
Salable Computing: Pratie and ExperieneVolume 9, Number 4, pp. 329�340. http://www.spe.org ISSN 1895-1767© 2008 SCPEFROM BUSINESS RULES TO APPLICATION RULES IN RICH INTERNETAPPLICATIONSKAY-UWE SCHMIDT, ROLAND STÜHMER∗, AND LJILJANA STOJANOVIC†Abstrat. The inrease of digital bandwidth and omputing power of personal omputers as well as the rise of the Web 2.0ame along with a new web programming paradigm: Rih Internet Appliations. On the other hand, powerful server-side businessrules engines appeared over the last years and let enterprises desribe their business poliies delaratively as business rules. Thispaper addresses the problem of how to ombine the business rules approah with the new programming paradigm of Rih InternetAppliations. We present a novel approah that reuses business rules for deriving delarative presentation and visualization logi.In this paper we introdue a rule-driven arhiteture apable of exeuting rules diretly on the lient by implementing the Retealgorithm. We propose to use delarative rules as platform independent language desribing the appliation and presentation logi.By means of AJAX we exemplarily show how to use lient-side exeutable rules for adapting the user interfae of Rih InternetAppliations. We all our approah ARRIA: Adaptive Reative Rih Internet Appliations. In order to show the usability of ourapproah we explain our approah based on an example taken from the �naning setor.Key words: rih internet appliation, delarative user interfae, rule engine, event ondition ation rules, AJAX1. Introdution. Today's business world is haraterized by globalization and rapidly hanging markets.Thus in reent years business proesses do not hange yearly but monthly, the produt lifeyle has shrunk frommonths to weeks in some industries and the proess exeution time has dereased from weeks to minutes as aresult of the tehnologial progress over the last few years. On the other side, the life yle of IT appliationsstayed onstant over time [23℄. Business rules already proved their potential of bridging the gap betweendynami business proesses and stati IT appliations. By delaratively desribing the poliies and praties ofan enterprise the business rules approah o�ers the �exibility needed by modern enterprises.At the same time with the dawn of the Web 2.0, a new tehnology for web appliations appeared: AJAX [15℄.Beause of the Web 2.0 and AJAX, Rih Internet Appliations (RIAs) emerged from their shadow existenein the World Wide Web. AJAX, in ontrast to Adobe Flex (http://www.adobe.om/produts/flex), nowenables RIAs running in browsers without the need for any additional plug-in. Several Web 2.0 appliationsuse AJAX heavily in order to provide a desktop-like behavior to the user. Now the time seems right forRIAs, beause of the broad bandwidth of today's Internet onnetions, as well as the availability of powerfuland heap personal omputers. Besides AJAX, other prominent members of the RIA enabling tehnologiesare: Adobe Flex, Mirosoft Silverlight (http://www.mirosoft.om/silverlight), OpenLaszlo (http://www.openlaszlo.org), to mention just a few.Given those two trends observable in today's IT landsape, traditional ways of programming web appli-ations no longer meet the demands of modern Rih Internet appliations. So, the strit distintion betweendelarative business logi and hard oded presentation logi does no longer hold. As web itizens are austomedto highly responsive Web 2.0 appliations like Gmail (http://mail.google.om), web appliations based onbusiness rules also have to provide the same responsiveness in order to stay ompetitive.In this paper we propose a novel, delarative arhiteture for RIAs. We oined our proposed systemarhiteture ARRIA whih stands for Adaptive Reative Rih Internet Appliation. In our arhiteture allbusiness rules, a�eting the UI and not demanding intensive bak-end proessing, are transferred into a lient-readable format at design time. We all these rules in the following appliation rules. At run-time the appliationrules are exeuted diretly on the lient by a lient-side rule engine. That enables a RIA to reat straightto user interations. The event patterns triggering the rules are found by a omplex event proessing unit.After identifying appropriate events, the appliation rules, in the form of event ondition ation (ECA) rules,are exeuted diretly on the lient. As a proof-of-onept and in order to evaluate the idea of ARRIAs weprototypially realized a rule-driven RIA using AJAX as lient-side tehnology.The paper is strutured as follows: In Setion 2 we present an example in order to motivate our work. Thefollowing Setion 3 desribes the historial development of rule-driven systems. In Setion 4 we analyze thesemanti and syntati requirements for a lient-side exeutable rule language. We present in Setion 5 ourJSON rules approah, an implementation of these requirements. Based on our motivating example we show in
∗SAP AG, Researh, Vinenz-Prieÿnitz-Straÿe 1, 76131 Karlsruhe, {Kay-Uwe.Shmidt, Roland.Stuehmer}�sap.om
†FZI Forshungszentrum Informatik, Haid-und-Neu-Straÿe 10-14, 76131 Karlsruhe, Stojanovi�fzi.de329

330 K. Shmidt, R. Stühmer and L. StojanoviSetion 6 how to derive appliation rules from business rules. Additional, in this setion we show an exemplaryJSON rule for manipulating objets. The arhiteture of our ARRIA approah is detailed in Setion 7. Thesubsequent Setion 8 elaborates on the implementation details. Setion 9 gives an overview of related researhin the �led of rule-driven RIAs, and, �nally, the paper loses with Setion 10, onlusions and prospets forfuture work.2. Motivating example. For motivating our work we hose an example from the �naning setor. Theexample illustrating our approah is an online appliation for a loan. The use ase is as follows: A personwants to apply for a loan from a bank. S/he visits the web portal of that bank in order to �ll in the onlineloan appliation. Figure 2.1 shows the form. The web site o�ers four input possibilities: �rst, the name of theappliant; seond, the amount of the requested loan; third the inome of the appliant, and, �nally, the kind ofemployment. The two buttons below the form submit or anel the loan appliation.The IT department of the bank deided to implement the online loan appliation as RIA in order to takeadvantage of the advaned visualization tehniques. The RIA shall give immediate feedbak to the borrowersignaling the probability of aeptane. Therefore, a tra� light was additionally introdued on the web page.The lights indiate the status of the appliation for a loan. A red light signals a low or zero probability thatthe loan will be granted. Yellow means that a lerk has to deide whether or not the loan appliation will beaepted. Finally a green light indiates that, based on the input data, the loan will be granted in all probability.The tra� light shall hange as the user �lls in the online form without expliitly asking the server. That leadsto a desktop-like behavior of the web appliation.

Fig. 2.1. Motivating example taken from the �nane setorThe business logi of the appliation for a loan is well understood and written down as business rules, sinethey are subjet to frequent hanges. The RIA, and, espeially, the manipulation of the tra� light, an reuseand an be built upon these business rules. The rules shown in Example 1 delaratively represent the businesslogi behind a loan appliation. For the sake of simpliity we abstrat from the amount of the loan. The rulesare written in the IF/THEN syntax beause of its simpliity and its ommonness of use.Example 1 Business Rules.IF C.inome {\textgreater}= 1000 AND NOT C.selfEmployed THENL.state = ''aepted''IF C.inome {\textgreater}= 1000 AND C.selfEmployed THENL.state = ''to be heked''IF C.inome {\textless} 1000 THEN L.state = ''rejeted''Figure 2.1 b) depits the UML lass diagram of the business objets (BOs). BOs are objets that enapsulatereal world data and business behavior assoiated with the entities that they represent [20℄. They are also alledobjets in a domain model. A domain model represents the set of domain objets and their relationships.The two BOs engaged in our example are Customer and LoanAppliation. They are onneted by the relation

From Business Rules to Appliation Rules in Ria 331appliesFor whih links one ustomer to one or many loan appliations. The attributes of the ustomer lassstore ustomer spei� attributes like name, inome and employment status, whereas the attributes of the loanlass hold loan spei� data like the amount or the approval status of the appliation. A loan appliation anhave the following statuses: aepted, to be heked or rejeted.The business rules depited in Figure 2.1 a) de�ne the business logi of when to grand a loan appliation.C is a plaeholder for Customer objets and L for LoanAppliation objets. The �rst rule states that if theborrower's inome is grater then or equal to 1000 Euro and s/he is not self employed the loan will be grantedin all probability. The seond business rule states that if the inome is greater then or equal to 1000 and s/heis self employed a lerk has to judge manually whether the loan will be granted or not. If the inome is lessthen 1000 the loan will not be granted at all. In our example, all business rules are atomi. That means theyare independent of eah other and pairwise disjunt.3. The evaluation of rule-driven web appliations. Legay rule-driven web appliations are basedon the web page paradigm as depited in the left graphi in Figure 3.1. The web page paradigm states thatevery web page in a series of pages is downloaded separately. User data are olleted in forms on the lientand are sent to the server by user request. On the server side a prodution engine proesses the input dataand exeutes ations manipulating business objets. Based on the modi�ed business objets a new web page isreated and sent bak to the lient. Business rules in the bak-end delaratively desribe the business logi ofthe web appliation.
Server

Web Application Server

Business

Rules

Engine

Presentation Logic

Business Logic

Business Rules

Browser

Plain HTML Rendering

Server

Web Application Server

Business

Rules

Engine

Business Logic

Business Rules

Browser

Rich Client Engine

Presentation Logic

Server

Web Application Server

Business

Rules

Engine

Business Logic

Business Rules

Browser

Rich Client Engine

ECA

Rule Engine

Presentation Logic

Presentation Rules

Web Page Paradigm Rich Internet Applications Rule-enabled Rich Internet Applications

Fig. 3.1. Evolution of rule-driven web appliationsRih Internet Appliations (RIAs) break the web page paradigm by introduing rih lient-side funtionalityand asynhronous ommuniation failities. The middlemost graphi in Figure 3.1 depits the evolution of RIAsfrom ommon rule-driven web appliations. Up to date browsers provide a rih lient engine apable of exeutingdynami presentation logis. Together with the business logi, the prodution system stays on the server sidebut an be requested asynhronously. That is, business rules an be evaluated without being expliitly triggeredby a user request.Turning RIAs based on server-side rules into lient-side rule-driven RIAs, that bene�t from the best of thetwo worlds, is not trivial. Swithing from the request/response ommuniation of web appliations relying onthe web page paradigm to the asynhronous ommuniation of RIAs goes only half way. Although asynhronousommuniation with the web server allows a RIA to reload only altered data rather then the page as a whole,as well as to pre-load hunks of data that might be good andidates for displaying next, the desired desktop-likeresponsive behavior is not ahieved. This is beause business rules and espeially business rules onerned withthe presentation layer are still evaluated on the server-side. Every user interation, from pressing a button to

332 K. Shmidt, R. Stühmer and L. Stojanovihovering the mouse over an artifat on the web site, must be proessed on the server in order to let businessrules �re appropriate ations as reation to a user input. Also the advantage of the delarative harater of rulesis getting lost by only applying the rule paradigm to business logi and not to presentation logi. Presentationlogi is also a good andidate for delarative modeling beause it remains unhanged even for di�erent platforms.4. Requirements for a Client-Side Appliation Rule Language. For managing the proposed lient-side rule engine, an appropriate rule language is an indispensable prerequisite. The language must onsiderrequirements spei� to Rih Internet Appliations.The semantis of our ECA rule language is onstituted by the semantis of the events, onditions andations by themselves. The semantis of eah onstituent an be separately de�ned, for example by redutionto their respetive underlying languages. But there is more to it than that. On top of the omposed semantisthe overall semantis of the language as a whole must be lari�ed: the relationships between events, onditionsand ations.The so-alled oupling modes from early researh on ECA rules in the HiPAC projet [12℄ (p.129-143) pointout several relationships between events and onditions. However, in all ases a ondition is evaluated afteran event has ourred. No mode is de�ned requiring onditions to be ful�lled during the entire ourrene ofan event. More reent works, e.g. in [3℄, suggest a revised semantis for ECA rules. It is stated there thatthe omplete ondition of a rule has to be satis�ed during the whole detetion time of the omposite event,i. e. from the beginning of the ourrene of the �rst onstituent event up to the end of the ourrene of itslast onstituent event. This understanding of ECA rules onforms to the notion of interval-based semantisestablished for omplex events. Interval-based semantis views an event as having a duration, instead of viewingit as an instant at detetion time. The duration lasts from the start of the �rst onstituent event to the end ofthe last onstituent event. Therefore, an aompanying ondition should span the entire interval of the eventduration. The downsides of not using interval-based semantis are pointed out by Galton and Augusto [14℄and Berstel [3℄ for onditions. For events this inludes unexpeted results from transitivity of multiple sequeneoperators, and for onditions it inludes possible mathes with events, violating temporal axioms like mathingsystem ontext in the future.Furthermore, the language must expose all user-adjustable features of the event detetion, the onditionmathing and the di�erent kinds of ations. A good omplex event detetor relies on three things: An easy touse rule language, a rih set of event detetion operators and an e�ient algorithm to evaluate these operators.Furthermore, the event detetion algorithm has to be an ative instead of a passive query-based one. We wantto stress this a little bit more. Events happen asynhronously and are generally not prediable by nature.Therefore, we insist on a forward-haining algorithm that pushes atively new events in an appropriate datastruture that proatively detets omplex events. We are onvined that suh a solution outperforms query-based pull strategies for instane proposed by Pashke et al [25℄.Conditions are formulae over the state of an appliation. When a given formula is ful�lled, the system is in astate where the rule author wants some ation to be exeuted. Traditional rule systems only exeute onditionation rules. The systems are alled prodution systems. Two examples are OPS5 [4℄ and CLIPS [10℄. Toevaluate most types of ECA rules, a separate ondition mather is required in addition to the event detetion.This an best be observed from the fat that ondition ation rules lak the triggering event spei�ation,therefore another way must be provided to �nd and run any appliable rule. Furthermore, any appliable ruleshould be found at the time when its ondition is fully satis�ed. This means that hanges to the state ofthe appliation should immediately be re�eted in the ativation of rules. No query-driven semantis shouldbe used for rule ativation beause it would restrit the apaity to at to only ertain intervals at whihqueries are issued. Instead of a query-driven (top-down) approah, a data-driven approah must be employed.A data-driven approah ful�ls onditional prediates in a bottom-up way, also alled forward-haining. Theadvantage of forward-haining evaluation is that for eah hange of state a�eting a ondition, the partial mathis saved until it an be further ompleted to form a omplete math in the end. Complete mathes are reportedimmediately when they ome into existene.There are several requirements for the ation part of rules. First of all the rule engine should allow forthe highest possible �exibility, this means that arbitrary JavaSript ations must be allowed. Apart from theimperative approah using JavaSript, a delarative approah should be supported as it is o�ered by traditionalprodution systems like OPS5 or CLIPS. In these systems the ations an alter the system state by only spei-fying modi�ations to objets. Suh modi�ations inlude adding and deleting objets, as well as modi�ation

From Business Rules to Appliation Rules in Ria 333of business objets. As a third type of rule ation it might be useful to expliitly feed a new event bak intothe system. Other rules would be able to reat to suh an event, just like an event from any of the other eventsoures.Also the non-funtional requirement of user-friendliness targets several aspets. First of all the languageshould be extensible. This inludes permitting the future use of JavaSript features whih are not known today.Also, this inludes the possibility of adding further operators for the event and ondition part. In addition toextensibility, some measures of reusability should be provided. For example, omplex event expressions whihare repeated in several rules should be made reusable at design-time. The user should have the possibility ofreating a set of named event expressions. These prede�ned expressions an be inorporated into further eventexpressions of di�erent rules. Methods of reuse should also be provided for ondition expressions and possiblyations. For the latter it might be possible to o�er a library of prede�ned ations. User interfae patterns [26℄might help in �nding a meaningful seletion of suh ations to be provided for the rule author. User-friendlinessshould also over the run-time of the rule framework. One important requirement arises when a rule authorwants to add and remove rules while the rule engine is running. Both the event detetion and the onditionmathing algorithms must be able to alter their data strutures in a oherent manner when rules are added ordeleted from detetion.Lastly, on aount of browser-friendliness there are also some non-funtional requirements for a rule lan-guage. As far as the possible aeptane of a new rule language goes, it an be very important that the languagelosely �ts the environment in whih it is to be used. To aomplish this, the language should be lightweight,easy to deploy in a RIA and AJAX environment and should honor JavaSript programming praties, wherepossible.Lukham writes in his book [22℄ on event proessing, that an event language must be expressive enough,must be notationally simple, semantially preise and must have an e�ient pattern mather. He says thisabout event languages, but the preeding analysis has shown that Lukham's requirements hold true for theondition part, just as they do for the event part.5. JSON Rules. We implemented the above analyzed requirements in a rule language named JSON rules.It is a language for de�ning lient-side exeutable reation rules. Reation rules are triples of events, onditionsand ations. From a user's point of view the rule language is the interfae to programming and adaptingARRIAs. For the rule language the JavaSript-friendly JavaSript Objet Notation (JSON) format is hosen.JSON is published as a Request for Comments (RFC) [9℄. Like XML it provides a strutured representation ofdata with deep nesting. Unlike XML it is readily usable in JavaSript beause JSON syntax is the subset ofJavaSript otherwise used to denote objets literals and array literals in the programming language. Although,JSON is JavaSript there is a thin parsing layer involved to provide seurity from introduing exeutable ode.Other than that, JSON uses a very lean syntax ompared to XML. Tags do not need to be named if, forexample, they are just used to provide struture like nesting. JSON an be used to maintain nested data;therefore, our rule language an be formulated in JSON as an abstrat syntax tree. A similar approah is takenby many modern XML-based languages, like RuleML and its ECA rule standard, Reation RuleML [25℄. Usingan abstrat syntax tree to transport the language relieves the lient-side appliation of parsing any expressions.Instead the nesting of expressions an be easily determined by desending the supplied tree. Also, no aspetsof onrete syntax must be retained when abstrat syntax is used.The omplete grammar of our delarative lient-side JSON ECA rule language is designed in (extended)Bakus-Naur Form (BNF). We designed and tested the rule language grammar with the parser generator toolANTLR (ANother Tool for Language Reognition, http://www.antlr.org/). The grammar desribes a so-alled rule �le. The rule �le is the granularity at whih rules are transported, e.g. downloaded into the ruleframework. A rule �le may ontain more than one ECA rule in a rule set. Meta data for the rule set arealso part of the rule �le and a library of reusable event expressions. The language is a speialization of JSON.The syntax of JSON an desribe strings, numbers, the Boolean literals true and false as well as objets andarrays. Objets are enlosed in urly braes. They ontain a omma separated list of attributes. An attributeis a string followed by a olon and the value. The value might in turn be any JSON expression. Arrays areenlosed in square brakets, ontaining a omma separated list of expressions. The proposed language restritstree-expressions from JSON in way that only ertain objets with ertain attributes may be used and nested.The language is therefore a subset of JSON. An example JSON rule is given in the next hapter.

334 K. Shmidt, R. Stühmer and L. Stojanovi6. Deriving appliation rules from business rules. The starting point for every RIA is the businesslogi. The business logi delaratively enoded into business rules oarsely de�nes the presentation logi of theuser interfae for RIAs. But business rules are usually high-level and are not related to any user interfae issues.On the other hand, appliation rules presenting the presentation logi have to ontrol, on a �ne grained level,omplex user interfaes. Therefore, the �rst step in reating appliation rule sets is the analysis of the businessrules and their related business objets. Based on this analysis, the user interfae and the presentation logi inthe form of delarative appliation rules an be designed.The appliation rule in Example 2 is diretly derived from the �rst business rule of the Example 1. Itmanipulates all JavaSript LoanAppliation objets assoiated with a dediated Customer objet, whenever anyproperty of the Customer objet has hanged. A web designer merely has to listen to PropertyChangedEventsof the LoanAppliation objet referened by the $LoanApp variable and, if an event has been �red, to adjustthe tra� light aordingly. On the other hand, it would also be possible to hange the tra� light diretlywithin the rule body by injeting JavaSript ode diretly into the rule's ation part. The printout depited inExample 2 shows the entire rule set in our ase onsisting of a single appliation rule. In line 01 the name of therule set is de�ned. From line 02 to 16 a ondition ation rule is de�ned. Line 02 states the rule name and line 03the desription of the rule. From line 04 to 13 the ondition is formulated. The ondition onsists of two parts,the �rst relates to the ustomer (line 04�08) and the seond to the loan appliation (line 09�13). Line 12 joinsall objets of Customer meeting the onstraints de�ned in the lines 06�08 with all objets of LoanAppliationthat are not already aepted. In our example the RIA ontains only one objet of Customer and one objet ofLoanAppliation. When all onstraints are satis�ed the ation in line 14 is �red.In line 13 the example JSON rule ontains an extra onstraint �eld heking whether state is unequal to�aepted�. This onstraint ensures that the rule is not invoked several times by the exeution algorithm. Oneah hange to the rule system runs all rules whih have a mathed ondition. Therefore, a rule �res severaltimes as long as its ondition still mathes the objets. Sine our example rule would always set the loanappliation to aepted regardless of whether this has been done before, the rule would loop endlessly. Thesolution is to alter the rule in a way so that its ondition is invalidated after the rule is run for the �rst time.Beause the rule modi�es an attribute whih is not part of the ondition, we orret this by adding the extraonstraint to the rule. The stronger ondition ensures that the rule does not math objets whih were mathedbefore.Example 2 JSON Appliation Rule.01 {"meta": {"ruleSet": ``Loan Appliation Example"},02 ``rules": [{"meta": {"rule": ``GrantLoans",03 ``desription": ``Grant loan!"},04 ``ondition": [{"lass": ``Customer",05 ``fields": [06 {"field": ``inome", ``omparator": ``>=", ``literal": 1000},07 {"field": ``selfEmployed", ``omparator": ``==", ``literal": false},08 {"field": ``appliesFor", ``vardef": ``$LoanAppID"}℄},09 {"lass": ``LoanAppliation",10 ``vardef": ``$LoanApp",11 ``fields": [12 {"field": ``id", ``omparator": ``==", ``variable": ``$LoanAppID"},13 {"field": ``state", ``omparator": ``!=", ``literal": ``aepted"}℄}℄,14 ``ation": [{"type": ``MODIFY",15 ``name": ``$LoanApp",16 ``modify": ``this.state = 'aepted';"}℄}℄}7. Arhiteture. First we highlight the design of the CEP engine followed by the design of the rule engine.For the design of an e�ient omplex event detetor several alternative algorithms were proposed in the past.They di�er in their detetion approah, using either automata [18℄, Petri-nets [17℄ or a graph-based approah [8℄.They also di�er in their e�ets on the semantis of events they detet, and di�er in general versatility.SnoopIB [1℄ is hosen from the available approahes as a basis for the event detetion in this thesis. Alongwith that, Snoop's operators are adopted with some extensions and with aording extensions of the detetionalgorithm. A reason for hoosing Snoop over the other detetion methods is that the graph-based approah of

From Business Rules to Appliation Rules in Ria 335SNOOP allows the detetion of overlapping omplex events. This rules out automaton-based event detetion asomplex events of a given omplex type may our simultaneously. This means several omplex inidents of thesame type happen at the same time, in an overlapping fashion. Automaton-based algorithms are not apableof deteting more than one instane of the same omplex event at the same time. This is an inherent drawbakof how automata are used for event detetion. As elaborated in Gehani at all [18, 19℄ automata are onstrutedfrom regular expressions speifying event patterns. Transitions model aepted events in a given state. Aninitial state is reated with transitions for initiator events, the initial onstituent events. The transitions leadto further states, and so on, up to one or more aepting states, where the omplex event is deteted. Theomplex event is then de�ned as the sequene of transitions whih were taken from an initiator to a terminatorevent. When an automaton must aept overlapping omplex events, the following happens. A suitable initiatorhanges the state of the automaton away from the initial state by using one of the transitions. The automatonwill then be in a state whih aepts onstituent events to ontinue ompletion of the �rst omplex event.There might be no transitions aepting initiators for further omplex events, until the automaton is reset afterompletely deteting the �rst. Although there might be other transitions labeled with the initiator event type,these events will be inorporated in the �rst omplex event as intermediate onstituents. Other omplex eventsare only started at the initial state. In summary this means that overlapping omplex events are ignored,beause one an automaton is in the proess of deteting a omplex event, it is usually not in its initial stateanymore, to start deteting a seond omplex event at the same time. Algorithms based on Petri nets andon graphs do not share this de�ieny. An important drawbak of the Petri net-based approah, however, isthat Petri nets do not support user-de�ned seletion of tokens when a transition is �red. This means it annotbe predetermined by the user, whih onstituent events, e.g. tokens, are used when reating a omplex event.Therefore, SAMOS [17℄ does not provide on�gurable event seletion poliies in its Petri net-based approah.Coloured Petri nets are introdued in Jensen [21℄. They allow tokens to be individually distinguished at thetransitions might aomplish event seletion based on individual attributes. However, SAMOS uses oloursonly to model event parameters and to propagate these parameters through the Petri net. This onludes themajor reasons for hoosing the graph-based approah over automata or Petri nets. Automata annot detetonurrent omplex events and Petri nets do not o�er a lear strategy for event seletion.The hoie of detetion semantis is the next important deision whih has to be made on behalf of theevent detetion. The detetion semantis are onerned with whether omplex events are represented by aninterval or only by a point in time. The preeding analysis for this work showed that a detetion-based (pointin time) semantis delivers unexpeted results for ertain operators, e.g. the sequene operator. Snoop revisedits semantis towards an interval-based view of events, alled SnoopIB [1℄. The same holds for other eventdetetion system like Reation RuleML [25℄.Aording to the requirements we deided to use Rete [13℄ as forward-haining disrimination network forthe evaluation of the onditions parts of a rule. The Rete algorithm has several similarities with the previouslydesribes detetion graph for events. Both are forward-haining pattern mathing algorithms and both must beable to add and remove nodes at runtime, et. However, there are some important di�erenes. Firstly, it mustbe noted that they serve di�erent purposes. In terms of semantis of rules [5℄, the event graph is onernedwith transient, temporal data, i. e. events. The Rete network, on the other hand, is onerned with persistentdata, representing the system state, i. e. business objets. The two types of data are to be separated in orderto avoid making unneessary events persistent, and thereby imposing a storage burden on an appliation.Figure 7.1 depits the lient-side omponents of the run-time arhiteture. The server-side omponentsare skipped for the sake of simpliity. The software omponents of the run-time arhiteture arry out theappliation logi enoded in the delarative appliation rules. The appliation rules are transferred to the lienttogether with the ontent data in response to the �rst initial user request. In the �rst preproessing step theCEP Unit responsible for deteting omplex events is initialized and, in a seond step, the appropriate eventhandlers are set. As omplex events are not issued diretly by user interfae widgets the CEP Unit has toregister for eah atomi event ontained in omplex events.When the user interats with the portal, he/she �lls in forms, navigates through the site, and goes bak,searhes for terms and so on. All those interations trigger events like mouse movements in the appropriateontrols. The CEP Unit handles all atomi events to whih it has subsribed in advane (step three) by itsSnoopIB implementation. Based on the diretives of the event detetion algebra, it tries to identify omplexpatterns from the event stream. After deteting a omplex event, the assoiated rules are evaluated by thelient-side rule engine. This is step four in Figure 7.1 In step �ve the ondition parts of the rules are evaluated,

336 K. Shmidt, R. Stühmer and L. Stojanoviif there are any, using the Rete algorithm. If the event and ondition part of rule is mathed during theevaluation phase, it is �red immediately.The exeution of a rule an have manifold ations whih are marked as 6a to . In step 6a a rule manipulatesthe status of the appliation. The status of the appliation is maintained in working memory. In a nutshell,the working memory onsists of an arbitrary amount of loal objet variables. Further a hange to the workingmemory an trigger additional rules that are not expliitly bound to any omplex event pattern. These rulesare onventional prodution or ondition ation rules (CA rules). A rule an also manipulate the user interfaediretly as depited in step 6b. By this means, appliation rules an respond to user interations immediatelywithout an expliit server request. These rules are the guarantors of a responsive user interfae. Any userinterfae manipulation an issue additional atomi events that might be reognized by the CEP Unit as partsof omplex events. New rules an be triggered. So the rule exeution in step 6b an trigger additional rulesover the event detetion mehanism. The last possible ation of a rule exeution is depited in step 6: Theinvoation of the Asynhronous Communiation Controller (ACC). The ACC is responsible for loading new rulesets, for pre-fething ontent data as well as for synhronizing with the BO's on the server-side. As a diretbyprodut of pre-fething data and synhronizing with the server, the ACC an alter the user interfae.

Fig. 7.1. Run-time arhiteture8. Implementation of the run-time arhiteture. We implemented our event detetion as well as ourrule engine in JavaSript using a slightly modi�ed SnoopIB and objet-based Rete algorithm. The event graphis a network of nodes whih represent event expressions. There are speial nodes types for every event type.Inoming edges of a node originate in hild nodes whih represent sub-expressions. Simple event nodes haveno inoming edges. Outgoing edges onnet a node to its parent whih makes further use of deteted events.Deteted events are propagated upwards in the network, starting with simple events whih are fed into thegraph at the simple event nodes. The propagation ends at top nodes whih have no further parents. In thesenodes events are extrated from the graph and are handed on to some ation, whih in the proess disards theevent. Event nodes may have more than one parent. This ours when an event expression is used in severalplaes of a pattern. The reused expression is then manifested only one in the event graph but outgoing edgesare linked to all nodes where the expression is reused. All parent nodes are informed equally of deteted events.We implemented the following event operators in our JSON rule language. The logial operators fromSnoop that we implemented are: Or, And, Any, as well as Not. Operators And and Or are binary operators in thesense that they involve two operands. The Any operator is a generalized form of the preeding ones. It aeptsan arbitrary list of parameters and a parameter m, whih spei�es the number of events that must be detetedto math the Any pattern.

From Business Rules to Appliation Rules in Ria 337Additional, we implemented Snoop's temporal operators: Seq, A, A*, P, P*, as well as Plus. The operatorSeq is the sequene of two events in time. Operators A and A* are ternary operators, deteting ourrenes ofone event type when they happen within an interval formed by the two other event types. A* is a variant whihollets all events and ours only one at the end of the interval with all the olleted onstituents. P and P* areternary operators as well, they also aept two events starting and ending an interval, but the third parameteris a time expression after whih the events our periodially during the given interval. A funtion may bespei�ed to ollet event parameters for eah periodi ourrene. P* is the umulative variant whih oursonly one, ontaining all olleted onstituents. P stands for periodi beause of its metronome harateristis. Astands for aperiodi beause the deteted onstituents our at irregular times. The Plus operator aepts anevent type and a time expression. The Plus event ours after the spei�ed event type has ourred and thespei�ed time has passed.The operators mentioned so far are the omplete set from Snoop. Content-based heks are added tothem in order to ful�ll the requirement for �ltering by event parameters. Content-based heks do not providestruture as the previously desribed operators do. Content based heks �lter streams of events, resulting instreams whih ontain only events mathing a onstraint hek. Suh heks are onerned with the parametersof events. The appropriate event operators are alled guard by David Lukham or mask by the authors of Ode.We use the term mask. The event mask is designed as an operator with one event input and a Boolean funtionto be applied to the input. The value returned from the funtion deides about whether the input is aeptedor disarded. An inoming event is aepted if the funtion returns true. When speifying a mask expression,the funtion itself may be seleted from a set of prede�ned mask types. Moreover, the event masks in this workare extensible in the way that the funtion may optionally be an arbitrary user-de�ned implementation.The Rete network is onstruted from the top downwards, ontrary to the event graph. This is beauseworking memory elements (WMEs) enter the Rete network at a single, top node. As with the event graph, equalnodes must be shared. Equality is likewise determined by the funtion of a node ombined with its input, mean-ing its predeessor nodes. Construting the Rete network from the rule spei�ation is done as follows. Eahlass pattern is �rst onverted into a series of onseutive alpha nodes. There are di�erent types of alpha nodesforming sub-lasses of Node.Alpha, f. Figure 8.1. These alpha nodes for example perform heks on the lass ofan objet, the existene of an attribute of an objet, or omparisons with the values of attributes, et. On addingit to the network, eah alpha node is linked to its predeessor, heking whether an equal node is already amongthe suessor nodes and sharing it, if so. After the single objet heks are ompletely represented in the network,an alpha memory is added in the end to store the output. To reate the suessive beta network, joins are gath-ered from the rule spei�ation. Every free variable ourring in more than one objet pattern is invoking a join.Joins are then ordered in pair wise joins by variable and by input memory. Beta nodes are then reated with theneessary join prediates and attahed to the mathing alpha memories. A join prediate or Test is a JavaSriptfuntion. It is seleted from a hash map of prede�ned omparator funtions whih are seleted by the omparatorspei�ation in eah rule. Comparator funtions inlude wrappers for the built-in omparators from JavaSriptlike <, >, <=, >=, ==, != and like ===, !== whih do not perform type oerions like their two-letter oun-terparts do. Also the JavaSript speial operator typeof is available, whih allows heks for the types of objetsand primitives. Adding more funtions to the hash map here provides simple extensibility for the rule framework.The omparator funtions are two-parameter funtions with Boolean result beause they are used as join predi-ates. The funtions are stored in the Test objets in join nodes. A join node has a beta memory as one input andan alpha memory as another. The beta memory supplies tokens whih are lists of objets satisfying preedingjoins. The alpha memory supplies plain objets (in the form of WMEs) whih must math the other objets in thetoken aording to the join prediates. After �nishing all joins in the beta memory, a prodution node is addedto the network. Suh a node is a beta memory ontaining �nished tokens representing a omplete join. Eahsuh token resembles a fully mathed pattern and therefore a rule ation is triggered from the prodution node.9. Related work. Rule-driven Rih Internet Appliations seems to be a new and novel approah, as weould not �nd related work on this topi. Nevertheless, there exists already a reasonable amount of workaddressing subtopis of our approah. Carughi at al [6℄ desribe RIAs as reative systems where the userinterfae produes events. They use omplex event proessing in onjuntion with server push tehnologies, butnot for triggering appliation logi formulated in delarative appliation rules, that an be exeuted diretly onthe lient. In their work omplex events trigger some kind of server-side logi. They also do not address howomplex events an be deteted on the lient-side.

338 K. Shmidt, R. Stühmer and L. Stojanovi

Fig. 8.1. Rete Network (Class Diagram). This diagram shows the lasses omprising the Rete network. The Rete lassontains an alpha node in the role of the Root Node. Also, the dummy beta memory is onneted to Rete. The rest of the networkis reahable through objets of these two lasses. Tokens are implemented as a linked list, so token objets are parenting tokenobjets.The priniples of omplex event proessing for reative databases are well understood sine the mid-1990s.Chakravarthy et al [8℄ outline an expressive event spei�ation language for reative database systems. Theyalso provide algorithms for the detetion of omposite events and an arhiteture for an event detetor alongwith its implementation. Our work in the �eld of omplex event proessing relies greatly on their work andthe work done by Chakravarthy and Mishra [8℄, Papamarkos et al [24℄ and Alferes and Tagni [2℄. Reentlysome e�ort was undertaken to broaden RuleML (http://www.ruleml.org/) to a event spei�ation language.As a result Reation RuleML (http://ibis.in.tum.de/researh/ReationRuleML/) [25℄ inorporates nielydi�erent kinds of prodution, ation, reation, omplex event proessing and event logi rules into the nativeRuleML syntax but fails to support OWL ontologies.In the web engineering paper of Garrigós et al, [16℄ AWAC is presented, a prototype CAWE tool for theautomati generation of adaptive web appliations based on the A-OOH methodology. The authors de�ne thePersonalization Rules Modeling Language (PRML) an ECA language tailored the personalization needs of webappliations. Our rule language follows a di�erent approah as it has to deal with omplex events on the lient-side. PRML does not support omplex event proessing and is not a general purpose ECA language supportingmore then personalization, in ontradition to our JSON rules.The ECA-Web language suggested by Daniel at al [11℄ is an enhaned XML-based event ondition ationlanguage for the spei�ation of ative rules, oneived to manage adaptiveness in web appliations. Our JSON-Rules are di�erent to that approah as we, as stated in the name, relay on JSON as exhange and exeution

From Business Rules to Appliation Rules in Ria 339format. Moreover, we inorporated an event algebra for speifying omplex events based on Snoop. Besidesthat, the whole adaptation approah is quite di�erent as we support real-time adaptation diretly on the lientompared to the server-side adaptation and rule exeution approah of ECA-Web.10. Conlusions and future work. In this paper we presented a novel approah of using delarativeappliation rules as a new programming model for RIAs. We all this amalgam of event proessing, rule engineand RIA: ARRIA � Adaptive Reative Rih Internet Appliation. By providing event detetion we enablethe web designer to de�ne the behavior of the web appliation based on the order the user issues interationevents in time, that is based on order of his/her ations. The delarative appliation logi an be easilyhanged by rewriting the rules. The ECA rules an be exeuted without additional oding by arbitrary targetsystems like AJAX, Silverlight or Flex. We developed a light-weight ECA rule language tailored to the needs ofRIAs. Furthermore, we implemented an enhaned event detetion engine based on the SnoopIB algorithm. Formathing the onditions of ECA rules we deided to implement a light-weight version of the Rete algorithm.As a proof of onept we implemented our motivating example using JSON rules. The ARRIA frameworkonsisting of event detetion and rule evaluation was implemented in JavaSript. As RIAs are not only AJAXappliations we urrently implement our framework in Silverlight. Moreover, we will evaluate the performane ofthe ARRIA framework and we will implement other use ases where our arhiteture will show its full potential.REFERENCES[1℄ R. Adaikkalavan and S. Chakravarthy, Snoopib: Interval-based event spei�ation and detetion for ative databases,Data Knowl. Eng., 59 (2006), pp. 139�165.[2℄ J. J. Alferes and G. E. Tagni, Implementation of a omplex event engine for the web., in SCW, IEEE Computer Soiety,2006, pp. 65�72.[3℄ B. Berstel, Extending the rete algorithm for event management, in Pro. Ninth International Symposium on TemporalRepresentation and Reasoning TIME 2002, Washington, DC, USA, 7�9 July 2002, IEEE Computer Soiety, pp. 49�51.[4℄ L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming expert systems in OPS5: an introdution torule-based programming, Addison-Wesley Longman Publishing Co., In., Boston, MA, USA, 1985.[5℄ F. Bry and M. Ekert, Twelve theses on reative rules for the web, in EDBT Workshops, 2006, pp. 842�854.[6℄ G. T. Carughi, S. Comai, A. Bozzon, and P. Fraternali, Modeling distributed events in data-intensive rih internetappliations., in WISE, B. Benatallah, F. Casati, D. Georgakopoulos, C. Bartolini, W. Sadiq, and C. Godart, eds.,vol. 4831 of Leture Notes in Computer Siene, Springer, 2007, pp. 593�602.[7℄ S. Casteleyn, F. Daniel, P. Dolog, M. Matera, G.-J. Houben, and O. D. Troyer, eds., Proeedings of the 2ndInternational Workshop on Adaptation and Evolution in Web Systems Engineering AEWSE'07, Como, Italy, July 19,2007, vol. 267 of CEUR Workshop Proeedings, CEUR-WS.org, 2007.[8℄ S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S. K. Kim, Composite events for ative databases: Semantis,ontexts and detetion, in 20th International Conferene on Very Large Data Bases, September 12�15, 1994, Santiago,Chile proeedings, J. B. Boa, M. Jarke, and C. Zaniolo, eds., Los Altos, CA 94022, USA, 1994, Morgan KaufmannPublishers, pp. 606�617.[9℄ D. Crokford, Rf4627: Javasript objet notation, teh. report, IETF, 2006.[10℄ C. Culbert, G. Riley, and B. Donnell, Clips referene manual volume 1, basi programming guide, lips version 6.0,Software Tehnology Branh, Lyndon B. Johnson Spae Center, NASA, (1993).[11℄ F. Daniel, M. Matera, A. Morandi, M. Mortari, and G. Pozzi, Ative rules for runtime adaptivity management, inCasteleyn et al. [7℄.[12℄ U. Dayal, A. P. Buhmann, and D. R. MCarthy, Rules are objets too: A knowledge model for an ative, objet-oriented databasesystem, in Leture notes in omputer siene on Advanes in objet-oriented database systems, NewYork, NY, USA, 1988, Springer-Verlag New York, In., pp. 129�143.[13℄ C. L. Forgy, Rete: a fast algorithm for the many pattern/many objet pattern math problem, Arti�ial Intelligene, 19(1982), pp. 17�37.[14℄ A. Galton and J. C. Augusto, Two approahes to event de�nition, in DEXA '02: Proeedings of the 13th InternationalConferene on Database and Expert Systems Appliations, London, UK, 2002, Springer-Verlag, pp. 547�556.[15℄ J. J. Garrett, Ajax: A new approah to web appliations, http://www.adaptivepath.om/publiations/essays/arhives/000385.php (2005).[16℄ I. Garrigós, C. Cruz, and J. Gómez, A prototype tool for the automati generation of adaptive websites, in Casteleynet al. [7℄.[17℄ S. Gatziu and K. R. Dittrih, Deteting omposite events in ative database systems using petrinets, in Pro. FourthInternational Workshop on Ative Database Systems Researh Issues in Data Engineering, 1994, pp. 2�9.[18℄ N. H. Gehani, H. V. Jagadish, and O. Shmueli, Composite event spei�ation in ative databases: Model & implemen-tation, in VLDB '92: Proeedings of the 18th International Conferene on Very Large Data Bases, San Franiso, CA,USA, 1992, Morgan Kaufmann Publishers In., pp. 327�338.[19℄ , Compose: A system for omposite spei�ation and detetion, in Advaned Database Systems, London, UK, 1993,Springer-Verlag, pp. 3�15.

340 K. Shmidt, R. Stühmer and L. Stojanovi[20℄ R. Heidash, Get ready for the next generation of sap business appliations based on the enterprise servie-oriented arhi-teture (enterprise soa), SAP Professional Journal, 9 (July/August 2007), pp. 103�128.[21℄ K. Jensen, Coloured Petri Nets: Basi Conepts, Analysis Methods, and Pratial Use, Springer, 1992.[22℄ D. Lukham, The Power of Events: An Introdution to Complex Event Proessing in Distributed Enterprise Systems,Addison-Wesley Longman Publishing Co., In., Boston, MA, USA, 2006.[23℄ N. MaDonald, Strategies for business growth, in Gartner Symposium ITXPO, 2002.[24℄ G. Papamarkos, A. Poulovassilis, and P. T. Wood, Event-ondition-ation rule languages for the semanti web, inSWDB, 2003, pp. 309�327.[25℄ A. Pashke, A. Kozlenkov, and H. Boley, A homogenous reation rules language for omplex event proessing, inInternational Workshop on Event Drive Arhiteture for Complex Event Proess, 2007.[26℄ J. Tidwell, Designing interfaes, O'Reilly, 1. ed. ed., 2006.Edited by: Dominik Flejter, Tomasz Kazmarek, Marek KowalkiewizReeived: Deember 1st, 2007Aepted: January 15th, 2008Extended version reeived: August 8th, 2008

