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THROUGHPUT IMPROVEMENT OF MOLECULAR DYNAMICS SIMULATIONS USING

RECONFIGURABLE COMPUTING∗
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Abstract. A number of grand-challenge scientific applications are unable to harness Terflops-scale computing capabilities of
massively-parallel processing (MPP) systems due to their inherent scaling limits. For these applications, multi-paradigm computing
systems that provide additional computing capability per processing node using accelerators are a viable solution. Among various
generic and custom-designed accelerators that represent a data-parallel programming paradigm, FPGA devices provide a number
of performance enhancing features including concurrency, deep-pipelining and streaming in a flexible manner. We demonstrate
acceleration of a production-level biomolecular simulation, in which typical speedups are less than 20 on even the most powerful su-
percomputing systems, on an FPGA-enabled system with a high-level programming interface. Using accurate models of our FPGA
implementation and parallel efficiency results obtained on the Cray XT3 system, we project that the time-to-solution is reduced sig-
nificantly as compared to the microprocessor-only execution times. A further advantage of computing with FPGA-enabled systems
over microprocessor-only implementations is performance sustainability for large-scale problems. The computational complexity of
a biomolecular simulation is proportional to its problem sizes, hence the runtime on a microprocessor increases at a much faster
rate as compared to FPGA-enabled systems which are capable of providing very high throughput for compute-intensive operations
thereby sustaining performance for large-scale problems.
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1. Introduction. Despite the tremendous computing power, flexibility, and power and cost efficiency of the
FPGA devices, their use in scientific high performance computing (HPC) has been limited to numerical functions
and kernels that are implemented in a hardware description language (HDL) [30, 39]. The idiosyncrasies of the
HDLs and limited support for floating-point (FP) operations restrict the ability of scientific code developers to
port their algorithms and applications, let alone to exploit the full potential of these devices. In this paper, we
present an analysis and FPGA implementation of a biomolecular calculation called the Particle-Mesh Ewald
(PME) method using High-Level Languages (HLLs), and report application speedup results. This specific
PME method is part of a widely-used molecular dynamics (MD) framework called AMBER [1, 21]. AMBER,
a collection of programs including system preparation, simulation and analysis, allows application scientists
to carry out complete experiments of biomolecular systems. MD techniques allow application scientists to
study the dynamics of large macromolecules, including biological systems such as proteins, nucleic acids (DNA,
RNA) membranes. The sander module of AMBER is the most commonly used module for system simulations;
furthermore, system simulations are the most time-consuming part of an experiment. Within the sander module,
there are a number of algorithms for simulating a system. The PME method is used in most explicit solvent
experiments including the simulations for protein structure, dynamics and functions [23].

Motivation. A number of strategies have been employed in attempts to accelerate the PME calculations
on traditional supercomputing platforms such that scientists can simulate their experiments at native time and
length scales. Currently, even the fastest computers are 104–106 magnitudes short of what is desired for even
investigations of a medium-scale simulation. Our analysis revealed that the PME algorithm implementation in
the sander module in the AMBER framework version 8.0 does not scale beyond 32 and 64 processors on the
most powerful supercomputers including the IBM Blue Gene/L and the Cray XT3 systems [16]. Although no
system-specific optimization are considered in these experiments, the applications have been compiled using
the double-hummer optimization flags offered by the IBM XL compilers on the Blue Gene/L system and SSE
optimization flags of the PGI compiler on Cray XT platforms. A number of researchers have identified the
factors that limit the performance and scaling of PME algorithms on microprocessors and massively-parallel
systems [21], [22]. Figure 1.1 shows the scaling characteristics of the PME calculations in the strong scaling
mode (fixed problem size) and Figure 1.2 shows the performance in the weak scaling mode on the Blue Gene/L
system. Pico-seconds per simulation day (psec/day) is the science-based metric used by application scientists
to measure a simulation performance. A high value of psec/day is essential for longer time scale simulations.
Analysis of the PME implementation reveals two major limiting factors. First, the message volume is roughly
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Fig. 1.1. AMBER (PME method) scaling in the strong
scaling mode with a 62K atoms system.

Fig. 1.2. AMBER (PME method) scaling for four dif-
ferent system sizes: 62K, 144K, 194K and 300K atoms on
the Blue Gene/L (BGL) system.

constant with the number of processors or MPI tasks. This limits parallel speedup to a maximum of 12x to 15x
over microprocessor runtimes, even for systems like Blue Gene/L and Cray XT3 that provide relatively high
communication bandwidth ratios compared to common SMP cluster systems. Second, the application’s memory
capacity requirements do not scale with the number of processors, since all processors store the positions of all
atoms [16, 21, 22, 40]. This is especially challenging for the emerging multi-core systems.

Fig. 1.3. Scaling of PMEMD (Amber 9) simulations on contemporary massively parallel systems

In order to address these known limitations of sander, another module known as Particle Mesh Ewald
Molecular Dynamics (PMEMD) has been developed with the major goal of improving performance of PME
in molecular dynamics simulations and minimizations by Robert E. Duke and Lee G. Pedersen. PMEMD
is implemented in Fortran 90 and MPI. We have experimented with the scaling characteristics of PMEMD
available with Amber version 9.0. The scaling results in Figure 1.3 show an improved degree of scaling on the
contemporary MPP platforms including the Cray XT systems (XT3 and XT4) and the next generation Blue
Gene system, the Blue Gene P (BGP). At the same time however, we note that on a system like Cray XT, which
has a contemporary dual-core AMD Opteron processor and a high bandwidth network, parallel efficiencies start
degrading on 64-128 processor cores or MPI tasks. Scaling limits are relatively higher on the BGP platform that
contains a relatively low frequency processor. Moreover, some end users have reported statistically significant
differences in sander and PMEMD results when simulations are run for very long time scales. A number of
experiments therefore rely on the sander module in order to maintain consistency between experiments.
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A special purpose system, called MDGRAPE, attempts to address memory and network latency issues of
MD calculations with specialized execution pipelines for non-bond calculations [41]. Our reconfigurable design
scheme addresses a similar issue but in a more cost-effective and flexible manner. In contrast to our approach,
MDGRAPE is optimized for a small subset of MD calculations within the AMBER framework and requires end
users to understand its customized software infrastructure. Our implementation is flexible, and extensible, and
encompasses more MD computation logic.

Contributions. In order to address the aforementioned issues regarding parallel efficiencies of MD simu-
lations, we are investigating the acceleration of the PME method on FPGA-enabled supercomputing systems
using a high-level language, Fortran—a widely used language for scientific computing. Currently, the SRC
MAPstation, Cray XD1, and SGI RASC systems are all available with FPGA devices. The SRC platforms are
the only systems that provide a tightly-coupled coherent programming environment allowing users to program
the FPGAs using both Fortran and C programming languages [12]. Since the sander module in AMBER is
written in Fortran 90, we targeted the SRC-6E MAPstation taking advantage of the Fortran support. The
Series E MAPstation pairs a dual 2.8 GHz Xeon microprocessor with a MAP processor consisting of two user-
configurable XilinxXC2VP100 FPGA devices [13] running at 100 MHz, a control processor, and seven 4MB
SRAM banks referred to as On-Board Memory (OBM).

We characterized the computation and memory requirements of the PME calculations with extensive profil-
ing and benchmarking on existing microprocessors and parallel systems. Due to the logic capacity of the SRC-6E
FPGA devices, we accelerated only the direct PME calculations which account for over 80% of the total ex-
ecution time in most bio-molecular simulations. Initially, using single-precision FP calculations we achieved
a computation speedup (not including overheads) of over 3x for two biological systems of sizes 24K and 62K
atoms when compared to the same systems running on the microprocessor-only system. Then, after carefully
characterizing the memory requirements, we managed to reduce the data transfer overheads and sustain a total
application speedup of 3x compared to the microprocessor-only runtimes. Finally, we further increased the
application speedup, by overlapping the ‘direct’ and ‘reciprocal’ PME calculations [22]. The FPGA devices
execute the ‘direct’ part of the calculation while the ‘reciprocal’ part is executed by the host microprocessor.

Since the performance of the FPGA devices are increasing at a much faster rate than commodity micro-
processors [43, 44] and the SRC-6E contains relatively old FPGA devices (two generations old), we developed a
performance model to predict performance for our current implementation on future FPGA devices [17]. These
models have been extended to the parallel implementation of sander that employs message-passing (MPI) pro-
gramming paradigm. We validate the extended model with the MPI profile and timing data collected on the
Cray XT3, a high-bandwidth MPP platform. This model is parameterized by the application’s input parame-
ters, which determine the problem size, and the target device parameters including the FPGA clock frequency,
memory capacity, and I/O bandwidth. Using this performance model, we estimate that the next-generation
FPGA devices will provide an additional speedup of greater than 2x beyond our current improvements for
overall application performance – a speedup of greater than 15x relative to contemporary microprocessors, with
increasing biological system sizes. On parallel systems, we demonstrate that the time to solution on 16-to-32
FPGA-enabled nodes would be equivalent to the largest configuration of contemporary MPP supercomputers.

Paper Outline. The layout of the paper is as follows: Section 2 provides a background discussion of FPGA
accelerator devices and bio-molecular simulations. In Section 3 we discuss related research efforts for accelerating
MD simulations on reconfigurable devices. Section 4 presents the implementation details. Performance analysis
of the current implementation on the SRC-6E system is given in section 5. Section 6 describes the performance
model and performance projections on current-generation FPGA devices and on future FPGA configurations
and biological experiments. Conclusions and future plans are outlined in section 7.

2. Background.

FPGA Accelerator Technologies. The concept of Reconfigurable Computing (RC) originated in the
1960s in a paper by Gerald Estrin. In his paper he proposed the concept of a computer made of a standard
processor and an array of “reconfigurable” hardware. In this paradigm, the main processor would control the
behavior of the reconfigurable hardware, which would be tailored to perform a specific task. Once the task was
complete, the hardware could be reconfigured to do some other task. The advantage of this hybrid structure
lies in the combination of its software-like flexibility with hardware-like speed. It was not until the last decade
that the electronic technology matured enough to make these systems, also known as reconfigurable computing



398 S. R. Alam, P. K. Agarwal, J. S. Vetter and M. C. Smith

(RC), possible. As shown in Figure 2.1, High-performance Reconfigurable Computing (HPRC) platforms consist
of a number of RC nodes connected by some interconnection network (ICN); the computing nodes typically
consist of a general-purpose processor coupled to the RC hardware via some communication interface (e.g. PCI,
memory bus, rapid array, HyperTransport, etc.).

Fig. 2.1. High-performance Reconfigurable Computer (HPRC) Architecture

The HPRC platform allows users to exploit fine and coarse grain parallelism within the RC device and
across the parallel compute nodes. A variety of RC cards have been developed during the past decade [2, 3,
8, 9, 10, 25, 32, 34]. The early success of some of these offerings paved the way for HPC vendors such as the
Cray XD1 [5] and the SGI RASC system [11] to enter the market with HPRC platforms featuring high-end
processors more tightly coupled with the reconfigurable devices. Other vendors such as SRC with their line of
MAPstations [12] and Opteron socket products from DRC Computers [6] and XtremeData [14] have entered
the market with cluster-ready platforms. The systems from these vendors often include a more developed
programming environment and clusters can be built incrementally (node by node).

For all the HPRC systems mentioned thus far, the RC element of the system is in the form of an RC
board or module and the primary architectural difference is the manner in which it is coupled with the rest
of the system. Each of the above-mentioned platforms has a different communication interface between the
general-purpose processors and the reconfigurable hardware devices in addition to other variations including
the host processor, memory hierarchy, FPGA devices, clock frequency, etc.

Biomolecular Simulations. Numerous applications use MD for biomolecular simulations. These appli-
cations include AMBER [1], GROMACS [7], LAMMPS [36], and NAMD [29]. MD and related techniques can
be defined as computer simulation methodology where the time evolution of a set of interacting particles is
modeled by integrating the equation of motion. The underlying MD technique is based upon the law of classical
mechanics, and most notably Newton’s law, F = ma [31].The MD steps performed in AMBER consist of three
calculations: determining the energy of a system and the forces on atoms centers, moving the atoms according
to the forces, and adjusting temperature and pressure. Most MD models treat atoms classically as points with
mass and charge. The atomic points interact with other atomic points through pair-wise interactions from
chemical bonds, electrostatic interactions and van der Waals interactions.

A typical bimolecular simulation contains atoms for solute, ions, and solvent molecules. The force on each
atom is represented as the combination of the contribution from forces due to atoms that are chemically bonded
to it and non-bond forces due to all other atoms. The simplified overall energy equation is:
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where the first three terms are the bonded terms and the latter two are referred as non-bonded terms. The
non-bond energy is broken into two contributions: van der Waals and electrostatic interactions. The number
of bonds, bond angles, and bond dihedrals during the classical simulations are kept constants. For a medium
system, there are only a few thousand bonds and angles compared to millions of the non-bonded interactions;
the calculations involving the bonded terms are extremely fast on conventional systems. The double sum of the
non-bond terms makes the number of these calculations scale with an order of N2, where N is the number of
atoms. Simulations of larger systems (larger N) are therefore extremely expensive.

In the case of periodic boundary conditions (PCB), where the system is treated with a periodic arrangement
of repeated unit cells to model the effect of large surrounding solvent without increasing the number of particles,
the non-bonded sums become large. In a finite PCB, the simulation box is replicated a fix number of times
in all directions to form a lattice (Figure 2.2). In practice, MD simulations evaluate potentials using a cutoff
distance scheme for computational efficiency, where each particle interacts with the nearest other N −1 particles
in a sphere of radius cutoff. Figure 2.2 shows a 2-dimentional view of a simulation cell replicated in the three
directions of space; atoms within cutoff will be involved in computing the non-bonded interactions.

Atom pairs that are separated by a distance greater than the cutoff limit (typically 10 Angstroms for
AMBER simulations) are not included in the sums. The cutoff limits the number of non-bond interactions in
the sum to be N ∗ (number of atoms in the cutoff sphere) as compared to N ∗ (N − 1) interactions without the
cutoff. For the van der Waals interactions, the cutoff error is small, but the electrostatic sum has a very large
error, 10% or greater, when a 10 Angstroms cutoff is introduced. Figure 2.3 illustrates the magnitude of the
problem for a system.

The total non-bond energy, the sum of the van der Waals and the electrostatic energies are of comparable
magnitude near the equilibrium distance. But at 10 Angstroms, the electrostatic are still strong while the van
der Waals energy is essentially vanished. Ignoring the electrostatic interactions that are beyond 10 Angstroms
can introduce a large error in the energy and forces resulting in artificial force magnitudes. The Particle
Mesh-Ewald (PME) method provides a solution to this problem by solving all electrostatic forces; it uses an
atom-based cutoff [22, 23] reducing the number of non-bonded interactions to N log(N).

Fig. 2.2. Two-dimensional view of a simulation cell
replicated in the three-dimension space.

Fig. 2.3. The van der Waals and electrostatic contributions to
the non-bond energy are shown as a function of the inter atomic
distance [22].

The Ewald method expands the simple sum of Coulomb’s Law (electrostatic) terms into the following terms:

E(electrostatic) = E(direct) + E(reciprocal) + E(correct)

Except for the error correction function, the direct sum is identical to the sum in the cutoff method that
calculates electrostatic potential energy. The reciprocal sum is a major part of the electrostatic energy that
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Table 2.1

Time spent in the direct and reciprocal Ewald calculations as a percentage of total execution time.

Number of atoms Direct Ewald Time (%) Reciprocal Ewald Time (%)
23558 82.61 16.66
61641 86.88 12.56
143784 87.12 12.34
194262 86.47 12.92

the direct sum misses due to the correction factor. The reciprocal sum is approximated using Fast Fourier
Transform (FFT) with convolutions on the grid where charges are interpolated on the grid points. Table 2.1
provides the percentage of execution time (for 10000 time steps or production-level simulations) for four different
protein experiments on an Intel dual 2.8 GHz Xeon system. The direct sum accounts for over 80% of execution
time. The reciprocal Ewald calculation takes less than 13% of the total execution time. Taken together, these
calculations account for over 95% of total execution time on a single processor system.

3. Related Work. A number of related efforts to develop MD codes on reconfigurable hardware plat-
forms have been reported in the literature. In [26], the authors implement a basic MD system focused on the
motion updates and the O(N 2) force terms (both Coulombic and L-J forces and multiple atom types) using
hardware design techniques. The authors study the relationship between precision and quality of MD simula-
tions and report that it is possible with reconfigurable devices to trade off unneeded precision for computing
resources. Implementation on a COTS system yielded accelerations ranging from 31x to 88x with respect to a
microprocessor-only implementation, depending on the size of the FPGA and the simulation accuracy. Simi-
larly, in [19], the authors implemented a novel single atom type MD system with VHDL on a Transmogrifier 3
(TM3) system. This implementation focuses on the L-J force calculator with problem specific implementations.
To reduce complexity, the implementation uses fixed-point representations varying between 22 and 76 bits for
all values within the MD system. The author’s results show that this implementation closely tracked the higher
precision software implementation with an error of less than 1% between consecutive time steps. The authors
extrapolate that with better FPGA memory organization and faster FPGAs, a speedup of 40x to 100x over a
microprocessor implementation can be achieved.

In [38], the authors use the SRC development suite Carte® to implement a tightly coupled MD simulation
kernel (not a complete MD software package such as AMBER) on the SRC-6E MAPstation. Like our approach,
the important tasks of an MD simulation are analyzed and partitioned such that the most intensive are executed
in the reconfigurable hardware and the rest are executed on the general-purpose processor. Even though only a
portion of the simulation is accelerated in the MAP, the single-precision implementation achieves a 2x speedup
over the software baseline running on the MAPstation host.

Neither [19, 6], nor [38] are concerned with the problem of accelerating existing, production-level, MD
simulation software nor have they been tested with more than a few thousand particles. The most closely
related work comes from [30] where the authors implement a simplified version of an MD algorithm in NAMD
[29], an MD simulation package, on the SRC-6 MAPstation. While their implementation does trace the steps
involved in porting a large-scale scientific code to FPGA-enabled systems, they do not cover memory analysis
and characterization or the performance modeling work presented in this article.

4. Implementation. Based on the percentages of execution times, the direct PME calculations are a
candidate for the FPGA acceleration since an acceleration of this method is likely to result in an overall
application speedup or a reduction in the time-to-solution. Figure 4.1 shows the call tree for the direct Ewald
calculation, which is composed of two calculations: coordinate mapping and non-bond energy calculations. The
coordinate mapping calculations (f1 and f2) are also invoked from the reciprocal Ewald calculations; therefore,
we only map the non-bond energy calculation function (f3) within the direct PME calculations onto the FPGA.

Since the logic capacities of the FPGA devices are limited for floating-point calculations, we initially port
only the most expensive (time-consuming) parts of the calculations into the FPGA. Table 4.1 lists the percentage
of execution time for the functions listed in Figure 4.1. Using the gprof runtime profiling tool, we calculated
the contributions of the individual functions. Functions f1, f2 and f3 are called once every time step iteration
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Fig. 4.1. Call tree for the direct Ewald calculations in sander. Calls to functions f1, f2, and f3 are made once every time
step; calls to f4 depend on the number of atoms in the system; f5 is called twice as many times as f4.

but the number of calls to f4 depends on the number of atoms in the system. For instance, when the number
of atoms is 143784, f1, f2 and f3 are called once but f4 is called 143784 times and f5 is called 143784*2 times.
This knowledge about the number of invocations plays a very important role in the decision making process,
because there is a substantial call overhead (∼ 0.3 sec on SRC-6E) involved in calling a function that is mapped
on the FPGA devices from the host processor.

Table 4.1

Contribution of individual functions in the direct PME execution times.

Number of atoms 23558 61641 143784 194262
f1 (% of total) 0.1% 0.1% 0.2% 0.2%
f2 (% of total) 0.4% 0.5% 0.5% 0.5%
f3 (% of total) 82.1% 86.2% 86.4% 85.8%
f4 (% of f3) 86.1% 85.9% 88.4% 88.4%
f5 (% of f4) 18.8% 20.9% 17.9% 17.9%

After analyzing the call tree and contributions of individual functions in the direct Ewald calculations, we
decided to map the branch functions f3, f4 and f5, onto the FPGA devices. First, we analyzed the loop structure
within each of the three functions (Figure 4.1 and Figure 4.2). Function f4 has two nested loops that iterate
through all atoms in the system. The outermost loop has a fixed count, which depends on the unit cell grid
dimensions (a unit cell grid is shown in Figure 4.3), while the two inner loops are calculated at runtime.

The size of the unit cell grid depends on a number of factors including the size of the protein, number of
atoms, density and types of atoms. The unit cell is divided in subcells, and each subcell contains a different
number of atoms. Note that biological systems do not have a uniform density. Hence, the subcell iterations
depend on the number of atoms in the currently selected subcell, which can range from 0 to a maximum density.
Furthermore, the number of atoms in a subcell changes as the simulation progresses because the positions of
atoms are not fixed.

Function f3
Do loop1=1, indexhi (fixed)

Do loop2=1, subcell(loop1) (variable)
Call f4

Function f4
Do loop3=1, icount (variable)

Fig. 4.2. A pseudo-code for the three nested loop in the
direct PME calculations.

Fig. 4.3. A schematic representation of a biomolecule in
a unit cell.

In addition to the two nested loops of function f3, function f4 contains several small loops with similar loop
index values. Like the loop index of the inner loop in function f3, the loop index in function f4 is determined
at runtime. It depends on the number of neighbor atoms a given atom interacts with inside the cutoff limit.
This value in turn depends on the number of atoms in the system, density of the system and the cutoff limit.
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Nevertheless, this value is not constant for individual atoms since the atoms move around during the simulation.
A pair list, that contains pairing information of individual atoms with all other atoms in the system is, therefore,
updated throughout the simulation run.

Application of the Performance Enhancing Features. Deep pipelining, concurrent execution capa-
bilities and data streaming are the main performance advantages of FPGA devices for computing applications.
These features are exploited during implementation to achieve a higher speedup for the direct Ewald calculation.
Since our FPGA implementation is developed using Fortran, the three loops mentioned earlier are not different
from the original implementation. The nested calls to functions f3, f4 and f5 in the original code are replaced
by a single invocation to a SRC MAP (FPGA implementation) function that performs the calculations of the
three functions on the FPGA devices.

The only differences between the original and FPGA implementation are the additional calls for data
transfers between the host processor and the on-board memory of the MAP and the FPGA-specific constructs
for parallel execution of the code blocks. A schematic of the process is shown in Figure 4.4. The control lines
are shown in arrows (from source to target) and the data lines are shown in dotted lines. The host processor
oversees the control and data movement between the host and the FPGA devices. However, once the devices
are setup, the primary FPGA manages the DMA operations and the data transfers between the FPGAs. Note
that all control and data transfer calls shown in Figure 4.4 can be active simultaneously. In addition, the SRC
systems have multiple data ports; for instance, three 64-bit elements can be transferred between the two FPGAs
in a single clock cycle.

Fig. 4.4. Control and data paths between the host and FPGA devices.

Deep pipelining allows a user to describe the parallelism in terms of a producer-consumer programming
paradigm. A producer-consumer relationship can be between: (1) host and primary FPGA; (2) primary and sec-
ondary FPGA; and (3) parallel sections within an FPGA. A ‘parallel section’ construct in the SRC programming
permits task parallelism, i. e., multiple computation and data transfer tasks executing simultaneously. Typi-
cally, streaming data is transferred between the producer and consumer devices. A deep pipelining example
may include the following tasks executing in parallel:

1. DMA in a large array a1
2. DMA in two small arrays b1 and c1
3. Setup two communication ports with the sec-

ondary FPGA
4. Send a1 to the secondary FPGA
5. Send c1 to the secondary FPGA
6. Compute within loop using b1 and a1, one el-

ement at a time

7. Setup two communication ports with
the primary FPGA

8. Receive a1
9. Receive c1

10. Continue the innermost loop of the
primary FPGA and compute re-
sult c1

Parallel section (Primary FPGA) Parallel section (Secondary FPGA)
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The data transfer overheads and latencies in most cases, therefore, can be concealed using the deep pipelining
and streaming techniques as long as there is sufficient work (computation) available to hide these latencies.
The performance of the above pipeline will be the latency of the longest parallel section. Every effort is
made to remove or reduce pipeline stalls, if the producer stream data element is not ready, the consumer
stalls; likewise, if the consumer is not ready to accept the incoming data, the producer stalls. Additional
performance improvements can be achieved with traditional loop optimization techniques like loop unrolling
and flattening.

Algorithm Mapping onto the FPGA. To map the direct PME algorithm onto the FPGA devices, we
characterized the data and control requirements of the algorithm implementation in the AMBER framework.
For data requirements, we identified the local and non-local data elements, particularly the large arrays in the
functions that are to be mapped onto the FPGA devices. These arrays include those containing the complete cell
image coordinates, the force coordinates, pair information, Ewald tables, and indices to non-bond interactions.
The sizes of the arrays depend on a number of parameters, primarily the number of atoms and dimensions of the
unit cell grid. For example, for the 23558 atoms experiment, the indices arrays contain over 30K, floating-point
data elements.

For control operations, we identified the loops that are potential targets for exploiting parallelism. The
outermost PME loop has a fixed (constant) index, which depends on the dimension of the unit cell grid. The
indices of the two nested loops within the outermost loop are determined at runtime. In addition, there are
some smaller loops with a few tens of iterations that determine the runtime indices of the innermost loop. The
calculations in the innermost loop are distributed between the two FPGA devices to exploit the concurrency
that the two FPGAs offer. Moreover, the innermost loop is flattened creating the longest calculation in the
pipeline and maximizing the throughput. We anticipate that the outermost loops can be flattened on FPGAs
with larger logic capacities.

Fig. 4.5. Control flow of the direct PME calculation on the two FPGA devices.

Figure 4.5 shows a flow chart of the direct PME calculations on the two FPGA devices. After invoking
the FPGA-resident function, the primary FPGA DMAs the data from the host processor. It then streams in
the large arrays; a subset of which are concurrently streamed to the secondary FPGA over the bridge ports.
Then the outermost loop starts on the primary FPGA, which computes and subsequently starts loop 2 in the
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primary FPGA. After computing and transferring the index of loop 3 to the secondary FPGA, partial nested
loop calculations are performed on the primary FPGA. Since the bridge ports are already configured with the
secondary FPGA, as soon as the data is generated on the first FPGA it is available to the second FPGA where
the streaming calculations continue. The gray area in the diagram shows the deep pipeline that spans across
two FPGA devices. The 3× 3 virial arrays computed on the secondary FPGA are stored in intermediate arrays
and are transferred to the primary FPGA after the three loops have concluded. The primary FPGA then makes
this data available to the host processor.

5. Performance Analysis. We use two metrics to compare performance of the FPGA-accelerated code
with the microprocessor-only execution times. The first metric is traditional speedup:

Speedup = Runtimemicroprocessor/RuntimeFPGA-accelerated code

The second metric (used by the application scientists) is the science-based metric: pico-seconds (10-12) per
simulation day (psec/day). This metric determines the time to simulate a biological system at the required time
scales and is useful when comparing simulations of various sizes across different computing systems.

We measured the performance of the FPGA-accelerated code for two test cases namely jac (joint amber-
charmm) and HhaI. The jac benchmark is part of the AMBER version 8.0 release and it contains 23558 atoms.
HhaI is a protein-DNA system that contains 61641 atoms. The microprocessor-based performance is measured
on the SRC host processor system, which is an Intel dual 2.8 GHz Xeon system. The SRC-6E FPGA devices
run at 100 MHz, a clock frequency restriction imposed by the SRC system (current-generation FPGA devices
have more logic and memory capacity and are capable of operating at higher frequencies). Nevertheless, we
demonstrate the potential for FPGA acceleration for an important class of applications on these devices. The
results from the FPGA-accelerated code are compared with the microprocessor-only implementation for both
performance and accuracy to verify the correctness of the design.

To analyze the performance behavior, we used the SRC-6E performance analysis and debugging tools to
measure the runtime contributions of key sections of the accelerated code. Runtimes for three sections are
measured separately: (1) time to setup the MAP (calling overhead); (2) compute time; and (3) data transfer
times. The time to setup the MAP has an additional cost (∼0.3 milliseconds) for the first invocation; in
subsequent invocations this cost is comparable to regular Fortran function calls. The data transfer time includes
the time to receive data from the host and to send results back to the host. Compute time is the computation
time spent on the two FPGA devices including the time to transfer data between the two devices. As expected,
the data transfer overheads offset the performance gains in a näıve implementation and the penalties are higher
for the larger problem, HhaI. The compute only speedup increases with the problem size or the number of
atoms, 3.3x and ∼4x, respectively. However, since the data transfer overheads also increase with the problem
size, the overall application speedup is reduced to less than one. At this stage, we concluded that the memory
access requirements needed further characterization in order to achieve sustained performance on the FPGA
devices.

Table 5.1

Speedup of the PME calculations before and after memory characterization over the 2.8 GHz host microprocessor system

jac (23558 atoms) HhaI (61641 atoms)
Speedup (initial
implementation)

Speedup (after
memory charac-

terization)

Speedup (initial
implementation)

Speedup (after
memory charac-

terization)
Computation only 3.3 3.3 3.97 3.97
Setup+compute 3.29 3.29 3.96 3.96

Compute+data transfer 0.64 3.21 0.69 3.83
Overall 0.6 3.19 0.6 3.82

We considered and evaluated a number of techniques to reduce the data transfer times. First, data can
be pre-fetched and post-stored to hide the data transfer latencies. Additionally, pthreads or OpenMP multi-
threading techniques allow the transfer of large arrays while the compute thread is processing and before
the accelerated function is invoked. Second, data transfers to the FPGA can be pipelined and overlapped
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using the streaming directives provided in the SRC programming environment. Although these are partially
done in the first implementation, carefully overlapping and pipelining additional data transfers can further
improve performance. Finally, algorithm-specific optimizations are exploited by characterizing the memory
access behavior and patterns in the accelerated code. We employed the last approach since it also leverages the
other optimization techniques.

Implementation of the accelerated PME calculation is further modified according to memory access classifi-
cation and characterization. This implementation, however, does not include any modification to the AMBER
source code on the host to exploit additional benefits from multithreading with pthreads or OpenMP. Only
the Fortran code for the FPGA-accelerated calculations is modified to reduce the unnecessary data transfer
overheads. Amazingly, the modified code resulted in a very significant reduction in the data transfer costs;
the data transfer costs that previously accounted for over 70% of the total execution time, are now less that
5% of the total execution time resulting in sustained accelerated performance with the FPGA devices. Ta-
ble 5.1 summarizes the performance improvements for jac and HhaI experiments.The time-to-solution metric
is calculated for a nano-second scale simulation (106 time steps) and is presented for the jac benchmark in
Table 5.2. We also measure and include time for the non-accelerated calculations; a constant for both host
processor and FPGA-accelerated code because they are always executed on the host processor. We calculate
the performance improvement achieved by overlapping the ‘direct’ and ‘reciprocal’ PME calculations on FPGA
and host respectively (OpenMP constructs in the PME-AMBER source code enable the overlap).

Table 5.2

Time-to-solution for the SRC 6E FPGA-accelerated code for the jac benchmark

Time-to-solution (after me-
mory characterization)

Time-to-solution
(after overlapping)

Computation only 4793 days 3208 days
Setup+compute 4801 days 3214 days
Compute+data transfer 4868 days 3282 days
Overall 4876 days 3290 days
Host 10417 days

From the values in Table 4, we estimate time for a nano-second scale simulation instead of our target micro-
second scale simulation. A nano-second simulation will take over 10 days on the microprocessor system with
dual 2.8 GHz Xeon system, about 5 days on an FPGA accelerated code, and just over 3 days by overlapping
FPGA and host execution. (Note: these computations are for the older-generation FPGAs on the SRC-6E.)

6. Modeling and Projections. In order to analyze the performance of the current system and predict
the performance potential of future FPGA-enabled systems, we developed parameterized performance models
of our current FPGA implementation. The models are parameterized with application parameters and system
parameters allowing for the analysis of a variety of FPGA systems as well as larger biological simulations.
The application parameters include the number of atoms, dimensions of the box, types of atoms, and number
of residues. From the application parameters, we can generate the size of data transfers, physical memory
requirements, and loop indices for the main computation loops. The FPGA system parameters are the FPGA
clock frequency, bandwidth to the host processor, and bandwidth between the FPGA devices. Our modeling
scheme is conservative because we do not take into account the characteristics of future FPGA devices that
contain special features for double-precision floating-point calculations and logic capacities. Furthermore, we
do not consider the performance advantages that can be achieved by flattening the three direct PME loops,
which we anticipate will also be possible on larger FPGAs.

For simplicity, we consider a cubic box in which all three dimensions are equal, i. e. a = b = c. Moreover,
we consider a NTYPE (types of atoms) to be a constant (= 20), and the numbers of residues are fixed as
(NATOMS/3.25). The problem size is therefore controlled by the NATOMS parameter. The performance model
has two elements: computation cost and data transfer overheads. There is a fixed, single time startup-overhead
cost not included in the model because these biological simulations are expected to run tens of thousands of
time steps. Hence, the single startup-overhead cost is amortized for these simulation runs. In the computation
time, represented below, we take into account the latency (in clock cycles to perform sequence of serialized
operations within a loop) for the three main loops that are shown in Figure 8. In addition, we include the loop
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counts (variable and fixed) that are calculated from the application input parameters. Similarly, we calculate
the number of data transfer bytes using the input parameters and apply the available memory bandwidth to
determine the data transfer times. Since the sizes of data transfers do not depend on runtime values, the data
transfer overheads are precisely measured for our current implementation. The workload requirement model
and the runtime performance projection model are validated with the current SRC-6E implementations.

Fig. 6.1. Figure 12: Percentage of total execution time spent in MPI communication routines.

To develop a model for the parallel version of the application, we profiled MPI message sizes and timings on
the Cray XT3 system, which has a high communication bandwidth compared to contemporary cluster systems.
Figure 6.1 shows the fraction of total execution time spent in MPI communications for three test cases. We
notice that the percentage of communication time increases with the number of parallel MPI tasks, and beyond
128 tasks it accounts for over 50% of total execution time. Although the fraction of MPI time decreases with
the increase in the number of atoms, the reduction rate is much slower than the increase in number of atoms.

In addition to aggregate data collection, we investigated the runtime behavior of MPI messages and sizes.
We note that the number and sizes of communication operations per simulation time step per processor is
not constant. Also, AMBER does not use an MPI Cartesian topology; moreover, sizes for the MPI collective
operations per processor do not change with the problem size or number of atoms. AMBER has a collection of
programs that can run different MD simulations. In this study, we focused on the most widely used simulation
method—explicit solvent simulations in sander.

We developed symbolic models for the communication phases with a fixed message size—an average of the
smallest and largest message sizes exchanged in these phases. The largest message size does not change with
processor count, while the smallest one scales linearly. These sizes are validated at runtime using the MPI
profiling tool. The MPI Allreduce message sizes do not depend on the problem size, therefore, the collective
message volume grows linearly with the problem size.

Our findings about the scaling behavior of the explicit solvent calculations in AMBER explain the perfor-
mance results presented in earlier studies [16, 18]. Scaling results for the explicit solvent method in AMBER on
parallel systems do not scale beyond 128 processors—not even on systems with very high bandwidth intercon-
nects, like IBM Blue Gene/L [35] and Cray XT3 [5]. On SMP cluster systems, these calculations only scale to up
to 16–32 processors. Using symbolic models, we quantified the growth rate in volume and distribution of MPI
messages, which enable us to identify that the force sum, and coordinate distribution phases of calculation limit
application scaling. These factors in turn limit the scaling beyond 64-128 MPI tasks on distributed memory
parallel systems.
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Fig. 6.2. Performance projections with varying FPGA performance metrics.

Projections on Future FPGA Devices. We use our validated performance models to carry out a num-
ber of performance projection experiments. Figure 6.2 shows the performance projection results on a single-node
FPGA accelerated system. We altered two FPGA-enabled system parameters for our experiments: the clock
frequency and data bandwidth between the FPGA device and the host processor. The clock frequency of our
current FPGA implementation is 100 MHz and the sustained payload bandwidth is 2.8 GB/s (utilizing input
and output 1.4 GB/s bandwidth). The clock speed and data transfer rates have different performance impli-
cations on small and large biological systems (Figure 6.2). Overall, the clock speed influences the performance
gains of the PME calculations. For smaller biological systems, the change in the data transfer rates influences
the runtime performance of the application. By contrast, the performance of the larger systems (100K and more
atoms) nearly doubles by doubling the clock speed of the FPGA devices, while the data transfer rates alone do
not significantly impact the runtime performance. Note that a ∼150K atoms system only achieves ∼12 psec/day
on a dual 2.8 GHz Xeon system today. An FPGA-enabled system using our current PME implementation can
sustain over 75 psec/day with a 200 MHz FPGA and over 180 psec/day with a 500 MHz FPGA and a host
bandwidth of 5.6 GB/s.

Parallel Efficiency. Based on the parameterized model of our FPGA implementation and a detailed
analysis and modeling of MPI implementation of sander, we carry out performance projection studies on parallel
systems with multiple FPGA accelerator devices. The FPGA-accelerated implementation of direct PME does
not involve MPI communication; therefore, we can port the accelerated code without any modification to
a parallel platform. However, we cannot take into account the contribution of overlapping the reciprocal
and direct Ewald calculations because the reciprocal calculations do involve MPI communication. Hence, we
consider a blocking implementation of the accelerated code; in other words, our performance estimates are highly
conservative since the overlapping of calculations can result in significant performance benefits not only on small
processor counts but also on 64–128 processor runs. We anticipate that simulations with 32 or more processors,
the reciprocal Ewald calculation will contribute to a larger fraction of the runtime and the accelerated direct
PME will have negligible runtime contributions.

Due to the inherent scaling limit of the sander implementation [16, 22], we target a cluster with 8–16
processors, each populated with an FPGA device. Note that this configuration is different from the existing
Cray XD1 having six FPGA devices connected to a chassis and these devices communicate with one another
only through their host Opteron processor. The Maxwell system recently developed at the Edinburgh Parallel
Computing Center is similar to our target configuration. The system consists of a 32-way IBM BladeCentre
chassis hosting 64 Xilinx Virtex-4 FPGAs directly connected over high-speed RocketIO. This allows codes to
be parallelized across the collection of FPGAs and encourages algorithms to be written such that once the data
and program are loaded onto the accelerator cards the processing occurs without transferring data across the
PCI-X bus again.
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We project runtime on a FPGA accelerated parallel system using the following expression:

Computationtime = l1count ∗ (latencyl1 + l2count ∗ (latencyl2 + latencyl3 + l3count)/clockfrequency.

Time on the host is the time that is not spent in communication and overlapped calculations. Considering a
high-bandwidth communication network similar to Cray XT3 distributed memory system [5], we project perfor-
mance in terms of psec/day for the 3 test systems with approximately 24K, 62K and 144K atoms respectively.
We compare these results with the runtime measured on the XT3 system. For parallel performance projections,
we conservatively targeted an FPGA with double the clock frequency, 200MHz, of the SRC-6E 100MHz. Cur-
rently available FPGA devices are capable of operating at clock speeds higher than 200 MHz although they are
only now becoming available in leading edge reconfigurable computing platforms. In addition, we consider no im-
provement in the FPGA and host bandwidth, which is expected to be significantly higher for new production and
future systems especially those connected via HyperTransport links. Figure 14 and Figure 15 show the through-
put of an FPGA-accelerated system and the Cray XT3 in terms of psec/day. We note that speedup is sustained
for simulation runs up to 16 MPI tasks in the FPGA accelerated system. For the 62K atoms experiment, a 32-
processor FPGA-accelerated system could be as efficient as the largest configuration of the Cray XT3 and time
to solution on a 2-node FPGA-accelerated system could be equivalent to large-scale Blue Gene L configurations.

Fig. 7.1. Parallel efficiency on the FPGA-accelerated
system

Fig. 7.2. Parallel Efficiency on the Cray XT3 system

7. Conclusions and Future Plans. We have demonstrated that production FPGA-enabled systems
can achieve sustained application speedup for a production-level scientific simulation framework, and that the
co-processor accelerated systems with few tens of processing units can surpass performance of Teraflops-scale
supercomputing systems. Using our task-based implementation approach, scientific application developers can
exploit extremely powerful yet flexible devices to perform a diverse range of scientific calculations by using a
familiar high-level programming interface all without significantly compromising achievable performance. Our
results for the direct PME method show that the time-to-solution of medium-scale biological system simulations
are reduced by a factor of 3x on an SRC-6E MAPstation, which contains two-generation old FPGA devices,
compared to the microprocessor-only runtimes. Trends indicate that the capabilities of FPGA devices are grow-
ing at a faster rate than those of microprocessors and parallel systems have been developed and deployed with
co-processor accelerators. Using accurate models of our current implementation and communication overheads
measured on a contemporary high-bandwidth supercomputer, we estimate that systems with later generation
FPGA devices will reduce the time-to-solution by a factor greater than 15x for large-scale biological systems—a
speedup that is greater than currently available on many contemporary parallel cluster systems. Furthermore,
for applications with inherent scaling limits, a small-scale parallel system with co-processor accelerators could
attain performance of a high-end supercomputing system. Since these reconfigurable devices offer an ideal
combination of performance, concurrency, and flexibility for a diverse range of numerical algorithms, we antici-
pate that many scientific applications will dramatically benefit from the increased support for double-precision
floating-point operations and HLL languages now available for these reconfigurable systems. In future work we
plan to implement other production-level applications and conduct similar modeling and analysis efforts. Fur-
thermore, we plan to enhance the models to include characteristics of the FPGAs such as their logic capacities
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which are not accounted for in the current model. As new generations of these RC systems become available,
we plan to collect performance data and validate our models in single-node and multi-node RC systems.
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