
Salable Computing: Pratie and ExperieneVolume 9, Number 4, pp. 303�314. http://www.spe.org ISSN 1895-1767© 2008 SCPEFUZZY CONSTRAINT-BASED SCHEMA MATCHING FORMULATIONALSAYED ALGERGAWY, EIKE SCHALLEHN, AND GUNTER SAAKE∗Abstrat. The deep Web has many hallenges to be solved. Among them is shema mathing. In this paper, we builda oneptual onnetion between the shema mathing problem SMP and the fuzzy onstraint optimization problem FCOP. Inpartiular, we propose the use of the fuzzy onstraint optimization problem as a framework to model and formalize the shemamathing problem. By formalizing the SMP as a FCOP, we gain many bene�ts. First, we ould express it as a ombinatorialoptimization problem with a set of soft onstraints whih are able to ope with unertainty in shema mathing. Seond, theatual algorithm solution beomes independent of the onrete graph model, allowing us to hange the model without a�eting thealgorithm by introduing a new level of abstration. Moreover, we ould disover omplex mathes easily. Finally, we ould makea trade-o� between shema mathing performane aspets.Key words: shema mathing, onstraint programming, fuzzy onstraints, objetive funtion1. Introdution. The deep Web (also known as Deepnet or the hidden Web) refers to the World WideWeb ontent that is not a part of the surfae Web. It is estimated that the deep Web is several orders ofmagnitude larger than the surfae Web [4℄. As the number of deep Web soures has been inreasing as thee�orts needed to enable users to explore and integrate these soures beome essential. As a result softwaresystems have been developed to open the deep Web to users. Shema mathing is the ore task of these systems.Shema mathing is the task of identifying semanti orrespondenes among elements of two or moreshemas. It plays a entral role in many data appliation senarios [22, 17℄: in data integration, to identifyand haraterize inter-shema relationships between multiple (heterogeneous) shemas; in data warehousing,to map data soures to a warehouse shema; in E-business, to help to map messages between di�erent XMLformats; in the Semanti Web, to establish semanti orrespondenes between onepts of di�erent web sitesontologies; and in data migration, to migrate legay data from multiple soures into a new one [10℄.Due to the omplexity of shema mathing, it was mostly performed manually by a human expert. However,manual reoniliation tends to be a slow and ine�ient proess espeially in large-sale and dynami environ-ments. Therefore, the need for automati shema mathing has beome essential. Consequently, many shemamathing systems have been developed for automating the proess, suh as Cupid [17℄, COMA/COMA++ [6, 1℄,LSD [8℄, Similarity Flooding [20℄, OntoBuilder [13℄, QOM [12℄, BTreeMath [11℄, S-Math [14℄, and Spiy [3℄.Manual semanti mathing overomes mismathes whih exist in element names and also di�erentiates betweendi�erenes of domains. Hene, we ould assume that manual mathing is a perfet proess. On the other hand,automati mathing may arry with it a degree of unertainty, as it is based on syntati, rather than semanti,means. Furthermore, reently, there has been renewed interest in building database systems that handle un-ertain data in a prinipled way [9℄. Hene a short rant about the relationship between databases that manageunertainty and data integration systems appears. Therefore, we should surf for a suitable model whih is ableto meet the above requirements.A �rst step in disovering an e�etive and e�ient way to solve any di�ult problem suh as shemamathing is to onstrut a omplete problem spei�ation. A suitable and preise de�nition of shema mathingis essential for investigating approahes to solve it. Shema mathing has been extensively researhed, andmany mathing systems have been developed. Some of these systems are rule-based [6, 17, 20℄ and others arelearning-based [16, 7, 8℄. However, formal spei�ations of problems being solved by these systems do not exist,or are partial. Little work is done towards shema mathing problem formulation e.g. in [25, 23℄.In the rule-based approahes, a graph is used to desribe the state of a modeled system at a given time,and graph rules are used to desribe the operations on the system's state. As a onsequene in pratie,using graph rules has a worst ase omplexity whih is exponential to the size of the graph. Of ourse, analgorithm of exponential time omplexity is unaeptable for serious system implementation. In general, toahieve aeptable performane it is inevitable to onsequently exploit the speial properties of both shemasto be mathed. Beside that, there is a striking ommonality in all rule-based approahes; they are all based onbaktraking paradigms. Knowing that the overwhelming majority of theoretial as well as empirial studieson the optimization of baktraking algorithms is based on the ontext of onstraint problem (CP), it is near
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304 A. Algergawy, E. Shallehn and G. Saaketo hand to open this knowledge base for shema mathing algorithms by reformulating the shema mathingproblem as a CP [24, 18, 5℄.To summarize, we are in a need to a framework whih is able to fae the following hallenges:1. formalizing the shema mathing problem: Although many mathing systems have been developed tosolve the shema mathing problem, but no omplete work to address the formulation problem. Shemamathing researh mostly fouses on how well shema mathing systems reognize orrespondenes. Onthe other hand, not enough researh has been done on formal basis of the shema mathing problem.2. trading-o� between shema mathing performane aspets : The performane of a shema mathingsystem omprises two equally important fators; namelymathing e�etiveness andmathing e�ieny.The e�etiveness is onerned with the auray and the orretness of the math result while thee�ieny is onerned with the system resoures suh as the response time of the math system. Reentshema mathing systems report onsiderable e�etiveness [6℄, however, the e�ieny aspets remain amissing area and represent an open hallenge for the shema mathing ommunity. Improving shemamathing e�ieny results in dereasing mathing e�etiveness, so a trade-o� between the two aspetsshould be onsidered.3. dealing with unertainty of shema mathing: Shema mathing systems should be able to handleunertainty arises during the mathing proess from di�erent soures. Reently, there has been renewedinterest in building database systems that handle unertain data and its lineage in a prinipled way, soa short rant about the relationship between databases that manage unertainty and lineage and dataintegration systems appears. In addition to, in order to fully automate the mathing proess, we makeuse of extrator tools whih extrat di�erent data models and represent them as a ommon model. Theextration proess brings errors and unertainties to the mathing proessIn this paper, we build a oneptual onnetion between the shema mathing problem (SMP) and the fuzzyonstraint optimization problem (FCOP). On one hand, we onsider shema mathing as a new appliation offuzzy onstraints; on the other hand, we propose the use of the fuzzy onstraint satisfation problem as a newapproah for shema mathing. In partiular, in this paper, we propose the use of the FCOP to formulate theSMP. However, our approah should be generi, i. e. have the ability to ope with di�erent data models and beused for di�erent appliation domains. Therefore, we �rst transform shemas to be mathed into a ommon datamodel alled rooted labeled graphs. Then we reformulate the graph mathing problem as a onstraint problem.There are many bene�ts behind this formulation. First, we gain diret aess to the rih researh �ndings in theCP area; instead of inventing new algorithms for graph mathing from srath. Seond, the atual algorithmsolution beomes independent of the onrete graph model, allowing us to hange the model without a�etingthe algorithm by introduing a new level of abstration. Third, formalizing the SMP as a FCOP failitateshandling unertainty in the shema mathing proess. Finally, we ould simply deal with simple and omplexmappings.The paper is organized as follows: Setion 2 introdues neessary preliminaries. Our framework to unifyshema mathing is presented in Setion 3 in order to illustrate the sope of this paper. Setion 4 shows howto formulate the shema mathing problem as a onstraint problem. Setion 5 desribes the related work. Theonluding remarks and ongoing future work are presented in Setion 6.2. Preliminaries. This paper is based mainly on two existing bodies of researh, namely graph theory [2℄and onstraint programming [24, 18, 5℄. To keep this paper self-ontained, we brie�y present in this setion thebasi onepts of them.2.1. Graph Model. A shema is the desription of the struture and the ontent of a model and onsistsof a set of related elements suh as tables, olumns, lasses, or XML elements and attributes. There aremany kinds of data models, suh as relational model, objet-oriented model, ER model, XML shema, et. Byshema struture and shema ontent, we mean its shema-based properties and its instane-based properties,respetively. In this subsetion we present formally rooted (multi-)labeled direted graphs used to representshemas to be mathed as the internal ommon model.A rooted labeled graph is a direted graph suh that nodes and edges are assoiated with labels, and inwhih one node is labeled in a speial way to distinguish it from the graph's other nodes. This speial node isalled the root of the graph. Without loss of generality, we shall assume that every node and edge is assoiatedwith at least one label: if some nodes (resp. edges) have no label, one an add an extra anonymous label thatis assoiated with every node (resp. edge). More formally, we an de�ne the labeled graph as follows:



Fuzzy Constraint-Based Shema Mathing Formulation 305Definition 2.1. A Rooted Labeled Graph G is a 6-tuple G = (NG, EG, LabG, sr, tar, l) where:
• NG = {nroot, n2, . . . , nn} is a �nite set of nodes, eah of them is uniquely identi�ed by an objet identi�er(OID), where nroot is the graph root.
• EG = {(ni, nj)|ni, nj ∈ NG} is a �nite set of edges, eah edge represents the relationship between twonodes.
• LabG ={ LabNG, LabEG } is a �nite set of node labels LabNG , and a �nite set of edge labels LabEG.These labels are strings for desribing the properties (features) of nodes and edges.
• sr and tar: EG 7→ NG are two mappings (soure and target), assigning a soure and a target node toeah edge (i. e. if e = (ni, nj) then src(e) = ni and tar(e) = nj).
• l : NG ∪ EG 7→ LabG is a mapping label assigning a label from the given LabG to eah node and eahedge.
• |NG| = n is the graph size.Now that we have de�ned a onrete graph model, in the following subsetion we present basis of onstraintprogramming.2.2. Constraint Programming. Many problems in omputer siene, most notably in Arti�ial Intelli-gene, an be interpreted as speial ases of onstraint problems. Semanti shema mathing is also an intel-ligene proess whih aims at mimiking the behavior of humans in �nding semanti orrespondenes betweenshemas' elements. Therefore, onstraint programming is a suitable sheme to represent the shema mathingproblem.Constraint programming is a generi framework for delarative desription and e�etive solving for large,partiularly ombinatorial, problems. Not only it is based on a strong theoretial foundation but also it isattrating widespread ommerial interest as well, in partiular, in areas of modeling heterogeneous optimizationand satisfation problems. We, here, onentrate only on onstraint satisfation problems (CSPs) and presentde�nitions for CSPs, onstraints, and solutions for the CSPs.Definition 2.2. A Constraint Satisfation Problem P is de�ned by a 3-tuple P=(X,D,C) where,
• X = {x1, x2, . . . , xn} is a �nite set of variables.
• D = {D1, D2, . . . , Dn} is a olletion of �nite domains. Eah domain Di is the set ontaining thepossible values for the orresponding variable xi ∈ X.
• C = {C1, C2, . . . , Cm} is a set of onstraints on the variables of X.Definition 2.3. A Constraint Cs on a set of variables S = {x1, x2, . . . xr} is a pair Cs = (S, Rs), whereRs is a subset on the produt of these variables' domains: Rs ⊆ D1 × · · · × Dr → {0, 1}.The number r of variables a onstraint is de�ned upon is alled arity of the onstraint. The simplest type isthe unary onstraint, whih restrits the value of a single variable. Of speial interest are the onstraints of aritytwo, alled binary onstraints. A onstraint that is de�ned on more than two variables is alled a global onstraint.Solving a CSP is �nding assignments of values from the respetive domains to the variables so that allonstraints are satis�ed.Definition 2.4. (Solution of a CSP) An assignment Λ is a solution of a CSP if it satis�es all the onstraintsof the problem, where the assignment Λ denotes an assignment of eah variable xi with the orresponding value

ai suh that xi ∈ X and ai ∈ Di.Example 1. (Map Coloring) We want to olor the regions of a map, shown in Fig. 2.1, in a way that notwo adjaent regions have the same olor. The atual problem is that only a ertain limited number of olors isavailable. Let's we have four regions and only three olors. We now formulate this problem as CSP = (X, D, C)where:
• X = {x1, x2, x3, x4} represents the four regions,
• D = {D1, D2, D3, D4} represents the domains of the variables suh that D1 = D2 = D3 = D4 =
{red, green, blue}, and

• C = {C(x1,x2), C(x1,x3), C(x1,x4), C(x2,x4), C(x3,x4)} represents the set of onstraints must be satis�edsuh that C(xi,xj) = {(vi, vj) ∈ Di × Dj|vi 6= vj}.As shown in Example 1, there are a number of solutions to the spei�ed CSP. Any one of them is onsidereda solution to the problem. However, in the shema mathing �eld, we do not only searh for any solution butalso the best one. The quality of solution is usually measured by an appliation dependent funtion alled theobjetive funtion. The goal is to �nd suh a solution that satis�es all the onstraints and minimize or maximizethe objetive funtion. Suh problems are referred to as onstraint optimization problems (COP).
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Fig. 2.1. Map oloring exampleDefinition 2.5. A Constraint Optimization Problem Q is de�ned by ouple Q =(P,g) suh that P is aCSP and g : D1 × · · · × Dn → [0, 1] is an objetive funtion that maps eah solution tuple into a value.Example 2. (Traveling Salesman) The traveling salesman problem is to �nd the shortest losed path bywhih ity out of a set of n ities is visited one and only one.While powerful, both CSP and COP present some limitations. In partiular, all onstraints are onsideredmandatory. In many real-world problems, suh as the shema mathing problem, there are onstraints that ouldbe violated in solutions without ausing suh solutions to be unaeptable. If these onstraints are treated asmandatory, this often auses problems to be unsolved. If these onstraints are ignored, solutions of bad qualityare found. This is a motivation to extend the CSP sheme and make use of soft onstraints. A way to irumventinonsistent onstraints problems is to make them fuzzy [15℄. The idea is to assoiate fuzzy values with theelements of the onstraints, and ombine them in a reasonable way.A onstrain, as de�ned before, is usually de�ned as a pair onsisting of a set of variables and a relationon these variables. This de�nition gives us the availability to model di�erent types of unertainty in shemamathing. In [9℄, authors identify di�erent soures for unertainty in data integration. Unertainty in semantimappings between data soures an be modeled by exploiting fuzzy relations while other soures of unertaintyan be modeled by making the variable set a fuzzy set. In this paper, we take the �rst one into aount whilethe other soures are left for our ongoing work.Definition 2.6. (Fuzzy Constraint) A Fuzzy Constraint Cµ on a set of variables S = {x1, x2, . . . , xr}is a pair Cµ = (S, Rµ), where the fuzzy relation Rµ, de�ned by µR :

∏
xi∈var(C) Di 7→ [0, 1] where µR is themembership funtion indiating to what extent a tuple v satis�es Cµ.

• µR(v) = 1 means v totally satis�es Cµ,
• µR(v) = 0 means v totally violates Cµ, while
• 0 < µR(v) < 1 means v partially satis�es Cµ.Definition 2.7. A Fuzzy Constraint Cµ on a set of variables S = {x1, x2, . . . xr} is a pair Cµ = (S, Rµ),where the fuzzy relation Rµ, de�ned by µR :

∏
xi∈var(C) Di → [0, 1] where µR is the membership funtionindiating to what extent a tuple v satis�es Cµ.

• µR(v) = 1 means v totaly satis�es Cµ,
• µR(v) = 0 means v totaly violates Cµ, while
• 0 < µR(v) < 1 means v partially satis�es Cµ.Definition 2.8. A Fuzzy Constraint Optimization Problem Qµ is a 4-tuple Qµ= (X, D, Cµ, g) where Xis a list of variables, D is a list of domains of possible values for the variables, Cµ is a list of fuzzy onstraintseah of them referring to some of the given variables, and g is an objetive funtion to be optimized.In the following setion we shed the light on our shema mathing framework to determine the sope ofshema mathing understanding.3. A uni�ed shema mathing framework. Eah of the existing shema mathing systems deals withthe shema mathing problem from its point of view. As a result the need to a generi framework that uni�esthe solution of this intriate problem independent on the domain of shemas to be mathed and independent onthe model representations beomes essential. To this end, we suggest the following general phases to address theshema mathing problem. Figure 2 shows these phases with the main sope of this paper. The four di�erentphases are:
• importing shemas to be mathed; TransMat Phase,
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Fig. 3.1. Mathing Proess Phases
• identifying elements to be mathed; Pr-mathing Phase,
• applying the mathing algorithms; Mathing Phase, and
• exporting the math result; MapTrans Phase.In the following subsetion we introdue a framework for de�ning di�erent data models and how to transformthem into shema graphs. This part follows the same proedure found in [25℄ to show that di�erent data modelsould be represented by shema graphs.3.1. Shema Graph. Tomake the mathing proess a more generi proess, shemas to be mathed shouldbe represented internally by a ommon representation. This uniform representation redues the omplexity ofthe mathing proess by not having to ope with di�erent representations. By developing suh import tools,shema math implementation an be applied to shemas of any data model suh as SQL, XML, UML, and et.Therefore, the �rst step in our approah is to transform shemas to be mathed into a ommon model in orderto apply mathing algorithms. We make use of rooted labeled graphs as the internal model. We all this phaseTransMat ; Transformation for Mathing proess.In general, to represent shemas and data instanes, starting from the root, the shema is partitioned intorelations and further down into attributes and instanes. In partiular, to represent relational shemas, XMLshemas, et. as rooted labeled graphs, independently of the spei� soure format, we bene�t from the rulesfound in [25, 21℄. These rules are rewritten as follows:
• Every prepared mathing objet in a shema suh as the shema, relations, elements, attributes et.is represented by a node, suh that the shema itself is represented by the root node. Let shema Sonsist of m elements (elem), then

∀ elem ∈ S ∃ ni ∈ NG ∧ S 7→ nroot, s.t. 1 ≤ i ≤ m

• The features of the prepared mathing objet are represented by node labels LabNG. Let features(featS) be the property set of an element (elem), then
∀ feat ∈ featS ∃ Lab ∈ LabNG

• The relationship between two prepared mathing objets is represented by an edge. Let the relationshipsbetween shema elements be (relS), then
∀ rel ∈ relS ∃ e(ni, nj) ∈ EG s. t. src(e) = ni ∈ NG ∧ tar(e) = nj ∈ NG

• The properties of the relationship between prepared objets are represented by edge labels LabEG. Letfeatures rfeatS be the property set of a relationship rel, then,
∀ rfeat ∈ rfeatS ∃ Lab ∈ LabEG
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(a) Two relational shemas (b) Shema graphsFig. 3.2. Two Relational Shemas & their Shema Graphs (without labels)
(a) Two XML shemas (b) Shema graphsFig. 3.3. Two XML shemas & their shema graphs (without labelsThe following two examples illustrate that how these rules an be applied to di�erent data models in orderto make our approah a more generi approah.Example 3. (Relational Database Shemas) Consider shemas S and T depited in Fig. 3.2(a) (from [20℄).The elements of S and T are tables and attributes. Applying the above rules, the two shemas Shema S andShema T are represented by SG1 and SG2 respetively, suh that SG1 = (NGS , EGS ,LabGS , srS , tarS , lS),where

NGS = {n1S, n2S , n3S , n4S , n5S , n6S}, EGS = {e1−2, e2−3, e2−4, e2−5, e2−6},LabGS = LabNS ∪ LabES = {name, type, data type} ∪ {part-of, assoiate},srS, tarS, lS are mappings suh that srS(e1−2) = n1S , tarS(e2−3) = n3S and lS(e1−2) = part-of. Figure 3.2(b)shows only the nodes and edges of the shema graphs (SG2 an be de�ned similarly).In this example, we exploit di�erent features of mathing objets suh as name, datatype, and type. Thesefeatures are represented as nodes' labels. These features shall be the input parameters to the next phase.For example, the name of a mathing objet in SG1 will be used to measure linguisti similarity between itand another mathing objet from SG2, its datatype is to measure datatype ompatibility, and its type isused to determine semanti relationships. However, our approah is �exible in the sense that it is able toexploit more features as needed. Moreover, in this example, we exploit one strutural feature �part-of� torepresent strutural relationships between nodes at di�erent levels. Other strutural features e.g. assoia-tion relationship, that is a strutural relationship speifying both nodes are oneptually at the same level,is represented between keys. One assoiation relationship is represented in Fig. 3.2(b) between the nodes
n6T and n9T to speify a key/foreign key relation. Visually, assoiation edges are represented as dashedlines.Example 4. (XML Shemas) This example that we disuss illustrates how our uni�ed shema mathingframework opes with di�erent hoies of the models to be mathed. Now onsider two XML shemas inFig. 3.3(a) (from [25℄). The shemas are spei�ed using the XML language deployed on the website biztalk.orgdesigned for eletroni douments used in e-business. The shema graphs (without labels) of these shemas areshown in Fig. 3.3(b). The labels of nodes and edges are the same as Example 3.Examples 3 and 4 illustrate that using Trans-Mat phase aims at mathing di�erent shema models. Themathing algorithm (Mathing Phase) does not have to deal with a large number of di�erent models. Themathing algorithm only deals with the internal representation. So far, reent shema mathing systems diretlydetermine semanti orrespondenes between two shemas elements as a graph mathing problem. In this paper,



Fuzzy Constraint-Based Shema Mathing Formulation 309we extend the internal representation, shema graphs, and reformulate the graph mathing problem as a fuzzyonstraint optimization problem.4. Shema Mathing as a FCOP.4.1. Shema Mathing as Graph Mathing. Shemas to be mathed are transformed into rootedlabeled graphs and, hene, the shema mathing problem is onverted into graph mathing. There are twotypes of graph mathing: graph isomorphism and graph homomorphism. In general, a math of one graph intoanother is given by a graph morphism, whih is a mapping of one graph's objet sets into the other's, with somerestritions to preserve the graph's struture and its typing information.Definition 4.1. A Graph Morphism φ : SG1 → SG2 between two shema graphs
SG1 = (NGS , EGS, LabGS, srcS , tarS , lS) and SG2 = (NGT , EGT , LabGT , srcT , tarT , lT )is a pair of mappings φ = (φN , φE) suh that φN : NGS → NGT (φN is a node mapping funtion) and

φE : EGS → EGT (φE is an edge mapping funtion) and the following restritions apply:1. ∀n ∈ NGS ∃ lS(n) = lT (φN (n))2. ∀e ∈ EGS ∃ lS(e) = lT (φE(e))3. ∀e ∈ EGS ∃ a path p′ ∈ NGT × EGT suh that p′ = φE(e) and φN (srcS(e)) = srcT (φE(e)) ∧
φN (tarS(e)) = tarT (φE(e)).The �rst two onditions preserve both nodes and edges labeling information, while the third onditionpreserves graph's struture. Graph mathing is an isomorphi mathing problem when |NGS| = |NGT | otherwiseit is homomorphi. Obviously, the shema mathing problem is a homomorphi problem.Example 5. For the two relational shemas depited in Fig.3.2(a) and its assoiated shema graphs shownin Fig.3.2(b), the shema mathing problem between shema S and shema T is onverted into a homomorphigraph mathing problem between SG1 and SG2.Graph mathing is onsidered to be one of the most omplex problems in omputer siene. Its omplexityis due to two major problems. The �rst problem is the omputational omplexity of graph mathing. Thetime required by baktraking in searh tree algorithms may in the worst ase beome exponential in the sizeof the graph. Graph homomorphism has been proven to be NP-omplete problem [19℄. The seond problemis the fat that all of the algorithms for graph mathing mentioned so far an only be applied to two graphsat a time. Therefore, if there are more than two shemas that must be mathed, then the onventional graphmathing algorithms must be applied to eah pair sequentially. For appliations dealing with large databases,this may be prohibitive. Hene, hoosing graph mathing as platform to solve the shema mathing problemmay be e�etive proess but ine�ient. Therefore, we propose transforming graph homomorphism into aFCOP.Now that we have de�ned a graph model and its homomorphism, let us onsider how to onstrut a FCOPout of a given graph mathing problem.4.2. Graph Mathing as a FCOP. In the shema mathing problem, we are trying to �nd a mappingbetween the elements of two shemas. Multiple onditions should be applied to make these mappings validsolutions to the mathing problem, and some objetive funtions are to be optimized to selet the best mappingsamong mathing result. The analogy to onstraint problem is quite obvious: here we make a mapping betweentwo sets, namely between a set of variables and a set of domains, where some onditions should be satis�ed.So basially, what we have to do to obtain an equivalent onstraint problem CP for a given shema mathingproblem (knowing that shemas to be mathed are transformed into shema graphs) are:1. take objets of one shema graph to be mathed as the CP's set of variables,2. take objets of other shema graphs to be mathed as the variables' domain,3. �nd a proper translation of the onditions that apply to shema mathing into a set of fuzzy onstraints,and4. form objetive funtions to be optimized.We have de�ned the shema mathing problem as a graph mathing homomorphism φ. We now proeedby formalizing the problem φ as a FCOP problem Qµ = (X, D, Cµ, g). To onstrut a FCOP out of thisproblem, we follow the above rules. Through these rules, we take the two relational database shemas shownin Fig. 3.2(a) and its assoiated shema graphs shown in Fig. 3.2(b) as an example, taking into aount that

|NGS(= 6)| < |NGT (= 10)| as follows:
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• The set of variables X is given by X = NGS

⋃
EGS where the variables from NGS are alled nodevariables XN and from EGS are alled edge variables XE

X = XN

⋃
XE

= {xn1, xn2, xn3, xn4, xn5, xn6}
⋃
{xe1−2, xe2−3, xe2−4, xe2−5, xe2−6}

• The set of domain D is given by D = NGT

⋃
EGT , where the domains from NGT are alled nodedomains DN and from EGT are alled edge domains DE ,

= {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6}
⋃
{De1−2, De2−3, De2−4, De2−5, De2−6} where Dn1 = Dn2 = Dn3 =

Dn4 = Dn5 = Dn6 =
{n1T , n2T , n3T , n4T , n5T , n6T , n7T , n8T , n9T , n10T } (i. e. the node domain ontains all the seond shemagraph nodes) and De1−2 = De2−3 = De2−4 = De2−5 = De2−6 =
{e1−2T , e1−3T , e2−4T , . . . , p1−2−4T , . . . } (i. e. the edge domain ontains all the available edges and pathsin the seond shema graph) (the edge e1−2 reads the edge extends between the two nodes n1 and n2suh that e1−2 = e(n1, n2)).Using this formalization enables us to deal with holisti mathing. This an be ahieved by taking the objetsof one shema as the variable set, while the objets of other shemas as the variable's domain. Let we have nshemas whih are transformed into shema graphs SG1, SG2, . . . , SGn then X = XN

⋃
XE , DN =

∑n
i=2 DNi,

DE =
∑n

i=2 DEi. Another bene�t behind this approah is that our approah is able to disover omplex mathesof types 1:n and n:1 very easily. This an be ahieved by allowing a value may have multiple values from itsorresponding domain and a value may be assigned to multiple variables.In the following subsetions, we demonstrate how to onstrut both onstraints and objetive funtions inorder to obtain a omplete problem de�nition.4.3. Constraint Constrution. The exploited onstraints should re�et the goals of shema mathing.Shema mathing based only on shema element properties has been attempted. However, it does not provideany faility to optimize mathing. Furthermore, additional onstraint information, suh as semanti relationshipsand other domain onstraints, is not inluded and shemas may not ompletely apture the semantis of datathey desribe. Therefore, in order to improve performane and orretness of mathing, additional informationshould be inluded. In this paper, we are onerned with both syntati and semanti mathing. Therefore, weshall lassify onstraints that should be inorporated in the CP model into: syntati onstraints and semantionstraints. In the following, we onsider only the onstraints onstrution while the fuzzy relations of fuzzyonstraint are not onsider sine it depends on the appliation domain. For example, as shown below, domainonstraints are risp onstraints, i. e. µC(v) = 1, while the strutural onstraints are soft onstraints withdi�erent degree of satisfation.4.3.1. Syntati Constraints.1. Domain Constraints : It states that a node variable must be assign a value or a set of values from itsorresponding node domain, and an edge variable must be assigned a value from its orresponding edgedomain. That is ∀xni ∈ XN and xej ∈ XE∃ a unary onstraintCdom
µ(xni)

and Cdom
µ(xei)

ensuring domainonsisteny of the math where,
Cdom

µ(xni)
= {di ∈ DNi},

Cdom
µ(xei)

= {di ∈ DEi}2. Strutural Constraints : There are many strutural relationships between shema graph nodes suhas:
• Edge Constraint : It states that if an edge exists between two variable nodes, then an edge (orpath) should exist between their orresponding images. That is ∀xei ∈ XE and its soure andtarget nodes are xns and xnt ∈ X∃ two binary onstraints Csrc

µ(xei,xns)
and Ctar

µ(xei,xnt)
representingthe strutural behavior of mathing, where:

Csrc
µ(xei,xns)

= {(di, dj) ∈ DE × DN |src(di) = dj}

Ctar
(xei,xnt)

= {(di, dj) ∈ DE × DN |tar(di) = dj}

• ∀ two variables nodes xni and xnj ∈ X∃ a set of binary onstraints desribing the hierarhialrelationships between shema graph nodes as follows:
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parent

µ(xni,xnj)
representing the strutural behavior of parent relationship,where

C
parent

µ(xni,xnj)
= {(di, dj) ∈ DN × DN | ∃e(di, dj) s.t. src(e) = di}(b) Child Constraint Cchild

µ(xni,xnj)
representing the strutural behavior of hild relationship, where

Cchild
µ(xni,xnj)

= {(di, dj) ∈ DN × DN | ∃e(di, dj) s.t. tar(e) = dj}() Sibling Constraint Csibl
µ(xni,xnj)

representing the strutural behavior of sibling relationship,where
Csibl

µ(xni,xnj)
= {(di, dj) ∈ DN × DN | ∃dn s.t. parent(dn, di) ∧ parent(dn, dj)}4.3.2. Semanti Constraints. The �rst onstraint type onsiders only the strutural and hierarhialrelationships between shema graph nodes. In order to apture the other features of shema graph nodes suhas the semanti feature we make use of the following onstraint.1. Label Constraints: ∀xni ∈ XN and ∀xei ∈ XE∃ a unary onstraint CLab

µ(xni) and CLab
µ(xei) ensuring thesemantis of the prediates in the shema suh that:

C
Lab
µ(xni)

= {dj ∈ DN |lsim(lS(xni), lT (dj)) ≥ t}

C
Lab
µ(xei)

= {dj ∈ DE|lsim(lS(xei), lT (dj)) ≥ t}where lsim is a linguisti similarity funtion determining the semanti similarity between nodes/edges labelsand t is a prede�ned threshold.The above syntati and semanti onstraints are by no means the ontextual relationships between ele-ments. Other kinds of domain knowledge an also be represented through onstraints. Moreover, eah onstraintis assoiated with a membership funtion µ(v) ∈ [0, 1] to indiate to what extent the onstraint should be sat-is�ed. If µ(v) = 0, this means v totally violates the onstraint and µ(v) = 1 means v totally satis�es it.Constraints restrit the searh spae for the mathing problem so may bene�t the e�ieny of the searh pro-ess. On the other hand, if too omplex, onstraints introdue additional omputational omplexity to theproblem solver.4.4. Objetive Funtion Constrution. The objetive funtion is the funtion assoiated with an opti-mization proess whih determines how good a solution is and depends on the objet parameters. The objetivefuntion onstitutes the implementation of the problem to be solved. The input parameters are the objetparameters. The output is the objetive value representing the evaluation/quality of the individual. In theshema mathing problem, the objetive funtion simulates human reasoning on similarity between shemagraph objets.In this framework, we should onsider two funtion omponents whih onstitute the objetive funtion.The �rst is alled ost funtion fost whih determines the ost of a set onstraint over variables. The seondis alled energy funtion fenergy whih maps every possible variable assignment to a ost. Then, the objetivefuntion ould be expressed as follows:
g = mis|max(

∑set of onstraints fost +
∑set of assignment fenergy)5. Related Work. Shema mathing is a fundamental proess in many domains dealing with shared datasuh as data integration, data warehouse, E-ommere, semanti query proessing, and the web semantis.Mathing solutions were developed using di�erent kind of heuristis, but usually without prior formal de�nitionof the problem they are solving. Although many mathing systems, suh as Cupid [17℄, COMA/COMA++ [6, 1℄,LSD [8℄, Similarity Flooding [20℄, OntoBuilder [13℄, QOM [12℄, BTreeMath [11℄, S-Math [14℄, and Spiy [3℄,have been developed and di�erent approahes have been proposed to solve the shema mathing problem, butno omplete work to address the formulation problem. Shema mathing researh mostly fouses on how wellshema mathing systems reognize orresponding shema elements. On the other hand, not enough researhhas been done on formal basis of the shema mathing problem.



312 A. Algergawy, E. Shallehn and G. SaakeMost of the existing work [22℄ de�ne math as a funtion that takes two shemas (models) as input, maybe in the presene of auxiliary information soures suh as user feedbak and previous mappings, and produesa mapping as output. A shema onsists of a set of related elements suh as tables, olumns, lasses, or XMLelements and attributes. A mapping is a set of mapping elements speifying the mathing shema elementstogether. Eah mapping element is spei�ed by 4-tuple element 〈ID, S1
i , S2

j , R〉 where ID is an identi�er for themapping element that mathes between the element S1
i of the �rst shema and the element S2

j of the seond oneand R indiates the similarity value between 0 and 1. The value of 0 means strong dissimilarity while the valueof 1 means strong similarity. But, in general, a mapping element indiates that ertain element(s) of shema
S1 are related to ertain element(s) of shema S2. Eah mapping element an have an assoiated mappingexpression whih spei�es how the two elements (or more) are related. Shema mathing is onsidered onlywith identifying the mappings not determining the assoiated expressions.In the work of A. Doan [7℄, they formalize the shema mathing problem as four di�erent problems:1. The basi 1-1 Mathing ; given two shemas S and T (representations), for eah element s of S, �ndthe most semantially similar element t of T, utilizing all available information. This problem is oftenreferred as a one-to-one mathing problem, beause it mathes eah element s with a single element.For example, the 〈ID1, S.Address, T.CAddress, 0.8〉 mapping element indiates that there a mappingbetween the element S.Address of shema S and the element T.CAddress of shema T with a degree ofsimilarity 0.8.2. Mathing for Data Integration; given soure shemas S1, S2,. . . ,Sn and mediated shema T, for eahelement s of Si �nd the most similar element t of T.3. Complex Mathing ; let S and T be two data representations. Let O ={O1, O2,. . . ,Ok} be a set ofoperators that an be applied to the elements of T aording to a set of rules R to Figure 2: MathingFuntion onstrut formulas. For eah element s of S, �nd the most similar element t, where t an beeither an element of T or a formula from the elements of T, using O and R.4. Mathing for Taxonomies ; given two taxonomies of onepts S and T, for eah onept node s of S,�nd the most similar onept node of T.For eah of these problems, Doan shows input information, solution output, and the evaluation of a solutionoutput. In general, the input to a problem an inlude any type of knowledge about the shemas to be mathedand their domains suh as shema information, instane data, previous mathings, domain onstraints, and userfeedbak.Zhang and et. el. [25℄ formulate the shema mathing problem as a ombinatorial optimization problem.The authors ast the shema mathing problem into a multi-labeled graph mathing problem. The authorspropose a meta-meta model of shema: multi-labeled graph model, whih views shemas as �nite struturesover the spei� signatures. Based on this multi-labeled shema, they propose a multi-labeled graph model,whih is an instane of multi-label shema, to desribe various shemas, where eah node and edge an beassoiated with a set of labels desribing its properties. Then they onstrut a generi graph similarity mea-sure based on the ontrast model and propose an optimization funtion to ompare two multi-labeled graphs.Using the greedy algorithm, they design an optimization algorithm to solve the multi-labeled graph mathingproblem.Gal and et al. [13℄ propose a fuzzy framework to model the unertainty of the shema mathing proessoutome. The framework aims at identifying and analyzing fators that impat the e�etiveness of shemamathing algorithms by reduing the unertainty of existing algorithms. To speify their belief in the mappingquality, the authors assoiate a on�dene measure with any mapping among attributes' sets. They use theframework to de�ne the monotoniity property as a desired property of the shema mathing problem, so onean safely interpret a high on�dene measure as a good semanti mapping.The reent work for [23℄ introdues a formal spei�ation for the XML mathing problem. The authorsde�ne the ingredients of the XML shema mathing problem using onstraint logi programming. Mathingproblems an be de�ned through variables, variable domains, onstraints and an objetive funtion. Theydistinguish between the onstraint satisfation problem and onstraint optimization problem and show that theoptimization problem is more suitable for the shema mathing problem. They make use of ombination oflustering methods and the branh and bound algorithm to solve the shema mathing problem.In our formulation approah, we have some ommon and distint features with the other related work. Theommon features inlude transforming shemas to be mathed into shema graphs, i. e. rooted labeled graphs,and making use of the onstraint programming as a framework to extend the graph mathing problem into a
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