ts. To choose the

fact of the case, three cards are retrieved by using X-KLAIM actions and pattern matching. Let pack be the tuple space

containing all the cards, the following are the instructions initializing variables room, character and weapon that will

respectively refer to the place of the murder, the killer and the used weapon:

in("WEAPON" , !weapon)@pack;

in("ROOM" , !room)@pack;

in("CHARACTER" , !character)@pack;

Each player will receive his/her cards inside a tuple space. Indeed, after a player joins the game, six cards are

retrieved from the main pack and inserted into a new tuple space (player pack). At the end this is sent to the player

location (player loc):

newloc(player pack);

out("COUNT" , 0)@player pack;

while (not inp("COUNT" , 6)@player pack) do

in(!c type , !c name)@pack;

out(c type , c name)@player pack;

in("COUNT" , !count)@player pack;

out("COUNT" , count+1)@player pack

enddo;

out("CARDS" , new board)@player loc

7.2.2. The board. The game board is implemented as an X-KLAIM net containing a node for each room in the

mansion. An extra node (named Envelope) is used as a central server to which other nodes get connected to take part of

the game. The rooms architecture is presented in Figure 7.1 (b).

Incoming connections at Envelope are managed by agent Accept agent (Listing 7.1). This agent takes as parame-

ters the cards in the envelope (room, character and weapon) and the main pack of cards.

When a remote node (located at l) gets connected with Envelope, this agent looks for a tuple indicating the kind

of the node. Indeed, two kinds of nodes can get connected with the main node: room nodes, which contain a tuple

of the form ("ROOM", name), and character nodes, which contain a tuple of the form ("CHARACTER", room). If the

connected node corresponds to a room, the allocation environment of Envelope is updated in order to consider the new

binding between the room name with the node location. Please notice that, for the sake of simplicity, we do not consider

the case where more nodes try to get connected with the same name.

Agents migrate over the different rooms to acquire the information needed for resolving the case. Agents interact

each other by means the tuple spaces located at room nodes by announcing and disproving suggestions. Each agent can

make suggestions concerning the room where it is currently located. A suggestion is a tuple of the form ("SUGGEST",

type, name). For instance, tuple ("SUGGEST", "WEAPON", "Knife") in the tuple space located at Conservatory indicates

that some one suggests that the murder has taken place in the Conservatory and that the “Knife” has been used. An

agent can disprove a suggestion by removing the corresponding tuple and adding tuple ("DISPROVE", type, name).

Implementing Mobile and Distributed Applications in X-Klaim 31

LISTING 7.1

The agent accepting connections at Envelope

rec nodecoord Accept agent[room : str , character : str , weapon : str , board : ts]
declare

var l : phyloc;
var name: str ;
locname screen, rooms, characters

begin
while (true) do
out("Waiting for new connections...\n")@screen;
accept(l);
out("New connection established with "+(l)+"\n")@screen;
if (inp("CHARACTER" , !name)@l) then
out("PLAYING" , name)@characters;
out("Login: "+name+"\n")@screen;
eval(Distribute cards(board , l))@self;
eval(Envelope agent(room , character , weapon , l , name))@self

else
if (inp("ROOM" , !name)@l) then

out("Login: "+name+"\n")@screen;
out(name)@rooms;
bind(name , l)

else
out("Unknown...\n")@screen
disconnect(l)

endif
endif

enddo
end

To guarantee that one agent at time accesses the tuple space of a room, a token is used. Indeed, an agent has to

withdraw tuple ("LOCK") from the local tuple space before announces or disproves a suggestion. The token is then

reinserted in the tuple space at the end of the operations.

7.2.3. The characters. An X-KLAIM node is associated to each character. The location of these nodes are known

only to the agent that accepts the connections. This permits guaranteeing private interactions between any character and

the main node.

When a character joins the game, i. e., it gets connected with node Envelope, Accept agent (Listing 7.1) sends,

by using agent Distribute cards, a tuple space containing the cards distributed to the player. After that, process

Envelope agent is activated (Listing 7.2).

This agent, which knows the content of the envelope, is waiting for a tuple

("ACCUSE" , !a_room , !a_character , !a_weapon)

in the tuple spaces located at the player node.

When a client makes an accusation, Envelope agent verifies its correctness by comparing formal parameters room,

character and weapon with retrieved values a room, a character and a weapon. If a player gives the correct ac-

cusation he wins the game and the agent registers the player name in the local tuple space. Conversely, if an incorrect

accusation has been provided, the agents notifies the player of the mistake and terminates the execution. This way the

player cannot win the game anymore. To guarantee that only one accusation for time is considered, tuple ("LOCK") is

used to coordinate the different instances of the agent.

7.2.4. Implementing a player strategy. After a character has received the cards from the Envelope, an agent,

which implements a specific game strategy, is executed. In Listing 7.3 we present a possible implementation for a simple

strategy. This agent migrates over the rooms until it is able to give an accusation. When the agent arrives at a node, it first

tries to disprove one of the available suggestions and then formulate a new hypothesis.

This agent has four parameters: home, that is a location referring to the player’s node, my cards, that is a tuple space

containing the player’s cards, suspects that is a tuple space containing all the suspects (rooms, characters and weapons)

that are not yet disproved, and rooms, that is a tuple space containing a list of all the rooms. At the beginning suspects

contains all the cards but those in my cards. Please notice that, an agent can give an accusation when only one card for

each type is available in suspects tuple space.

32 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

LISTING 7.2

The agent that verifies player accusations

rec Envelope agent[room : str , character : str , weapon : str , l : phyloc , name : str]
declare
var a room : str;
var a character : str;
var a weapon : str;
var winner: str;
locname screen
begin
in("ACCUSE" , !a room , !a character , !a weapon)@l;
in("LOCK")@self;
if(read("WINNER" , !winner)@self) then

out("WINNER" , winner)@l
else

if (a room = room) and (a character = character) and (a weapon = weapon)
then
out("OK")@l;
in("RUNNING")@self;
out("WINNER" , name)@self;
out("The winner is "+name)@screen
else
out ("FAIL")@l
endif

endif;
out("LOCK")@self
end;

The agent first retrieves a room, a character and a weapon from suspects. Then tests whether other rooms, characters

or weapons can be suspected. If there are no other suspects the agent migrates at home and makes the accusation.

Otherwise, it migrates over the rooms where it makes its suggestions and rejects the ones of other agents.

To migrate to another room each agent first migrates at Envelope and then migrates to the locality referenced by

name room. Indeed, the allocation environment of node Envelope stores the binding between the room names and the

physical addresses of the corresponding nodes.

When an agent reaches the remote rooms, it first updates the suspect list by removing each card that has been dis-

proved:

forall readp("DISPROVE" , !c type , !c name)@self do

inp(c type , c name)@suspects

enddo;

After that, the agent tries to disprove one of the available suggestions:

flag := true;

while (flag and inp("SUGGEST" , !c type , !c name)@self) do

if (readp(c type , c name)@my cards) then

out("DISPROVE" , c type , c name)@self;

flag := false

else

out("SUGGEST" , c type , c name)@self

endif

enddo;

Finally, the agent makes its suggestions by retrieving the corresponding cards from the suspects

read("WEAPON" , !weapon)@suspects;

read("CHARACTER" , !character)@suspects;

Suggest(weapon , character);

Agent Suspect is invoked for announcing a suggestion and permits guaranteeing that only a tuple for each suggestion

is available in room tuple spaces.

Implementing Mobile and Distributed Applications in X-Klaim 33

LISTING 7.3

An agent implementing a game strategy

rec Player One[home : loc , my cards : ts , suspects : ts]
declare
var room, weapon, character, c type, c name : str;
var flag, try again : bool;
var next room: logloc

begin
room := ""; weapon := ""; character := "";
try again := true;
while (try again) do
in("ROOM" , !room)@suspects;
in("WEAPON" , !weapon)@suspects;
in("CHARACTER" , !character)@suspects;
the test below permits verifying if other
suspects are available
if (readp("ROOM" , !c name)@suspects or

readp("WEAPON" , !c name)@suspects or
readp("CHARACTER" , !c name)@suspects)

then
forall readp(!room)@rooms do
go@envelope;
next room := (logloc) room;
go@next room;
in("LOCK")@self;
flag := true;
forall readp("DISPROVE" , !c type , !c name)@self do
inp(c type , c name)@suspects

enddo;
while (flag and inp("SUGGEST" , !c type , !c name)@self) do
if (readp(c type , c name)@my cards) then

out("DISPROVE" , c type , c name)@self;
flag := false

else
out("SUGGEST" , c type , c name)@self

endif
enddo;
read("WEAPON" , !weapon)@suspects;
read("CHARACTER" , !character)@suspects;
Suggest(weapon , character);
out("LOCK")@self

enddo
else

In this case the agent can go at home
and give the accusation
try again := false

endif
enddo;
go@home;
out(room , character , weapon)@self

end;

8. Conclusions and Related Works. We have presented X-KLAIM, a programming language for implementing

distributed applications that can exploit mobile code and run over an heterogeneous network environment. X-KLAIM

provides support for moving processes (with strong mobility) and all the code they will need for execution at remote

sites. An interesting spin-off of our approach is that, since X-KLAIM is based upon the KLAIM formal model [8],

some properties of systems can be formally proved (e.g., in [13] we prove some formal properties of a chat system

similar to the one presented in Section 5 and of a mobile agent based software update system). Indeed, a modal

logic for KLAIM is being studied [25] and a system to automatically prove KLAIM system properties is under deve-

lopment.

There are currently a number of Java packages, libraries and frameworks that implement functionalities for program-

ming distributed and mobile systems, and that are based on the Linda communication model. In the rest of this section,

we review some of them and discuss their relationships with our system.

34 Lorenzo Bettini, Rocco De Nicola and Michele Loreti

Jada [22] is a coordination toolkit for Java where coordination and communication among distributed objects is

achieved via shared ObjectSpaces that are implementations of tuple spaces. Remote access to ObjectSpaces is achieved

by specifying the complete IP address and port number, i. e., no locality abstraction is used. Private ObjectSpaces can be

dynamically created. No code mobility is supplied by Jada that aims at providing a coordination kernel for implementing

more complex Internet languages and architectures.

MARS [18] is a coordination tool for Java-based mobile agents that defines Linda-like tuple spaces programmable to

react when accessed by agents. Such a mechanism can be used to control accesses to specific tuples. In X-KLAIM, this is

obtained either by using dynamically created private tuple spaces or by adding to the language the capability-based type

system presented in [24].

Jini [6] is a connection technology that enables many devices to be plugged together to form a community on a

network in a scalable way and without any planning, installation, or human intervention. Each device defines services

that other devices in the community may use and drivers that can be downloaded when needed. Jini is developed on

top of the JavaSpaces [4] technologies, a framework for using Linda-like communication. JavaSpaces introduces some

extensions of the Linda original paradigm, such as event notification, which allows a process to register its interest in

future occurrences of some event and then to receive communication when the event occurs, and blocking operations with

timeouts and leasing, which allows the presence of a tuple in a tuple space, or a notification request, to be granted only for

a period of time. Leasing can be obtained also in our language by means of timeouts: a process can sleep for some time

(using timeout), and then can take a tuple away from the tuple space (if it is still available). JavaSpaces transactions can

be programmed in X-KLAIM, by means of dedicated tuples, which represent transaction life time.

IBM T Spaces [27] is a network middleware package that supplies tuple space-based network communication with

database capabilities; it is implemented in Java by relying on its portability. T Spaces is basically a message processor, in

fact a client’s view of T Spaces is that of a message center and a message database. A DBMS could be implemented in

X-KLAIM by means of a process listening for requests (e.g., SQL strings) passed via tuples, to obtain a similar behavior.

Lime [31] exploits the multiple tuple spaces paradigm [29] to coordinate mobile agents and adds mobility to tuple

spaces: it allows processes to have private tuple spaces and to transiently share them. Although in X-KLAIM tuple spaces

are bound to nodes and nodes cannot move, processes can have objects of the class TupleSpace as data members and,

hence, when processes move, TupleSpace objects move as well. However, TupleSpace objects are never shared and

merged automatically.

Systems such as [16, 30, 32, 1], implement strong mobility in Java, by modifying the Java Virtual Machine, to access,

save and restore the execution state of threads. However, this solution can jeopardize one of the most desirable advantages

of Java: portability across platforms. Indeed, one needs to run the modified version of the JVM in order to use such

agents. This is the reason why we preferred not to include strong mobility in KLAVA; however, this feature is available in

X-KLAIM and it is implemented on top of KLAVA by means of an appropriate precompilation phase [9].

A feature that is present in systems such as MARS, Lime, Sumatra and T Spaces, but not in X-KLAIM, is the ability

to react to events such as the insertion of a tuple. This could be programmed by means of a process waiting for a certain

tuple, but this does not exactly implement reactions due to the non-determinism in the selection of the process waiting for

a tuple.

REFERENCES

[1] A. ACHARYA, M. RANGANATHAN, AND J. SALTZ, Sumatra: A Language for Resource-aware Mobile Programs, in Vitek and Tschudin [33],

pp. 111–130.

[2] M. ADAMS, J. COPLIEN, R. GAMOKE, R. HANMER, F. KEEVE, AND K. NICODEMUS, Fault-tolerant telecommunication system patterns, in

Pattern Languages of Program Design 2, J. Vlissides and J. Coplien, eds., Addison-Wesley, 1996, pp. 549–562.

[3] B. G. ANDERSON AND D. SHASHA, Persistent Linda: Linda + Transactions + Query Processing, in Proc. of Research Directions in High–Level

Parallel Programming Languages, J. P. Banatre and D. Le Metayer, eds., vol. 574 of LNCS, Springer, 1992, pp. 93–109.

[4] K. ARNOLD, E. FREEMAN, AND S. HUPFER, JavaSpaces Principles, Patterns and Practice, Addison-Wesley, 1999.

[5] K. ARNOLD, J. GOSLING, AND D. HOLMES, The Java Programming Language, Addison-Wesley, 3rd ed., 2000.

[6] K. ARNOLD, B. O’SULLIVAN, R. SCHEIFLER, J. WALDO, AND A. WOLLRATH, The Jini Specification, Addison-Wesley, 1999.

[7] L. BETTINI, Linguistic Constructs for Object-Oriented Mobile Code Programming & their Implementations, PhD thesis, Dip. di Matematica,

Università di Siena, 2003. Available at http://music.dsi.unifi.it

[8] L. BETTINI, V. BONO, R. DE NICOLA, G. FERRARI, D. GORLA, M. LORETI, E. MOGGI, R. PUGLIESE, E. TUOSTO, AND B. VENNERI, The

KLAIM Project: Theory and Practice, in Global Computing. Programming Environments, Languages, Security, and Analysis of Systems,

IST/FET International Workshop, GC 2003, Revised Papers, C. Priami, ed., vol. 2874 of LNCS, Springer, 2003, pp. 88–150.

[9] L. BETTINI AND R. DE NICOLA, Translating Strong Mobility into Weak Mobility, in Mobile Agents, G. P. Picco, ed., no. 2240 in LNCS,

Springer, 2001, pp. 182–197.

Implementing Mobile and Distributed Applications in X-Klaim 35

[10] , Mobile Distributed Programming in X-KLAIM, in Formal Methods for Mobile Computing, Advanced Lectures, M. Bernardo and

A. Bogliolo, eds., vol. 3465 of LNCS, Springer, 2005, pp. 29–68.

[11] L. BETTINI, R. DE NICOLA, G. FERRARI, AND R. PUGLIESE, Interactive Mobile Agents in X-KLAIM, in Proc. of the 7th Int. IEEE Workshops

on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), P. Ciancarini and R. Tolksdorf, eds., IEEE Computer

Society Press, 1998, pp. 110–115.

[12] L. BETTINI, R. DE NICOLA, AND M. LORETI, Software Update via Mobile Agent Based Programming, in Proc. of ACM SAC 2002, Special

Track on Agents, Interactions, Mobility, and Systems, ACM Press, 2002, pp. 32–36.

[13] , Formulae Meet Programs Over the Net: A Framework for Correct Network Aware Programming, Automated Software Engineering, 11

(2004), pp. 245–288. Special Issue on Distributed and Mobile Software Engineering.

[14] L. BETTINI, R. DE NICOLA, AND R. PUGLIESE, KLAVA: a Java package for distributed and mobile applications, Software—Practice and

Experience, 32 (2002), pp. 1365–1394.

[15] L. BETTINI, M. LORETI, AND R. PUGLIESE, An Infrastructure Language for Open Nets, in Proc. of ACM SAC 2002, Special Track on

Coordination Models, Languages and Applications, ACM, 2002, pp. 373–377.

[16] S. BOUCHENAK AND D. HAGIMONT, Pickling Threads State in the Java System, in Proc. of the Technology of Object-Oriented Languages and

Systems (TOOLS), 2000.

[17] P. BUTCHER, A. WOOD, AND M. ATKINS, Global Synchronisation in Linda, Concurrency: Practice and Experience, 6 (1994), pp. 505–516.

[18] G. CABRI, L. LEONARDI, AND F. ZAMBONELLI, Reactive Tuple Spaces for Mobile Agent Coordination, in Proc. of the 2nd Int. Workshop on

Mobile Agents, K. Rothermel and F. Hohl, eds., vol. 1477 of LNCS, Springer, 1998, pp. 237–248.

[19] L. CARDELLI, Global computation, in ACM Computing Surveys, 1996. 28(4es), Article 163.

[20] L. CARDELLI, Abstractions for Mobile Computation, in Secure Internet Programming: Security Issues for Mobile and Distributed Objects,

J. Vitek and C. Jensen, eds., no. 1603 in LNCS, Springer, 1999, pp. 51–94.

[21] N. CARRIERO AND D. GELERNTER, How to Write Parallel Programs: A Guide to the Perplexed, ACM Computing Surveys, 21 (1989), pp. 323–

357.

[22] P. CIANCARINI AND D. ROSSI, Jada - Coordination and Communication for Java Agents, in Vitek and Tschudin [33], pp. 213–228.

[23] R. DE NICOLA, G. FERRARI, AND R. PUGLIESE, KLAIM: a Kernel Language for Agents Interaction and Mobility, IEEE Transactions on

Software Engineering, 24 (1998), pp. 315–330.

[24] R. DE NICOLA, G. FERRARI, R. PUGLIESE, AND B. VENNERI, Types for Access Control, Theoretical Computer Science, 240 (2000), pp. 215–

254.

[25] R. DE NICOLA AND M. LORETI, A Modal Logic for Mobile Agents, ACM Transactions on Computational Logic, 5 (2004), pp. 79—128.

[26] D. DEUGO, Choosing a Mobile Agent Messaging Model, in Proc. of ISADS 2001, IEEE, 2001, pp. 278–286.

[27] D. FORD, T. LEHMAN, S. MCLAUGHRY, AND P. WYCKOFF, T Spaces, IBM Systems Journal, (1998), pp. 454–474.

[28] D. GELERNTER, Generative Communication in Linda, ACM Transactions on Programming Languages and Systems, 7 (1985), pp. 80–112.

[29] D. GELERNTER, Multiple Tuple Spaces in Linda, in Proc. Conf. on Parallel Architectures and Languages Europe (PARLE 89), E. Odijk, M. Rem,

and J. Syre, eds., vol. 365 of LNCS, Springer, 1989, pp. 20–27.

[30] H. PEINE AND T. STOLPMANN, The Architecture of the Ara Platform for Mobile Agents, in Proc. of the 1st International Workshop on Mobile

Agents (MA ’97), K. Rothermel and R. Popescu-Zeletin, eds., no. 1219 in LNCS, Springer, 1997, pp. 50–61.

[31] G. PICCO, A. MURPHY, AND G.-C. ROMAN, LIME: Linda Meets Mobility, in Proc. of the 21st Int. Conference on Software Engineering

(ICSE’99), D. Garlan, ed., ACM Press, 1999, pp. 368–377.

[32] M. RANGANATHAN, A. ACHARYA, S. SHARMA, AND J. SALTZ, Network-aware Mobile Programs, in Proc. of the USENIX Annual Technical

Conf., USENIX, 1997, pp. 91–103.

[33] J. VITEK AND C. TSCHUDIN, eds., Mobile Object Systems - Towards the Programmable Internet, no. 1222 in LNCS, Springer, 1997.

Edited by: Henry Hexmoor, Marcin Paprzycki, Niranjan Suri

Received: October 1, 2006

Accepted: December 11, 2006

