
Salable Computing: Pratie and ExperieneVolume 10, Number 3, pp. 229�239. http://www.spe.org ISSN 1895-1767© 2009 SCPEREAL TIME BEHAVIOR OF DATAIN DISTRIBUTED EMBEDDED SYSTEMS∗TANGUY LE BERRE, PHILIPPE MAURAN, GÉRARD PADIOU, PHILIPPE QUÉINNEC†Abstrat. Nowadays, embedded systems appear more and more as distributed systems strutured as a set of ommuniatingomponents. Therefore, they show a less deterministi global behavior than entralized systems and their design and analysismust address both omputation and ommuniation sheduling in more omplex on�gurations. We propose a modeling frameworkentered on data. More preisely, the interations between the data loated in omponents are expressed in terms of a so-alledobservation relation. This abstration is a relation between the values taken by two variables, a soure and an image, where theimage gets past values of the soure. We extend this abstration with time onstraints in order to speify and analyze the availabilityof timely sound values.The formal desription of the observation-based omputation model is stated using the formalism of transition systems, wherereal time is handled as a dediated variable. As a �rst result, this approah allows to fous on speifying time onstraints attahedto data and to postpone task and ommuniation sheduling matters. At this level of abstration, the designer has to speifytime properties about the timeline of data suh as their freshness, stability, lateny. . .As a seond result, a veri�ation of theglobal onsisteny of the spei�ed system an be automatially performed. The veri�ation proess an start either from the timedproperties (e.g. the period) of data inputs or from the timed requirements of data outputs (e.g. the lateny). Lastly, ommuniationprotools and task sheduling strategies an be derived as a re�nement towards an atual implementation.Key words: real time data, distributed systems, veri�ation1. Introdution. Distributed Real Time Embedded (DRE) systems are inreasingly widespread and om-plex. In this ontext, we propose a modeling framework entered on data to speify and analyze the real timebehavior of these DRE systems. More preisely, suh systems are strutured as time-triggered ommuniatingomponents. Instead of fousing on the spei�ation and veri�ation of time onstraints upon omputationsstrutured as a set of tasks, we hoose to onsider data interations between omponents. These interationsare expressed in terms of an abstration alled observation, whih aims at expressing the impossibility for a siteto maintain an instant knowledge of other sites. In this paper, we extend this observation with time onstraintslimiting the time shift indued by distribution. Starting from this modeling framework, the spei�ation andveri�ation of real time data behaviors an be arried out.In a �rst step, we outline some related works whih have adopted similar approahes but in di�erent ontextsand/or di�erent formal frameworks.Then, we desribe the underlying formal system used to develop our distributed real time omputationmodel, namely state transition systems. In this formal framework, we de�ne a dediated relation alled obser-vation to desribe data interations. An observation relation desribes an invariant property between so-alledsoure and image variables. Informally, at any exeution point, the history of the image variable is a sub-historyof the soure variable. Atually, the soure is an arbitrary state expression. An observation abstrats the rela-tion between the inputs and the outputs of a ommuniation protool or between the arguments and the resultsof a omputation.To express timed properties on the variables and their relation, we extend the framework so as to be ableto desribe the timeline of state variables. Therefore, for eah state variable x, its timeline, an abstration ofits time behavior, is introdued in terms of an auxiliary variable x̂ whih reords its update instants. Then,real time onstraints on data, for instane periodiity or steadiness, are expressed by relating these dediatedvariables and the urrent time. These auxiliary variables are also used to restrit the time shift between thesoure and the image of an observation: the semantis of the observation relation is extended to allow to relatethe time behavior of a soure and of an image by expressing di�erent properties, suh as the time lag betweenthe urrent value of the image and its orresponding soure value.The real time onstraints about data behavior an be spei�ed by means of these timed observations asillustrated in an automotive speed ontrol example.Lastly, we disuss the possibility to hek the onsisteny of a spei�ation stated in terms of timed ob-servations. A spei�ation is onsistent if and only if the veri�ation proess an onstrut orret exeutions.
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230 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe QuéinneHowever, the target systems are potentially in�nite and an equivalent �nite state transition system must bederived from the initial one before veri�ation. The feasibility of this transformation is based upon assumptionsabout �nite bounds of the time onstraints.2. State of the Art. We are interested in systems suh as sensors networks. Our goal is to guarantee thatthe input data dispathed to proessing units are timely sound despite the time shift introdued by the transit ofdata. Most approahes taken to hek timed properties of distributed systems are based on studying the timedbehavior of tasks. For example, works suh as [10℄ propose to inlude the timed properties of ommuniationin lassial sheduling analysis.Our approah is state-based and not event-based. We express the timed requirements as safety propertiesthat must be satis�ed in all states. The de�nition of these properties do not refer to the events of the systemand is only based on the values of the system variables. We depart from sheduling analysis by fousing on thevariables behavior and not onsidering the tasks and related system events. Our intent is to allow the developerto give a more delarative statement of the system properties, easier to write and less error-prone. Indeed,reasoning about state prediates is usually simpler than reasoning about a set of valid sequenes of events.Others approahes based on variables are mainly related to the �eld of databases. For example, the variablessemantis and their timed validity domain are used in [12℄ to optimize transation sheduling in databases. Ourwork stands at a higher level sine we propose to give an abstrat desription of the system in terms of aspei�ation of relations between data. For instane, our framework an be used to hek the orretness of analgorithm with regards to the aging of the variables values. It an also be used to speify a system withoutknowing its implementation.Similar works use temporal logi to speify the system. For example, in [2℄, OCL onstraints are used tode�ne the temporal validity domain of variables. A variation of TCTL is used to hek the system synhroniza-tion and prevent a value from being used out of its validity domain. This work also de�nes timed onstraints onthe behavior and the relations between appliation variables, but these relations are de�ned using events suhas message sending whereas our de�nitions are based on the variable values.In [9℄, onstraints between intervals during whih state variables remain stable are de�ned by means ofAllen's linear temporal logi. In other words, this approah also uses an abstration of the data timelines interms of stability intervals. However, the onstraints remain logial and do not relate to real time. Nevertheless,the authors expet to apply this approah in the ontext of autonomous embedded systems.Using a semantis based on state transition system, we give a framework whih aims at desribing therelations between the data in a system, and speifying the required timed properties of the system.3. Theoretial settings.3.1. State Transition System. Models used in this paper are based on state transition systems. Ourwork uses the TLA+ formalism [7℄, but this paper does not require any prior knowledge of TLA+. A state isan assignment of values to variables. A transition relation is a prediate on pairs of states. A transition systemis a ouple (set of states, transition relation). A step is a pair of states whih satis�es the transition relation.An exeution σ is any in�nite sequene of states σ0σ1 . . . σi . . . suh that two onseutive states form a step. Wenote σi → σi+1 the step between the two onseutive states σi and σi+1.A temporal prediate is a prediate on exeutions; we note σ |= P when the exeution σ satis�es the prediate
P . Suh a prediate is generally written in linear temporal logi. A state expression e (in short, an expression)is a formula on variables; the value of e in a state σi is noted e.σi. The sequene of values taken by e during anexeution σ is noted e.σ. A state prediate is a boolean-valued expression on states.3.2. Introduing Time. We onsider real time properties of the system data. To distinguish them from(logial) temporal properties, suh properties are alled timed properties. Time is integrated in our transitionsystem in a simple way, as desribed in [1℄: time is represented by a variable T taking values in an in�nitetotally ordered set, suh as N or R

+. T is an inreasing and unbound variable. There is no ondition on thedensity of time, and moreover, it makes no di�erene whether time is ontinuous or disrete (see disussionin [8℄). However, as an exeution is a sequene of states, the atual sequene of values taken by T during agiven exeution is neessarily disrete. This is the digital lok view of the real world. Note that we refer tothe variable T to study time and that we do not use the usual timed traes notation.



Real Time Behavior of Data in Distributed Embedded Systems 231An exeution an be seen as a sequene of snapshots of the system, eah taken at some instant of time. Werequire that there are �enough� snapshots, that is that no variable an have di�erent values at the same timeand so in the same snapshot. Any hange in the system implies time passing.De�nition 3.1 (Separation) An exeution σ is separated if and only if for any variable x:
∀i, j : T.σi = T.σj ⇒ x.σi = x.σjIn the following, we onsider only separated exeutions. This allows to timestamp hanges of variables andensures a onsistent omputation model.3.3. Cloks. Let us onsider a totally ordered set of values D, suh as N or R

+. A lok is a (sub-)appro-ximation of a sequene of D values. We note [X → Y ] the set of all funtions whose domain is X and whoserange is any subset of Y .De�nition 3.2 (Clok) A lok c is a funtion in [D → D] suh that:
• it never outgrows its argument value:
∀t ∈ D : c(t) ≤ t

• it is monotonously inreasing:
∀t, t′ ∈ D : t < t′ ⇒ c(t) ≤ c(t′)

• It is lively:
∀t ∈ D : ∃t′ ∈ D : c(t′) > c(t)The prediate clock(c) is true if the funtion c is a lok.In the following, loks are used to haraterize the timed behavior of variables. They are de�ned on thevalues taken by the time variable T , to express a time delayed behavior, as well as on the indies of the sequeneof states, to express a logial preedene.4. Spei�ation of Data Timed Behavior. We introdue here the relation and properties used in ourframework to desribe the properties that must be satis�ed by a system. Our approah is state-based and givesthe relation that must be satis�ed in all states. We de�ne the observation relation to desribe the relationbetween variables. A way to desribe the timed behavior of variables, that is properties of the history of data,is introdued. We then extend the observation relation to enable the expression of timed onstraints on thebehavior of system variables linked by observations. For that purpose we de�ne prediates whih bind andonstraint relevant instants of the timeline of the soure and the image of an observation. These prediates areexpressed as bounds on the di�erene between two relevant instants.4.1. The Observation Relation. We de�ne an observation relation on state transition systems as in [5℄.The observation relation is used to abstrat a value orrelation between variables. Namely, the observationrelation states that the values taken by one variable are values previously taken by another variable or stateexpression.In the basi ase, the observation relation binds two variables, the soure x and the image ‘x, and denotesthat the history of the variable ‘x is a sub-history of the variable x. The relation is de�ned by a ouple

< source, image > and the existene of at least a lok that de�nes for eah state whih one of the previousvalues of the soure is taken by the image. This de�nition is atually given to allow any state expression (aformula on variables) as the soure1. The formal de�nition is:De�nition 4.1 (Observation) The variable ‘x is an observation of the state expression e in exeution σ:
σ � ‘x≺· e i�:

∃ c ∈ [N → N] : clock(c) ∧ ∀i : ‘x.σi = e.σc(i)

1As we ould introdue a new variable aliased to this expression, we often talk, in the following, of the soure variable. This isto simplify the wording and the desription.
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c(i) 0 0 0 0 3 4 4 5 6 8Fig. 4.1. The Observation RelationThis relation states that any value of ‘x is a previous value of e. Due to the properties of the observationlok c, ‘x is assigned e values in aordane with the hronologial order. Moreover, c always eventuallyinreases, so ‘x is always eventually updated with a new value of e. Figure 4.1 shows an example of anobservation relation binding two variables x and ‘x.The observation an be used to abstrat ommuniation in a distributed system, as well as to abstratomputations:
• Communiation onsists in transferring the value of a loal variable to a remote one. Communiationtime and lak of synhronization reate a lag between the soure and the image, whih is modeled by

remote≺· local.
• In state transition systems, an expression f(X) models an instantaneous omputation. By writing

y ≺· f(X), we model the fat that a omputation takes time and that the value of y is based on thevalue of X at the beginning of the omputation. Here X an be a tuple of variables, aording tothe arity of f : given X = 〈x1, . . . , xn〉, the observation σ |= ‘x≺· f(X) means that ∃ c ∈ [N → N] :
clock(c) ∧ ∀i : ‘x.σi = f(x1.σc(i), . . . , xn.σc(i)). As the same lok is used, all values of the inputs (X)are read at the same time, implying a synhronous behavior.Additional observation relations an be introdued to model an asynhronous reading of the inputs. Forinstane, ‘a≺· a, ‘b≺· b, c≺· f(‘a, ‘b) models a system where a and b are independently read (the �rsttwo observations), and then c is omputed through a funtion f .Note that the observation de�nition does not refer to real time and only models an arbitrary delay in termsof state sequenes. Real time properties will now be introdued.4.2. The Timeline of Variables. In order to state properties about the timed behavior of a variable x,we want to be able to refer to the last time x was updated. These are alled the update instants and form itstimeline x̂. The de�nition of x̂ is based on the history of the values taken by x and aptures the instants wheneah value of x appeared, e.g. the beginning of eah ourrene.De�nition 4.2 (timeline) For a separated exeution σ and a variable x, the variable x̂ is the timeline of xand is de�ned by:

∀i : x̂.σi = T.σmin{j|∀k∈[j..i]: x.σi=x.σk}The timeline x̂ is built from the history of x values and is a sequene of update instants. For a variable xand a state σi, the update instant of x in σi is de�ned as the value taken by the time T at the earliest statewhen the value x.σi appeared and ontinuously remained unhanged until state σi.Note that the developer may provide an expliit de�nition of x̂, without having to desribe the atual valuesof x, e.g. by stating that x is periodially updated.
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i-1Fig. 4.2. Graph of x̂When x is updated and its value hanges then the value of x̂ is also updated. Conversely if x̂ hanges then
x is updated. This property allows us to rely exlusively on the values of x̂ to study the timed properties of x.We also de�ne the instant Next(x̂) that returns, at eah state, the next value of x̂ and thus the next instantwhen the value of x is updated, i. e. the instant when the urrent value disappears. If x is stable at a state σi(no new update), then Next(x̂).σi = +∞.As in the ase of soure variable versus soure expression, the de�nition of a timeline x̂, whih is given for avariable x, is atually valid for a state expression. For the sake of larity, we will one again talk of �variables�where �state expressions� ould equally be used in the remainder of this setion.4.3. Behavior of Variables. The timeline x̂ is used to desribe the timed behavior of a variable x. Inthis paper, we fous on spei� kinds of variables. We expet eah value of eah variable to remain unhangedfor a bounded number of time units. We want to be able to express the minimum and the maximum durationbetween two onseutive updates. This allows to desribe two basi behaviors: a sporadi variable keeps eahvalue for a minimum duration, and on the ontrary, a lively variable has to be updated often, no value an bekept longer than a given duration. These properties are formulated by bounds on the di�erene between x̂ and
Next(x̂), using a property alled Steadiness applied to a variable. These bounds denote how long eah valueof x an be kept.De�nition 4.3 (Steadiness) The steadiness of a variable x in the range [δ, ∆] is de�ned by:

σ � x {Steadiness(δ, ∆)} ,

∀i : δ ≤ Next(x̂).σi − x̂.σi < ∆

∆ − δ is the jitter on x updates. More elaborate properties an be derived from the steadiness property.For example, we an introdue a stronger property, periodiity, where no time drift is allowed.



234 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe QuéinneDe�nition 4.4 (Periodiity) A variable x is periodi of period P with jitter J and phase φ i�:
σ � x {Periodic(P, J, Φ)} ,

x {Steadiness(P − 2J, P + 2J)}∧
∀i : ∃n ∈ N : x̂.σi ∈ [φ + nP − J, φ + nP + J ]Suh a variable is updated around all instants φ+ nP . Note that J must verify J < P/4 to ensure that thevariable is updated one and only one per period.4.4. Timed Observation. We use the onept of timeline to extend the observation relation with timedharateristis. The timed onstraints that extend the observation must apture the lateny introdued by theobservation and the timeline of the soure to produe the timeline of the image. We de�ne a set of prediateson the instants haraterizing the soure and the image timelines and the observation lok. Formally, a timedobservation is de�ned as follows:De�nition 4.5 (Timed Observation) A timed observation is de�ned as an observation satisfying a set ofprediates.

σ � ‘x≺· e







Predicate1(δ1, ∆1),
P redicate2(δ2, ∆2),

. . .







,

∃c ∈ [N → N] : clock(c) ∧
∀i : ‘x.σi = e.σc(i) ∧
Predicate1(c, δ1, ∆1)∧
Predicate2(c, δ2, ∆2) . . .The prediates that an be used to desribe the timed properties of the relation between two variables are thefollowing ones:De�nition 4.6 Given a variable ‘x and a state expression e suh that σ � ‘x≺· e with a clock c ∈ [N → N], theprediates are:

Lag(c, δ, ∆) , δ ≤ ‘x̂.σi − ê.σc(i) < ∆

Stability(c, δ, ∆) , δ ≤ Next(ê).σc(i) − ê.σc(i) < ∆

Latency(c, δ, ∆) , δ ≤ T.σi − ê.σc(i) < ∆

Medium(c, δ, ∆) , δ ≤ T.σi − T.σc(i) < ∆

Freshness(c, δ, ∆) , δ ≤ T.σc(i) − ê.σc(i) < ∆

F itness(c, δ, ∆) , δ ≤ Next(ê).σc(i) − T.σc(i) < ∆When no lower (resp. upper) bound is signi�ant, 0 (resp. +∞) should be used.These prediates have to be true at every state and every instant. The de�nition of an observation isdone by stating whih prediates must be satis�ed. So far, this set has been su�ient to express the di�erentbehaviors that we had to analyze, but it an be extended.
• Prediate Lag is used to bound the duration between an update of the soure and an update of theimage. An upper bound states that, when the image is updated, it must be updated with an expressionof soure that was updated in a reent time. A lower bound states that when there is an update of thesoure, the new value annot be used to update the image before the lower bound has elapsed.
• Prediate Lateny bound in eah state the time elapsed sine the assignment of the image's urrentvalue on the soure.
• Prediate Stability is used to �lter soures values depending on their duration. For example we aneliminate transient values and keep sporadi ones, or the ontrary.
• The observation lok and the di�erene i − c(i) give the logial delay introdued by the observation.Prediate Medium bounds the temporal delay related to this logial delay. So the bounds state thatthere must exist a logial delay induing a temporal delay satisfying the bounds, i. e. in eah state,there must be one previous state so that the time elapsed sine that state is below this upper boundand above the lower bound and so that the image's urrent value was assigned on the soure. A lowerbound an be used to state that a value of the soure annot appear on the soure before this lowerbound has elapsed and so this bounds denotes a ommuniation or omputation time.
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• Prediates Freshness and Fitness are used to de�ne intervals of time, relative to the update instants, thatthe observation lok is prevented to refer. So the logial delay that satis�es the prediate Medium mustrefer to an instant that satis�es the Freshness and Fitness prediates. An upper bound on Freshnessprevents states where the value of the soure is not fresh anymore to be referred. For example, aonjuntion of Medium and Freshness prediates states that the urrent value of the image must havebeen available on the soure reently and that it was still fresh at these instants. On the ontrary, alower bound on Freshness denotes an impossibility to aess a value just after its assignment. Fitnessallows or forbids the states depending on the time remaining until the soure value is updated. A lowerbound prevents to refer to a state where the value is about to be updated.Note that, at the beginning of an exeution, some prediates suh as Medium annot be satis�ed. In orderto address this problem, the timed prediates do not have to be satis�ed in initial states. The image values arereplaed by a given default value. This extension is similar to the �followed by� operator → in Lustre [6℄.5. Speifying a System in Terms of Timed Observations.5.1. A Brief Desription. As an example, we onsider a simpli�ed ar ruise ontrol system. The goalof suh a system is to ontrol the throttle and the brakes in order to reah and keep a given target speed. Thesystem is omposed of several interating omponents (see Figure 5.1):
• a speed monitor, whih omputes the urrent speed, based on a sensor ounting wheel turns;
• the throttle atuator, whih ontrols the engine;
• the brakes, whih slow down the ar;
• the ontrol system whih handles the speed depending on the urrent and the hosen speed;
• a ommuniation bus whih links the devies and the ontrol system.The environment, the driver, and the engine in�uene the speed of the ar. One the ruise ontrol is ativatedand a target speed is hosen, the ontrol system an hoose either to aelerate by inreasing the voltage of thethrottle atuator or to deelerate by dereasing this voltage and by using brakes. In order to ensure a reativebehavior, eah ommand issued by the ruise ontrol system must be arried out within a given time limit.Eah omponent uses and/or produes data. We use observations to speify the system and haraterizeorret exeutions.5.2. Data and Observations. Firstly, we de�ne the state variables of the ruise ontrol system, and webind these variables using observation relations.The speed monitor omputes the values of a variable speed, and these values are sent to the ontrol systemas a variable ‘speed. We express this as an observation ‘speed≺· speed.The hoies of the ontrol system are based on the urrent speed and more preisely on the value of ‘speed.Two funtions are used to ompute the values used as inputs by the brakes and by the throttle atuator. Using thespeed values, we ompute the values of two variables: throttle≺· control1(‘speed) and brake≺· control2(‘speed).Lastly, the values of throttle and brake are delivered to dediated devies into variables ‘throttle and ‘brake,suh that ‘throttle≺· throttle and ‘brake≺· brake.



236 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe Quéinne- variables behaviors:
speed {Steadiness(δ1, +∞)}

throttle {Steadiness(δ2, +∞)}
brake {Steadiness(δ3, +∞)}- ommuniations:

‘speed≺· speed {Medium(δ4, +∞)}
‘throttle≺· throttle {Medium(δ4, +∞)}

‘brake≺· brake {Medium(δ4, +∞)}- omputations:
throttle≺· control1(‘speed) {Medium(δ5, +∞)}
brake≺· control2(‘speed) {Medium(δ6, +∞)}- omplete proessing hains:
‘throttle≺· control1(speed) {Latency(0, ∆)}
‘brake≺· control2(speed) {Latency(0, ∆)}Fig. 5.2. System Spei�ation5.3. Requirements and Properties. We express the requirements and known timed properties of thesystem, and we state them as harateristis of the system variables and observations. These harateristis aregiven in Figure 5.2.The speed is omputed using the ratio of the number of wheel turns to the elapsed time. A minimum timeis required to produe a signi�ant result. Thus, there must be a minimum time δ1 between eah update of

speed. Also, due to sheduling onstraints, there must be a minimum time δ2 (respetively δ3) between eahomputation and update, of throttle (respetively brake).Eah ommuniation on the bus takes a minimum transit time, regardless of the ommuniating protoolthat is hosen. Prediate Medium (see De�nition 4.6) is used to de�ne a lower bound on the observationsexpressing ommuniation. Similarly, we represent the minimum omputation time of funtions control1 and
control2, by means of prediate Medium.We expet eah data to be used soon enough after eah update. More preisely, we want eah ommandissued to the brake or to the throttle to be based on fresh values of the speed. Thus, we require the ompleteproessing hain to be ompleted in a short enough time.A omposition of observations is an observation, for example if y≺· x and z ≺· f(y) then z ≺· f(x) [5℄. We usethis property to de�ne the proessing hains relating ‘throttle and ‘brake to speed, via ′speed as observations,whih enables us to express the requirements on the duration of the proessing hains as upper bounds of
Latency prediates (see De�nition 4.6) on these observations. Note that, although the Latency upper bound(∆) is the only upper bound given in the system spei�ation, it impliitly sets upper bounds on the Mediumand Steadiness harateristis of the other observations and variables of valid exeutions.5.4. Case Study Analysis. The goal of the analysis is to prove that the spei�ation is onsistent and thatthere is at least one exeution satisfying the requirements. In our example, a nonempty set of valid exeutionsensures the availability of timely sound values. From this set, we an dedue the required update frequeny ofthe speed variable. For example, we hek the existene of a maximum time aeptable between eah update.We analyze the admissible values of the Medium to dedue the ommuniation and omputation times thatare permitted. Then, we determine the possible values of the observation loks in the states orresponding tothe timeline of the image. These values give the instants at whih the values of the soure are aught and so,for example the instants when a message must be sent or when a omputation must start.For all these properties, a hoie must be done. For example, hoosing a set of exeutions may alleviate thebounds on ommuniation time but then redue the instants when the message must be sent.6. System Analysis. We give here properties of our framework based on observations in order to arryout an analysis. A system spei�ed with observation relations must be analyzed to hek the onsisteny of thespei�ation, i. e. if there exists an exeution satisfying the spei�ation.We disuss the analysis method in a disrete ontext. The semantis of the spei�ation is restrited by



Real Time Behavior of Data in Distributed Embedded Systems 237disretizing time: i. e. the values taken by time T are in N. For disussion about the loss of information usingdisrete time instead of dense time and defending our hoie, see [8℄ for example.6.1. Feasibility of a Spei�ation. Given a spei�ation based on our framework, the value of T isunbounded and we have no restrition on the values that an be taken by variables. Therefore the systemde�ned by the spei�ation is in�nite. Nevertheless, we an build a �nite system equivalent to the spei�ationfor the timed properties studied with this framework. This allows us to model-hek the onsisteny of thespei�ation in a �nite time. Here are the main priniples of this proof. The de�nition of a �nite systembisimilar to the original one is based on two equivalene relations.Sine the sope of this framework is to hek the satisfation of timed requirements, we fous on the auxiliaryvariables used to desribe the timeline of eah appliation variable. We de�ne a system where only variablesdenoting instants are kept, i. e. the variable desribing the timelines and the observation loks. The statesand transitions of the system are de�ned by the values of these variables and the satisfation of observationsand variables properties. Allowed states and transitions do not depend on the values that an be taken byeah variable but on the instants desribing their timeline and on the observation loks. Thus, when we builda system where only these instants are onsidered, we do not lose or add any harateristis about the timedbehavior of the system. We de�ne an equivalene where two states are equivalent if and only if the observationloks and the timeline variables are equal. This equivalene is used to build a bisimilarity relation between thespei�ed system and the one built upon only the instants.The seond reason preventing to onsider a bounded number of states is the lak of bound on time. Thevalues of the timelines and observation loks are also unbounded. In order to redue the possible values thatan be taken by the system variables denoting instants, we de�ne a system where all values of the instants arestored modulo the length of an analysis interval. We denote this number as L. L must be arefully hosen,greater than the upper bounds on the variables Steadiness and the observations Latency harateristis and ithas to be a multiple of the variable periods.Suh a number L only exists if all variables and observations have upper bounded harateristis. When thesoure of an observation is bounded and so is the observation, suh a bound is dedued for the image. Restritingthe behavior by expeting variables to be frequently updated and the shift introdued by distribution to bebounded seems onsistent for suh real time systems.In the system de�ned by the spei�ation, transitions are based on di�erenes between the instants hara-terizing the variable timelines. These di�erenes annot exeed the hosen length L. Thus, for eah state, if thevalue of the time T is known and if the values of the other variables are known modulo L, then for eah variablethere is only one possible real value that an be omputed using the value of T . Consequently, onsideringthe lok values modulo this length does not add or remove any behavior of the original system. We de�ne anequivalene where two states are equivalent if the timelines and the observation loks are equal modulo L. Asystem built by onsidering all values modulo L is bisimilar with the original system using this equivalene.Based on these two equivalenes, we build a system by removing variables whih do not denote timelinesor observation loks and by onsidering the values modulo L. This system is bisimilar to the spei�ation andpreserves the timed properties. Sine all values are bounded by the length of the analysis interval and thereis a bounded number of values, it de�nes a system with a bounded number of states. This result proves thedeidability of the framework for the veri�ation of safety properties that an be done using the �nite system.6.2. Complexity. We have proved the existene of a �nite system equivalent to our system. We give herethe omplexity of a proess to e�etively build this equivalent �nite system. In order to build a transition from astate to a new state, we build a set of inequalities dedued from the properties of the previous state and from theobservations and variables properties. To solve this set of inequalities and dedue the possible values of instantvariables in the new state, we use di�erene bound matries [4℄. Considering a system where n variables arestudied, the size of eah matrix is O(n2), and the omplexity for reduing it to its anonial form and buildingthe new state is O(n3) [4℄. The maximum number of states to build depends on all possible ombinations ofvalues taken by variables. Eah timed variable an take values between 0 and L and the number of instantvariables is a multiple of n, so we have O(Ln) states. Lastly, the omplexity to build the system is O(n3 ∗ Ln).Considering the memory, we have to store O(Ln) states and O(L2n) transitions. Therefore this diret approahis tehnially feasible only with small enough systems. The omplexity is more heavily impated by the numberof variables (n) than by the analysis interval (L).



238 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe Quéinne6.3. Veri�ation of an Implementation. A seond goal is to hek that an implementation is orretwith regard to a spei�ation based on observations. This approah is fully desribed in [13℄ and is only hintedhere.As all timed properties are safety properties, an implementation is orret if no exeution deadloks (so asto ensure liveness) and all its exeutions are inluded in the exeutions de�ned by the spei�ation.In order to hek the satisfation of the spei�ation by an implementation, we give a model of the spe-i�ation in the same semantis we use to model an implementation. Suh a model is desribed by de�ningelementary transitions. An elementary transition relation models the evolution of the values states of avail-ability in the observation relations of the system. These elementary transition relations are used to build thevariable transition relation of the image of an observation. The variable transition relations are then used tobuild the global transition relation.One both the spei�ation and the implementations have been translated into suh transition relations, wemust verify that the model of the spei�ation simulates the implementation. In order to hek this property, webuild a state transition system similar to the synhronized produt of labelled transition systems. The ationsare used as labels on the transitions of the systems.6.4. Other Approahes. Sine our approah relies on the TLA+ formalism, we ould have used thedediated tool TLC, the TLA+ model heker. A logial de�nition of the observation requires the temporalexistential quanti�er ∃∃∃∃∃∃ , whih is not implemented in TLC. Therefore a onrete de�nition of the observationbased on an expliit observation lok has been used. It is only after we have redued the system to a �nite onethat a model heker suh as TLC ould be used.To be able to more preisely haraterize exeutions satisfying the spei�ation, we urrently explore meth-ods to build these exeutions more easily. A �rst proposal is to redue the omplexity of suh a proess byrelying on proofs on system properties. The proof approah an easily be used only under ertain onditionsand in order to proeed to some system simpli�ations. For example, a periodi soure indues properties forits image through an observation. Using these properties redues the number of states we have to build byforeasting some impossible ases. Proving the full orretness of the system is possible but it is omplex andit has not been automatized yet.Another way is to use ontroller synthesis methods [3℄. Properties of the observation an be expressed assafety properties using LTL and be derived as Bühi automata [11℄. Two automata desribe the behavior ofthe soure and the image of an observation, exhanging values through a queue. Restritions an be addedto introdue the used implementation and its ompatibility with exeutions de�ned by the spei�ation. Theomplexity of ontroller synthesis methods has still to be explored.7. Conlusion. We propose an approah foused on variables instead of tasks and proesses, to modeland analyze distributed real time systems. We speify an abstrat model postponing task and ommuniationsheduling. Based on the state transition system semantis extended by a timed referential, we express relationsbetween variables and the timed properties of variables and ommuniations. These properties are used to hekthe freshness of values, their stability, and the onsisteny of requirements. A possible analysis is to build a�nite system bisimilar to the spei�ed one. The results are used to help implementation hoies.Perspetives are to searh other methods that derease the omplexity of the analysis of a spei�ationand to use this approah with di�erent examples to expand the number of available properties and inreaseexpressiveness. We also work on using analysis results to help generating an implementation satisfying thespei�ation. REFERENCES[1℄ M. Abadi and L. Lamport, An old-fashioned reipe for real time, ACM Transations on Programming Languages andSystems, 16 (1994), pp. 1543�1571.[2℄ S. Anderson and J. K. Filipe, Guaranteeing temporal validity with a real-time logi of knowledge, in ICDCSW '03: Pro.of the 23rd Int'l Conf. on Distributed Computing Systems, IEEE Computer Soiety, 2003, pp. 178�183.[3℄ E. Asarin, O. Maler, and A. Pnueli, Symboli ontroller synthesis for disrete and timed systems, in Hybrid Systems II,London, UK, 1995, Springer-Verlag, pp. 1�20.[4℄ J. Bengtsson and W. Yi, Timed automata: Semantis, algorithms and tools, in Leture Notes on Conurreny and PetriNets, W. Reisig and G. Rozenberg, eds., Leture Notes in Computer Siene vol 3098, Springer�Verlag, 2004.[5℄ M. Charpentier, M. Filali, P. Mauran, G. Padiou, and P. Qu�©inne, The observation : an abstrat ommuniationmehanism, Parallel Proessing Letters, 9 (1999), pp. 437�450.
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