
Salable Computing: Pratie and ExperieneVolume 10, Number 3, pp. 277�289. http://www.spe.org ISSN 1895-1767© 2009 SCPETOWARDS TASK DYNAMIC RECONFIGURATION OVER ASYMMETRIC COMPUTINGPLATFORMS FOR UAVS SURVEILLANCE SYSTEMSALÉCIO P. D. BINOTTO∗, EDISON P. DE FREITAS†, MARCO A. WEHRMEISTER‡, CARLOS E. PEREIRA§, ANDRÉSTORK¶, AND TONY LARSSON‖Abstrat. High-performane platforms are required by modern appliations that make use of massive alulations. Atually,low-ost and high-performane spei� hardware (e.g. GPU) an be a good alternative along with CPUs, whih turned to multipleores, forming powerful heterogeneous desktop exeution platforms. Therefore, self-adaptive omputing is a promising paradigmas it an provide �exibility to explore di�erent omputing resoures, on whih heterogeneous luster an be reated to improveperformane on di�erent exeution senarios. One approah is to explore run-time tasks migration among node's hardware towardsan optimal system load-balaning aiming at performane gains. This way, time requirements and its rossutting behavior playan important role for task (re)alloation deisions. This paper presents a self-resheduling task strategy that makes use of aspet-oriented paradigms to address non-funtional appliation timing onstraints from earlier design phases. A ase study exploringRadar Image Proessing tasks is presented to demonstrate the proposed approah. Simulations results for this ase study areprovided in the ontext of a surveillane system based on Unmanned Aerial Vehiles (UAVs).Key words: reon�gurable omputing, dynami sheduling, aspet-oriented paradigm, unmanned aerial vehiles1. Introdution. In addition to timing onstraints, modern appliations usually require high performaneplatforms to deal with distint algorithms and massive alulations. The development of low-ost powerful andappliation spei� hardware (e.g., GPU�Graphis Proessing Unit, the Cell proessor, PPU�Physis Pro-essing Unit, DSP�Digital Signal Proessor, PCICC�PCI Cryptographi Co-proessor, FPGA�Field Pro-grammable Gate Array, among others) o�ers several alternatives for exeution platforms and appliation im-plementation, aiming at better performane, programmability and data ontrol. The resulting heterogeneity inthe exeution platform an be onsidered as an asymmetri multi-ore luster. This luster's proessing poweris intensi�ed with the new generation of multi-ore CPUs, being a hallenge to program appliations that usee�iently all available resoures and Proessing Units (PU).In this sense, low-ost hybrid hardware arhitetures are beoming attrative to ompose adaptable exe-ution platforms. Thus software appliations must bene�t from that powerfulness. This leads to the reationof new strategies to distribute appliations' workload (tasks, algorithms, or even full appliations that mustrun onurrently) to exeute in asymmetri PUs in order to better meet appliation's requirements, suh asperformane and timeliness, without loosing �exibility. Dynami and reon�gurable load-balaning omputing(by means of task alloation reon�guration, i. e., resheduling) is a potential paradigm for those senarios,providing �exibility, improving e�ieny, and o�ering simpliity to program an (balaned) appliation on het-erogeneous and multi-ore arhitetures. Fig. 1.1 shows suh a theoretial senario of a desktop-based platformomposed of several devies.An important step towards the usage of the above mentioned hybrid platforms is to reate a real-time work-load self-resheduling framework to balane the resoure usage by appliations omposed of di�erent algorithms(graphis, massive mathematial alulations, sensor data proessing, arti�ial intelligene, ryptography, et.),exeuting on top of suh hybrid platforms under time onstraints, in order to ahieve a minimal Quality ofServie. In addition, it has to be predited that during exeution time, new tasks an arise and in�uene thewhole system. In this manner, suh framework must keep monitoring the tasks' performane to provide onlineinformation for a possible new alloation balane, indiating that task resheduling may be neessary to promotea better performane for the overall urrent senario.In this paper, the fous is on the very �rst step in the reon�guration framework: appliation requirementshandling (resheduling) in a high-level design phase. The approah is based on appliation requirements, like
∗Fraunhofer IGD/TU Darmstadt, Darmstadt, Germany / Informatis Institute, Federal University of Rio Grande do Sul, PortoAlegre, Brazil (aleio.binotto�igd.fraunhofer.de).
†Shool of Information Siene, Computer and Eletrial Engineering, Halmstad University, Sweden / Informatis Institute,Federal University of Rio Grande do Sul, Porto Alegre, Brazil (edison.pignaton�hh.se).
‡Department of Automation and Systems Engineering, Federal University of Santa Catarina, Florianópolis, Brazil(marow�das.ufs.br).
§Eletrial Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil (pereira�ee.ufrgs.br).
¶Fraunhofer IGD/TU Darmstadt, Darmstadt, Germany (andre.stork�igd.fraunhofer.de).
‖Shool of Information Siene, Computer and Eletrial Engineering, Halmstad University, Sweden (tony.larsson�hh.se).277

278 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. Larsson

Reconfigurable Hybrid Processing Platform

Application1, TaskN

Application1, Task2

Application1, Task1

ApplicationN, TaskN

ApplicationN, Task2

ApplicationN, Task1

Run-Time Reconfigurable Load-Balancing

...Multi-core

CPU

FPGA NGPU N

Requirements

Allocation

PPU N

...

GPU 1 PPU 1 FPGA 1

PCICC N

PCICC 1

DSP N

DSP 1Fig. 1.1. System overview.task/appliation deadlines, in order to �nd the urrent alloation balane that minimizes the whole appliation(s)exeution time. This information is used by the framework to balane the omputation over the exeutionplatform. For its aomplishment, rossutting onerns related to real-time non-funtional requirements aretaken into aount. Handling these onerns by spei� design elements alled �aspets� (from aspet-orientedparadigm [11℄) plays an important role for understandability and maintainability of the system design, as thoseonerns may in�uene di�erent parts of the system in di�erent ways. Then, based on the support o�eredby the aspets to monitor and ontrol the resoure usage (pro�ling), a strategy to assign tasks dynamially ispresented, whih is submitted to a run-time resheduling when it is needed.The paper is organized as follows. Setion 2 starts with a previous work on aspets and requirementsidenti�ation, modeled using UML. Setion 3 follows with the dynami workload strategy implemented by thereated aspets. Composing these two onepts, Setion 4 outlines an UAV surveillane system as ase study,fousing on RIP (Radar Image Proessing) tasks, whih are dynamially reated at run-time. Finalizing, relatedwork, onlusions and future diretions are exposed.2. Handling Timing Conerns Using Aspets. In order to ahieve dynami resheduling to improvetasks load-balaning, we investigate the use of aspet-oriented paradigms to ope with the modern system'srossutting onerns, whih are usually related to Non-Funtional Requirements (NFR). Suh requirementsmust be e�etively handled already from requirements analysis to implementation phases to enhane systemunderstandability during design. The ontext addressed by this work is similar to the one presented in the designof Distributed Real-time Embedded (DRE) systems, i. e. performane and timing NFR are very importantduring all appliation development phases. In this sense, we have adopted the taxonomy published in [6℄.Traditional approahes, suh as objet-orientation, do not provide adequate means to deal with NFR han-dling. It ours due to the ine�ient modularization for NFR handling elements (timing requirements probes,serialization mehanisms, task migration mehanisms, among others), i. e. they are not modularized in a singleor few system elements, but spread allover the system. Any hange in one of these elements requires hanges indi�erent parts of the system, leading to a tedious and error-prone task that does not sale in the developmentof large and omplex appliations. The observation of these drawbaks motivates the use of an aspet-orientedapproah, whih makes possible to address suh onerns in a modularized way. It separates the handling ofthe non-funtional onerns in spei� elements, inreasing the system modularity, diminishing the ouplingamong elements, and though a�eting positively the system maintainability, reuse and evolution [19℄. Moreoverspei�ally, the advantages of an aspet-oriented approah beame learer when applied to the task alloationstrategies using heterogeneous platforms due to the need of pro�ling eah task in di�erent hardware, a�etingseveral elements of the appliation. The use of aspets to address this onern represents an improvement sineit helps to ope with the omplexity in managing this onern spread through the whole system.

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 279The next subsetion presents a brief desription of the NFR taxonomy presented in [6℄. Following, a briefdesription of some aspets from an aspet framework, alled DERAF [7℄, are presented to demonstrate how todeal with time-related NFR. Afterwards, an extension to DERAF, in terms of new aspets to deal with dynamireon�gurable load-balaning, are is presented.2.1. Non-funtional Requirements. DRE systems domain presents a large set of NFR. Depending onthe appliation domain, some requirements are more important than others. The same an be said aboutNFR handling: some of NFR are mandatory handled, while others are not. In this sense, Fig. 2.1 shows NFRtaxonomy presented in [6℄, whih fous on some of these very important requirements of DRE systems domain.

Non-Functional

Requirements

Generic Specific

Time

Timing

Deadline

Period

Cost

Release Time

Activation Latency

Start and End

Precision

Jitter

Tolerated Delay

Laxity

Freshness

Resolution

Drift

Performance
Response Time

Throughput

Distribution

Tasks Allocation

Hosts

Communication

Synchronization

Embedded

Area

Power Consumption

Total Energy

Memory AllocationFig. 2.1. NFR requirements for DRE systems.The real-time onerns are aptured by the requirements within the T ime lassi�ation, whih is dividedin T iming and Precision requirements. The former presents time-related harateristis of system's tasks,ativities, and/or ation, e.g. deadlines or periodi exeutions. The later denotes onstraints that a�et thetemporal behavior of the system in a ��ne-grained� way, determining whether a system has hard or soft timeonstraints. An example is the Freshness requirement, whih denotes the time interval within whih a valueof a sampled data is onsidered updated. Another key requirement is the Jitter, whih diretly a�ets systempreditability sine large variane in timing harateristis a�ets system determinism.
Performance requirements are not only tightly related to those presented in the T ime lassi�ation, butalso to those onentrated in the Distribution lassi�ation. They usually represent requirements employed toexpress a global need of performane, like the end-to-end response time for a ertain ativity performed by thesystem, or the required throughput rate in term of sending/reeiving messages.
Distribution lassi�ation presents requirements related to the distribution of DRE system's ativities,whih usually exeute onurrently. For instane, these onerns address problems suh as task alloation overdi�erent PUs, as well as the synhronization and ommuniation needs and onstraints. Conerns related toembedded systems generally present requirements related to memory usage, energy onsumption, and requiredhardware area size. Embedded lassi�ation gathers these onerns.

280 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. LarssonIn this paper, the interest is to provide a runtime reon�gurable solution aiming at meeting time-relatedrequirements. All mehanisms related to tasks migration among di�erent PUs are non-funtional rossuttingonerns, whih are tightly related to system reon�guration. In this sense, tasks migration is not only anexpeted �nal behavior of any system, but it also a�ets several funtional elements in di�erent ways and indi�erent parts of the system.2.2. Time-related Aspets. In order to address the mentioned T ime and Precision requirements, thiswork (re)uses aspets from the Distributed Embedded Real-time Aspets Framework (DERAF) [7℄. DERAF'sTiming and Preision pakages are presented in Fig. 2.2. A short desription of eah aspet is provided in thefollowing paragraphs. Interested readers are pointed also to [7℄ for more details about DERAF.TimingAttributes: adds timing attributes to ative objets (e.g. deadline, priority, WCET, start/endtime, among others), and also the orresponding behavior to initialize these attributes.PeriodiTiming: ontrols exeution of ative objets by means of a periodi ativation mehanism. Thisimprovement requires the addition of an attribute representing the ativation period and a way to ontrol theexeution frequeny aording to this period.ShedulingSupport: inserts a sheduling mehanism to ontrol the exeution of ative objets. Addition-ally, this aspet handles the inlusion of ative objets into the sheduling list, as well as the exeution of thefeasibility test to verify if the ative objets list is shedulable.TimeBoundedAtivity: limits the exeution of an ativity in terms of a deadline for �nishing this ativity,i. e. it adds a mehanism to restrit the maximum exeution time for an ativity, e.g. it limits the time whih ashared resoure an be loked by an ative task. Jitter: measures the variane of ativities' timing harateristisby means of measuring their start/end time, and alulating the variation of these metris. If the toleratedvariane was overran, orretive ations an be performed.ToleratedDelay: restrits maximum lateny for the beginning of an ativity exeution, e.g. limits themaximal duration in whih a task an wait to aquire a lok on a shared resoure.DataFreshness: ontrols system data's expiration by means of assoiating timestamps to them, and alsoby verifying data validity before using them. Every time ontrolled data are written, their assoiated timestampsmust be updated. Similarly, before reading these data, their timestamps must be heked [2℄.ClokDrift: ontrols deviation of lok referenes in di�erent PUs. It measures the time at whih anativity starts, omparing it with the expeted time for the beginning of this ativity; it also heks if theaumulated di�erene among suessive heks exeeds the maximum tolerated lok drift. If this is the ase,some orretive ation is performed.
<<Non−Functional>>

Timing

<<Aspect>>

TimeBoundedActivity <<Aspect>>

SchedulingSupport

<<Aspect>>

TimingAttributes
<<Aspect>>

PeriodicTiming

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<Aspect>>

DataFreshness

<<Aspect>>

Jitter

<<Aspect>>

ClockDrift

<<use>>

<<use>> <<use>>

Fig. 2.2. Timing and Preision pakages from DERAF.2.3. Aspets to Support Tasks Self-Resheduling. As mentioned before, task migration supportharaterizes a non-funtional rossutting onern in dynami tasks resheduling, spreading its handlingmehanisms over several system's elements in a non-standard way. Therefore, we propose to use aspets todeal with this onern, and hene, two new aspets have been inorporated in DERAF: T imingV erifier,
TaskAllocationSolver.

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 281
T imingV erifier and TaskAllocationSolver aspets use time parameters inserted by Timing pakage'saspets, and also servies provided by aspets from the Preision pakage. To keep DERAF logial organization,both aspets have been inluded in an additional pakage, named TaskAlloation pakage, is inluded. Fig. 2.3depits the resheduling-related pakage.

<<Non−Functional>>

Reconfiguration

<<Aspect>>

TaskAllocationSolver

<<Aspect>>

TimingVerifier

<<Non−Functional>>

TaskAllocation

<<Aspect>>

NodeStatusRetrieval

<<Aspect>>

TaskMigration

<<Non−Functional>>

Precision

<<Aspect>>

ToleratedDelay

<<Aspect>>

DataFreshness

<<Aspect>>

ClockDrift

<<Aspect>>

Jitter

<<use>>

<<use>> <<use>>

<<use>>

<<use>>

Fig. 2.3. Aspets for Reon�guration inluded in DERAF.
T imingV erifier aspet is responsible for heking if PUs are being able to ful�ll with timing require-ments spei�ed by T imingAttributes, PeriodicT iming, ToleratedDelay and T imeBoundedActivity aspets.In addition, T imingV erifier uses servies provided by Jitter and ClockDrift.To perform this heking, a mehanism, whih ontrols if timing attributes are being respeted, is insertedin the beginning and in the end of eah task. More spei�ally, this mehanism onsists in measuring theurrent time, omparing it with requirements spei�ed by the orrespondent attributes. For example, tasksdeadlines' aomplishment an be heked by measuring the time in whih a task atually �nishes its om-putation, omparing this value with the time in whih this task was supposed to �nish. T imingV erifieruses the servie of the Jitter aspets to gather information about the jitter related to analyzed require-ment (in the mentioned example, the task's deadline). Moreover, onsidering the deadline again as example,

T imingV erifier heks if the non-aomplishment of a task's deadline is onstant, or if it varies in di�erentexeutions or in the hanging the platform senario. In this sense, T imingV erifier an be used as base infor-mation, for instane, to know if the interation among task is the responsible for the variane in tasks exeutiontime.
ClockDrift aspet is used by T imingV erifier to gather information about synhronization among thedi�erent PUs, whih is used, in addition to the time spent for task migration between PUs, to alulate theoverall migration ost. To illustrate this idea, let's onsider a task that has been migrated from a PU �A� to aPU �B", whih is faster than PU �A� and potentially more apable of exeuting this task. The di�erene in thelok referene between these PUs ould lead to an additional delay for this task's outome (oming from PU�B") that would not be worth in omparison with letting the task to run in the PU �A".The seond key aspet for tasks dynami resheduling is the TaskAllocationSolver. It is responsible fordeiding if a task will be migrated or not, and also for seleting to whih PU this task is migrated. Forthat, TaskAllocationSolver heks the overload status of all destination PUs and the time spend for taskmigration, in order to deide if it is worthwhile to perform the migration. Hene, TaskAllocationSolveruses the measurements provided by T imingV erifier aspet. Based on these data, the reasoning about taskreon�guration feasibility is performed, as explained in the next setion.

282 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. LarssonThe reon�guration itself and the retrieval of PUs status are performed by two other aspets from DERAF:
TaskMigration and NodeStatusRetrieval. This way, reasoning and exeution of tasks reon�guration aredeoupled, allowing that hanges performed by one aspet do not a�et the other one. A brief summary of the
TaskMigration and NodeStatusRetrieval aspets is provided in the following.TaskMigration: provides a mehanism to migrate ative objets (tasks) from one PU to another one. Itwas originally used by aspets that ontrol embedded onerns and, in the present work, is extended to provideservies needed by TaskAllocationSolver aspet.NodeStatusRetrieval: inserts a mehanism to retrieve information about proessing load, send/reeivemessages rate, and/or the PU availability (i. e. �I'm alive� message). Before/after every exeution of a�etedative objets (tasks), the proessing load is alulated. Before/after every sent/reeived message, the messagerate is omputed. Additionally, PU availability message is sent at every �n� message or periodially with aninterval of �n� time units. All of these information are taken into aount by TaskAllocationSolver during thetasks migration deision proess.3. Dynami Tasks Self-Sheduling. A task-based approah is then used, in whih eah task is designedto be an independent algorithm. They are grouped aording derivation of the same high-level lass, simplifyingthe managing of possible dependenies. Besides, it is oherent to assume that a group of tasks will have similarharateristis and hene would be desirable to exeute in the same PU. However, this an lead to a non-optimalexeution performane and must also be onsidered in the dynami strategy disussed in the next sub-setions.3.1. First Assignment of Tasks. For the �rst assignment of tasks, we do not use the modeled aspets,sine tasks' real time measurements are unknown on �rst exeution. One possibility is to perform the �rstshedule as a ommon assignment problem using Integer Linear Programming (ILP) and appliation timingrequirements, similar to the approah used by [9℄. This way, a set of tasks i = 1 to n have an implementation
x and an exeution ost estimation c on eah PU j; and the alloation was following designed: the task i is notalloated on the proessor j when xi,j = 0 and the task i is alloated on the proessor j when the xi,j = 1. Theonstraints for the model were the maximum workload for the PUs. Bellow, the onstraint of eah proessingunit j (U max), based on [9℄:

Uj =

n
∑

i=1

xi,jci,j ≤ Ujmax
(3.1)The best alloation was, then, found using the objetive funtion that minimizes the resoure utilization(perentage of oupany for the PUs), de�ned as:

{

n
∑

j=1

n
∑

i=1

xi,jci,j

} (3.2)being the assignment variables xi,j the solution for the modeled ILP, m the number of omputing units and nthe number of onsidered tasks.The mentioned ILP problem is of NP-hard omplexity and beome more omplex in the sope of this workwhen dealing with more than two omputing units and several tasks. To optimize the assignment alulation,some approahes onentrate on heuristis, as presented on [13℄.However, this diretion of estimating osts neither onsiders real exeution times nor ould represent thebest assignment sine a great number of estimations is used. This way, a seond step of assignment allows takinginto aount real exeution measurements extrated from the proessors as well as dealing with the onstraintspresented by the NFRs. Based on that, the following dynami module deals with real performane exeutionvariables and possibly leads to a further better task assignment.3.2. Task Sheduling Reon�guration. After the �rst assignment, information provided by the pro-�ling aspets is onsideredonsidered. Based on involved estimated osts (previously alulated using the pre-proessing approah of the �rst guess) and possible �interferenes� of runtime onditions and new loaded tasks,one task an be resheduled to run in other proessing unit just if the estimated time to be exeuted in the newhardware will be less than the time in the atual unit, i. e., just if there is a gain. Simply, this relationship anbe modeled in terms of the osts:
TreconfigPUnew < TremainingPUold − TestimatedPUnew − Toverhead (3.3)

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 283where the remaining time (TremainingPUold) and the estimated time (TestimatedPUnew) are alulated, respe-tively, for the urrent PU and for the andidate unit based on previous measurements (or on the �rst assignmentin the ase of �rst resheduling invoation). An overhead (Toverhead) is onsidered to alulate the exeutiontime of the reon�guration itself. The relationship between TremainingPUold and TestimatedPUnew is, then, thepartial gain.The information to alulate the resheduling will be then provided by the TimingVeri�er aspet and anbe modeled as:
TreconfigPUnew = TsetupReconfigPUnew + TtemporaryStorage +

TtransferRate + TexecutionPUnew + L
(3.4)where TsetupReconfigPUnew represents the time for setting up a new on�guration on the new proessor;TtemporaryStorage is the time spent to save temporal data (onsidering shared and global memory aess);TtransferRate measures the ost for sending/reeiving data from/to the CPU to/from the new proessing unit,whih an be a bottlenek on the whole alulation; TexecutionPUnew symbolizes the measured or estimated ostof the task proessed in the new unit; and L denotes a onstant to represent possible system lateny.Reinforing the onepts, this approah deals with runtime onditions, like input emphdata type and amountto be proessed, tasks assignment, and instantiation of new tasks �on the �y�. All these runtime parametersthat ould not be known a priori an in�uene the exeution of the system and must be evaluated periodially,leading to a large number of reon�guration analysis and deisions. Then, supposing that a determined task isgoing to be exeuted n times in a determined time window, the strategy bellow reshedules the formed queueof task instantiations, giving a new relation of gain, just if the following assumption ours:

TreconfigPUnew <

n
∑

i=1

(

TtaskPUoldi
+ TtransferPUoldi

− TtaskPUnewi
− TtransferPUnewi

) (3.5)where Treon�gPUnew is the time to perform the reon�guration (mainly data transfer from the urrentproessing unit to the new one if the task needs the alulated data done until the time of resheduling),TtaskPUold is the time performane of the task in the urrent unit, TtransferPUold is the time for trans-ferring data from CPU to the urrent omputing unit (via bus), TtaskPUnew is the assumed time performaneof the task in the andidate proessing unit, and TtransferPUnew is the time for transferring data from CPUto the andidate unit (via bus).Algorithm 1, bellow, desribes the task realloation module. It is also important to mention that theheuristi needs improvements along future works.Algorithm 1 Task Realloation Heuristi.1: Aquire Timing Data (Performane) about Previous Tasks Exeution, storing them in a performaneDatabase (Initialized aording to First Assignment Phase and Regularly Updated);2: Aquire information about PUs;3: if Task has never been not exeuted then4: Alloate it to a PUs aording to First Assignment, storing it on the Database;5: end if6: Calulate Equation 3.5 aording to Performane Data;7: Exeute Load-Balaning Algorithm;8: Perform Reon�guration Deision;9: Reshedule Task to perform the Reon�guration when appliable;10: Store Performane Data in the Database;4. Case Study: UAV-based Area Surveillane System. The use of the presented ideas is illustratedby a ase study that onsists of a �eet of Unmanned Aerial Vehiles (UAVs) in the ontext of area surveillanemissions. This kind of system has several kinds of appliations, suh as military surveillane, borderline pa-trolling, and ivilian resue support in ases of natural disasters, among others. Fig. 4.1 illustrates a militarysurveillane usage senario where the UAVs an also ommuniate with eah other.Suh UAVs an be equipped with di�erent kinds of sensors that an be applied, depending on the weatheronditions, time of the day and goals of the surveillane mission [16℄. In this ase study, it is onsidered a �eet

284 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. Larsson

Fig. 4.1. UAV-based Area Surveillane System.of UAVs that might aomplish missions during all the day and under whatever weather ondition. UAVs mustbe able to provide di�erent levels of information de�nition and detail, depending on the required data.The UAVs reeive a mission to survey a ertain area, providing required data aording to mission diretions.Their movements are oordinated with the other UAVs in the �eet to avoid ollisions and also to provide optimumoverage of the target area.Eah UAV is omposed by six subsystems, making it apable to aomplish its mission and alto to oordi-nate with the others UAVs. These subsystems are: Collision Avoidane, Movement Control, Communiation,Navigation, Image Proessing, and Mission Management.At this point, it is important to highlight the trade-o� regarding ost, weight and size, and e�etivenessof eah UAV. The devie, as a whole, may not be too big nor too heavy, in order to avoid unneessary fuelonsumption, as well as to be less suseptible of detetion by ounter fores sensors. Additionally, it may nothave an enormous ost that ould forbids the projet. However, the UAV must be e�etive enough to providethe required data within an a�ordable ost and time budget. For more details about this trade-o� disussionwe address the readers to [16℄.Another UAV's interesting feature is the possibility to apply di�erent poliies to missions, depending on user�nal intentions and spei� requirements. There are two extremes for these poliies: (i) Devie PreservationAnyhow and (ii) Mission Aomplishment Anyhow. The �rst one onsists of preserving UAVs even if themission is not aomplished. It is espeially applied in ases in whih the devies an be destroyed and theinformation gathered by it is not worth ompared to the ost of its destrution. On the other hand, in MissionAomplishment Anyhow poliy, the information gathered by the UAVs (and transmitted to the base station)is highly ritial and overomes the value of devie loss. Within these poliies, there are a variety of otherfators that imposes di�erent onstraints to mission aomplishment and devie preservation. Depending onthe mission poliy adopted, more resoures an be (re)direted to tasks related to the movement ontrol (whenthe UAV is esaping from a dangerous situation) or data gathering and proessing (when information gatheringhas the highest priority).In order to run the tasks desribed above, meeting the highlighted requirements and onstrains modeled onthe previous setions, we onsider UAVs equipped with the following sensors: Visible Light Camera (VLC); SARRadar (SARR) and Infra-Red Camera (IRC). To support the movement ontrol and devies ommuniation,eah UAV is equipped with a hybrid �desktop�-based target platform whih is used aording to spei� needsduring the aomplishment of a ertain mission, as detailed on setion 4.2.In this sense, eah mentioned subsystem has a number of tasks to perform speialized ativities related toa spei� funtionality, as depited in the use ases diagram presented in Fig. 4.2. Based on the analyses of the

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 285UAV funtionalities, a summary of these tasks is provided in the following paragraphs.
Short-Range

Communication

Long-Range
Communication

Collision
Avoidance

Communication

Mission
Management

Navigation

Image
Processing

Movement
Control

Collision
Detection

Onground
Station

Route
Control

Target
Persuit

Coordination

Unmanned
Aerial Vehicle

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Fig. 4.2. UAV Use Cases Diagram.Navigation guides the UAV movements, sending ontrol information to the Movement Control subsystem.It is omposed by the RouteControl and TargetPersuit tasks. The �rst task makes the neessary omputationto guide the UAV through established waypoints, while the seond one performs the same, but for dynamiwaypoints that an be modi�ed aording to a moving objet.Image Proessing gathers analog images, digitalizing them for further proessing. It is omposed by�ve tasks: (i) CameraController, whih is responsible for amera movement, zoom and fous ontrol of IRCand VLC, and antenna diretion of SARR; (ii) Coder, whih odi�es the analog input into digital data; (iii)Compressor, whih ompresses the digital images; (iv) Re�eti�ator, whih is responsible for the re�etion inX and Y axis of radar image, as well as the reti�ation, that are neessary to avoid distortions in gatheredimages; (v) Filter, whih �lters radar images to eliminate the noise due to spekle e�et [14℄.Communiation it has two main tasks: LongRangeCom and ShortRangeCom. The �rst task providesonnetivity with pair ommuniation nodes in long distanes (of the order of kilometers), while the seond oneprovides onnetivity in short range distanes (of the order of meters). These two tasks uses a third one, alledCode, whih ode and deode data transmissions.Mission Management has also two tasks: MissionManager and Coordinator. The �rst one managesthe information about the mission, suh as required data, mission poliy and resoure autonomy ontrol (e.g.remaining fuel). On the other hand, the seond one drives the oordination with the other UAVs to avoidoverlapping in the surveillane area.Collision Avoidane is omposed by two tasks: CollisionDetetor, whih detets possible ollisions withother UAVs of the �eet or non ooperative �ying objets; and CollisionAvoider, whih alulates UAV's ollisionesape diretions, sending them to the Movement Control subsystem.4.1. Exeution Platform. The target arhiteture of eah UAV is omposed of a four heterogeneousPUs platform: one host (the CPU), two GPUs, a PPU, and a PCICC. Fig. 4.3 shows the desired platform,where the Profiling gathers information from PUs (tasks performane) and the Reconfiguration distributesthe tasks along them (intra alloation) aording to the presented algorithms. It also onsider sending data tobe proessed by other UAVs (inter alloation).4.2. Reon�guration Approah. Starting the mission, the UAVs have an initial task alloation through-out the CPU and the PU devies aording to sub-setion 3.1. In the urrent experimentation, it was onsideredto use the ILP approah for the �rst distribution using the GLPK toolkit [8℄. Table 1 exhibits estimated osts(based on [3℄) and �rst tasks' priorities that feed the GLPK-based simulation of task sheduling.During exeution, the mehanisms injeted by TimingVeri�er and the aspets Jitter and ClokDrift willstart to generate information related to timing measurements. The TimingVeri�er aspet will provide data toTaskAlloationSolver, whih will get data from NodeStatusRetrieval. With the reasoning mehanisms, it willperiodially analyze the provided information aording to the algorithm introdued in 3.2.

286 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. Larsson
Intra/Inter-UAV Run-Time Reconfigurable Load-Balancing

UAV1 Heterogeneous Platform

Multi-core

CPU

GPU 2

GPU 1
PPU PCICC

Profiling

(TimingVerifier)

Reconfiguration

(TaskAllocationSolver)

Fig. 4.3. Exeution platform.Table 4.1Task Estimation Costs.Task Estimated Cost (sale: 1 to 6) First PriorityGPU PPU CPU PCICC (sale: 1 to 6)Image Proessing 1 4 6 � 1Collision Avoidane 3 2 5 � 2Movement Control 2 2 3 � 1Navigation 1 1 2 � 3CommuniationShort/Long range 4/6 � 3/5 1/2 4Mission Manage-ment 5 � 1 � 6Emphasis is given to the RIP subsystem, whih is onsidered to be the group that requires more proessingdue to the handling of large data and new instantiations reated dynamially. The RIP work�ow is depitedon Fig. 4.4. Theoretially, tasks assoiated to RIP should exeute with better performane on a GPU deviewhen the appliation is not aware about the ontext of the whole exeution senario, i. e. exeuting standalone. Thus, initial demands of all tasks should be exeuted in the GPU. Shortly, the aptured data (rawsalar image) must be �adjusted� regarding the SAR position parameters (range and azimuth), followed by FastFourier Transform (FFT), image rotation, and other orretions to produe the �nal image. This proess anbe performed individually in the range and azimuth diretions and it onsists basially in a data ompression onboth diretions using �lters that maximize the relation between the signal and the noisy. Readers are addressedto [5℄ to get re�ned explanations about the work�ow.Afterwards, in the explored surveillane system, the �nal image is submitted to a pos-proessing in orderto identify regions of interest that ould ontain objets spei�ed in the mission diretions as a �pattern tobe found� or a �target�. In this ase, more resolution on spei� areas will be needed and new data will begenerated, demanding more proessing from the assigned PU(s) in order to produe new images and extratrelevant information (patterns).Based on that desription, this dynami senario learly in�uenes the tasks' priority sine, at a moment, thenew high-resolution images will have higher priorities if ompared to others that beame more �generi". Theseevents annot be predited a priory and the veri�ation of suh situation require a smart, ontext-aware, anddynami reon�guration support to balane the workload, aomplishing the timing requirements and budget.4.3. Results. Considering 2 UAVs in the ase study, Table 4.2 denotes the behavior of the dynamireshedule load-balaner simulator. The ��rst guess� represents one instantiation of eah group of tasks assignedto a PU; and with dynami reation of new groups (4, 8, and 12) of RIP tasks, the assignment is hanged andoptimized to minimize the total exeution time. Note that these values annot represent the best assignmentsine the version of the simulator did not onsider all parameters that in�uene the whole system. As it is an

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 287
SAR Parameters Captured Data

Copy of the
Transmitted

 Signal

Copy of the Doppler
Signal Deviation

Matrix Rotation

Migration
Correction in

range

FFT

SAR Image

Range Filter

Azimuth Filter

FFT

IFFT

FFT

FFT

IFFTFig. 4.4. SAR Image Proessing (based on the notes of [5℄).Table 4.2Task Assignment.Task 1st Gess Dynami Image ProessingCreated Tasks4 8 12Image Proessing GPU1 GPU1 GPU1 GPU1GPU2 GPU2 GPU2PPU UAV2-GPU1Collision Avoidane GPU2 PPU CPU CPUMovement Control PPU PPU CPU CPUNavigation PPU PPU PPU CPUCommuniation CPU CPU CPU PCICCMission Management CPU CPU CPU CPUongoing work, more aurate data about the reshedule must be provided along the simulator's re�nement inorder to represent the senario as realisti as possible.5. Related Work. VEST (Virginia Embedded System Toolkit) [15℄ is a set of tools that uses aspets toompose a distributed embedded system based on a omponent library. Those aspets hek the possibilityof omposing omponents with the information taken from system models. It provides analysis suh as taskshedule feasibility. However, it performs statially analysis at ompiling time. In our proposal, aspets are useddynamially to hange the system on�guration at runtime, adapting its behavior to new operating onditions.

288 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. LarssonAlthough there are some related works onerning dynami reon�guration in luster omputing, like forexample ([18℄; [12℄; [1℄), our approah onentrates on single desktop platforms omposed by di�erent proess-ing units where the reon�guration is performed within these devies. In this way, the work presented by [9℄implements dynami reon�guration methods for Real-Time Operating System servies running on a Reon�g-urable System-on-Chip platform based on CPU and FPGA. The method, based on heuristis, take into aountthe idleness perentage of the omputing units and unused FPGA area (alulated as pre-proessing) to per-form the load-balaning and to deide about a reon�guration of tasks in runtime by means of task migration.Our approah omplements this related work, developing generially methods that omprise more than twoproessing units and that work with dynami performane data.Targeting GPUs, the work of [17℄ presented a programming framework to ahieve energy-aware omputing.On the proposed strategy, the ompiler translates the framework ode to a C++ ode for CPU and a CUDAode for GPU. Then, a runtime module dynamially selets the appropriate proessor to run the ode takinginto aount the di�erene in energy e�ieny between CPU and GPU based on energy onsumption estimationmodels. However, it does not take into aount runtime energy measurements (runtime pro�ling), whih is animportant module of our work.Another approah, fousing performane improvement of spheres ollision detetion simulation, was pro-posed by [10℄, in whih some strategies have been presented to perform data balaning over CPU and GPU,both in an automatially and manually options. That work takes into aount the performane of a kernelimplemented on the CPU and GPU. After the exeution starts, both versions of the programs are exeutedwith equally input data and time performane is veri�ed. More data are then dynamially assigned to theproessor that exeuted faster the previous data, indiating that the approah uses data deomposition insteadof task deomposition. Our work onentrates on task deomposition and its dynami assignment aording toestimated or pro�led performane.The work presented in [4℄ published a study to aelerate ompute-intensive appliations using GPUs andFPGAs, listing some of their pros and ons. The work performed a qualitative omparison of appliation behav-ior on both omputing units taking into aount hardware features, appliation performane, ode omplexity,and overhead. Although GPUs an o�er a onsiderable performane gain for ertain appliation, that work'sresults showed that FPGAs an be an interesting omputing unit and ould promote a higher performaneompared to GPU when appliations require �exibility to deal with large input data sets. However, using FP-GAs omes with ost of hardware on�guration before using it as a omputing unit, a task usually oriented toexperiened users. Thus, task reon�guration frameworks, as the one presented in this work, ould provide ahigher abstration layer to assist developers during system design.6. Conlusions and Future Work. This paper presents a methodology to address the problem of e�ienttask assignment in runtime targeting hybrid omputing platforms. It allows the use of resoures o�ered byan asymmetri omputer platform, providing ompliane with dynami hanges in timing requirements andonstraints, and also runtime onditions. In order to ahieve the proposed goals, our proposal uses an aspet-oriented framework in onjuntion with a dynami task self-resheduling strategy, in order to address thedynami runtime senarios under onern.A UAV-based surveillane system simulation has been used to show the need for workload adaptationrequired by sophistiated appliations, running on top of hybrid omputers, whih fae dynami exeution se-narios. Real-time task resheduling was applied on UAV PUs, fousing on RIP. Results indiate that reshedul-ing ontributes to a more appropriate system resoure usage, and hene towards performane improvement.Sending/reeiving data between UAVs was also onsidered, but details about spei� problems related to theseinterations, suh as delays in the ommuniation between the UAVs, have not been foused by this text.Future diretions lead to re�ne the sheduling strategy to provide omplete simulations, onsidering alarger range of runtime parameters, inluding the reon�guration osts itself; and real algorithms for UAV'ssubsystems, emphasizing RIP dynamiity. Heuristis to predit the future alloation of tasks based on its reentuse seems to be a good strategy, and will possibly avoid unneessary reon�gurations in a spei� time-window.Aknowledgments. A. P. D. Binotto thanks the partial support given by DAAD fellowship and theProgramme Alÿan, the European Union Programme of High Level Sholarships for Latin Ameria, sholarshipno. E07D402961BR.E. P. Freitas thanks the Brazilian Army for the given grant to pursue the PhD program foused on EmbeddedReal-time Systems at Halmstad University in ooperation with UFRGS (Brazil).

Towards Task Dynami Reon�guration Over Asymetri Computing Platforms. 289REFERENCES[1℄ B. B. Brandenburg, J. M. Calandrino, and J. H. Anderson, On the Salability of Real-time Sheduling Algorithmson Multiore Platforms: a ase study, Proeedigns of Real-Time Systems Symposium, (2008), pp. 157�169.[2℄ A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenio, F. Di Gi, B. Omenio, K. Ramamritham, J. Stankovi,and L. Strigini, The Meaning and Role of Value in Sheduling Flexible Real-Time Systems, Proeedigns of EarlyAspets: Current Challenges and Future Diretions, 46 4 (2000), pp. 305�325.[3℄ G. Cai, K. Peng, B. M. Chen, and T. H. Lee, Design and Assembling of a UAV Heliopter System, Proeedigns ofInternational Conferene on Control and Automation, (2005), pp. 697�702.[4℄ S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lah, Aelerating Compute-Intensive Appliations with GPUs andFPGAs, Proeedigns of Symposium on Appliation Spei� Proessors, (2008), pp. 101�107.[5℄ I. Cumming and F. Wong, Digital Proessing of Syntheti Aperture Radar Data, Arteh House-London, 2005.[6℄ E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, F. R. Wagner, E. T. Silva Jr., and F. C. Carvalho, UsingAspet-Oriented Conepts in the Requirements Analysis of Distributed Real-Time Embedded Systems, Proeedigns ofInternational Embedded Systems Symposium, (2007), pp. 221�230.[7℄ E. P. Freitas, M. A. Wehrmeister, C. E. Pereira, F. R. Wagner, E. T. Silva Jr., and F. C. Carvalho, DERAF:A High-Level Aspets Framework for Distributed Embedded Real-Time Systems Design, Proeedigns of Early Aspets:Current Challenges and Future Diretions, (2007), pp. 55�74.[8℄ The GNU Projet, GLPK�GNU Linear Programming Kit, In http://www.gnu.org/software/glpk/. Aess in Jun. 2008.[9℄ M. Götz, F. Dittmann, and T. Xie, Dynami Reloation of Hybrid Tasks: A Complete Design Flow, Proeedigns ofReon�gurable Communiation-entri SoCs, (2007), pp. 31�38.[10℄ M. Joselli, M. Zamith, E. Clua, A. Montenegro, A. Coni, R. Leal-Toledo, L. Valente, B. Feijo, M. Dornelas,and C. Pozzer, Automati Dynami Task Distribution between CPU and GPU for Real-Time Systems, Proeedigns ofthe IEEE International Conferene on Computational Siene and Engineering, (2008), pp. 48�55.[11℄ G. Kizales, J. Irwin, J. Lamping, J. M. Loingtier, C. Videira Lopes, C. Maeda, and A. Mendhekar, Aspet-Oriented Programming, Proeedigns of European Conferene for Objet-Oriented Programming, (1997), pp. 220�242.[12℄ M. Linderman, J. Collins, H. Wang, and T. Meng,Merge: A Programming Model for Heterogeneous Multi-ore Systems,ACM Sigplan Noties, 43 3 (2008), pp. 287�296.[13℄ M. MCool, Salable Programming Models for Massively Multiore Proessors, Proeedings of the IEEE, 96 5 (2008),pp. 816�831.[14℄ M. I. Skolnik, Introdution to Radar Systems, Third ed., MGraw-Hill, 2001.[15℄ J. A. Stankovi, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey, and B. Ellis, VEST: Aspet-Based Com-position Tool for Real-Time System, Proeedigns of Ninth IEEE Real-Time and Embedded Tehnology and AppliationsSymposium, (2003), pp. 58�69.[16℄ D. M. Stuart, Sensor Design for Unmanned Aerial Vehiles, Proeedigns of IEEE Aerospae Conferene, (1997), pp. 285�295.[17℄ H. Takizawa, K. Sato, and H. Kobaiashi, SPRAT: Runtime Proessor Seletion for Energy-aware Computing, Proeedignsof the IEEE International Conferene on Cluster Computing, (2008), pp. 386�393.[18℄ P. Wang, J. Collins, G. Chinya, H. Jiang, X. Tian, M. Girkar, N. Yang, G. Y. Lueh, and H. Wang, EXOCHI:Arhiteture and Programming Environment for a Heterogeneous Multi-ore Multithreaded System, Proeedigns of theACM SIGPLAN onferene on Programming language design and implementation, (2007), pp. 156�166.[19℄ M. A. Wehrmeister, E. P. Freitas, D. Orfanus, C. E. Pereira, and F. Ramig, A Case Study to Evaluate Pros/-Cons of Aspet- and Objet-Oriented Paradigms to Model Distributed Embedded Real-Time Systems, Proeedigns of 5thInternational Workshop on Model-based Methodologies for Pervasive and Embedded Software, (2008), pp. 44�54.Edited by: Janusz ZalewskiReeived: September 30, 2009Aepted: Otober 19, 2009

