
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 221�237. http://www.spe.org ISSN 1895-1767© 2010 SCPEOPTIMIZING IMAGE CONTENT-BASED QUERY APPLICATIONS OVER HIGHLATENCY COMMUNICATION MEDIA, USING SINGLE AND MULTIPLE PORTCOMMUNICATIONSGERASSIMOS BARLAS∗Abstrat. One of the earliest appliations that explored the power and �exibility of the grid omputing paradigm was medialimage mathing. A typial harateristi of suh appliations is the large ommuniation overheads due to the bulk of data thathave to be transferred to the ompute nodes.In this paper we study the problem of optimizing suh appliations under a broad model that inorporates not only ommu-niation overheads but also the existene of loal data ahes that ould exist as a result of previous queries. We study the asesof both 1- and N-port ommuniation setups. Our analytial approah is not only omplimented by a theorem that shows how toarrange the sequene of operations in order to minimize the overall ost, but also yields losed-form solutions to the partitioningproblem.For the ase where large load imbalanes (due to big di�erenes in ahe sizes) prevent the alulation of a losed-form solution,we propose an algorithm for optimizing load redistribution.The paper is onluded by a simulation study that evaluates the impat of our analytial approah. The simulation, whihassumes a homogeneous parallel platform for easy interpretation of the results, ompares the harateristis of the 1- and N-portsetups.Key words: parallel image registration, divisible load, high performane1. Introdution. In the past �ve years there has been a big drive towards harnessing the power of paralleland distributed systems to o�er improved medial servies in the domain of 2D and 3D modalities. Content-based queries are at the ore of these servies, allowing physiians to ahieve higher-auray diagnoses, ondutepidemiologial studies or even aquire better training among other things [1℄.In [2℄, the authors present a high-level overview of the methodologies used for medial image mathing. Theauthors identify two broad types of approahes: image retrieval that utilizes similarity metris to o�er suitableandidate images and image registration that tries to �t the observed data onto �xed or deformable models.Finally, the authors suggest an integrated system arhiteture that ould ombine the advantages of the twoapproahes. A omprehensive review and lassi�ation of urrent medial image handling systems is publishedin [3℄.Apart from the lassi�ation mentioned in [2℄, image registration tehniques are also lassi�ed based onwhether:
• Image features are used (ontrol-point based) or the whole (or an area of interest) image (global regis-tration).
• Work is done at the spatial or frequeny domain.
• Global (rigid) or loal (non-rigid) geometrial transformations are used.The key problem is determining the optimum geometrial transformation. A brute-fore approah entailshuge omputational requirements, leading researhers to either perform the searh in several re�nement steps[4, 5℄, or swith to heuristi tehniques suh as geneti/evolutionary algorithms and simulated annealing [6, 7℄.Domain spei� tehniques have been also suggested [8℄.A domain whih has been enjoying early suess is mammography [9, 1, 10℄. Many projets that seek toharness the power of Grids [11℄ to o�er advaned medial servies have spawned over the last 8 years. A typialexample is the MammoGrid projet. Amendolia et.al present an overview of its servie arhiteture design in [1℄.On the other side of the Atlanti, the National Digital Mammography Arhive Grid is a similar initiative [10℄. AP2P system that seeks to address salability issues that arise with the operation of typial lient-server systemshas been also proposed in [12℄.While the problem of image registration is inherently `embarrassingly' parallel, the domain has seen littlework on performane optimization espeially over heterogeneous platforms. In [5℄ the authors use wavelets toperform global registration in inreasing re�nement steps that allows them to redue the searh spae involved.Zhou et al. also evaluate four parallelization tehniques and derive their omplexity in big-O notation by
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222 G. Barlasimpliitly assuming a homogeneous platform. However, they fail to take into aount the ommuniationoverheads involved and use their analysis to optimize the load partitioning of their strategies.Ino et al. propose a uniform inter-image 2D partitioning for performing 2D/3D registration, i. e. estimatethe spatial loation of a 3D volume from its projetion on a 2D plane [13℄. While Ino et al. disuss otherpossible distributions, they do not use an appropriate model that would allow for optimization. Subsequently,in [14℄ the authors ompare very favourably a GPGPU approah with their parallel implementation on 2D/3Dregistration.De Falo et al. have employed a di�erential evolution mehanism for estimating the parameters of an a�netransformation for global registration [6℄. The load distribution is performed on the population level, while atregular intervals, individuals are exhanged between neighboring nodes on the torus arhiteture used.One of the early systems is the one desribed in [9℄. Montagnat et.al use an array of high run-time ost, pixel-based, image retrieval algorithms to answer image similarity queries. As desribed in [15℄, the homogeneoussystem that is used to run the queries employs equal size partitioning, e.g. the M images that need to beompared against a new one, are split into k jobs of size M
k
. In [15℄ the authors develop empirial ost modelsfor eah of the similarity metris used to answer a ontent-based query. These are omplemented by a study ofthe sheduling and data repliation osts that are inurred upon submitting a job to a Grid platform.While the models shown in [15℄ apture muh of the inner workings of the algorithms used, they are not themost suitable for developing a strategy or riteria for optimizing the exeution of ontent-based queries. Instead,they fous on estimating the optimum number of jobs to spawn, given the high assoiated ost of task/resouresheduling on Grids.A partiular problem in deriving an analytial partitioning solution is that upon performing a sequeneof queries, the system is in a state where loal image ahes an redue the ommuniation ost. This is ofourse true as long as they refer to images of the same modality and type of ontent. To our knowledge, thispaper is the �rst attempt to treat this problem in an analytial fashion that inorporates all the aforementionedsystem/problem parameters.Our analytial approah belongs to the domain of Divisible Load Theory [16℄, whih sine its ineption inthe late 80s, has been suessfully employed in a multitude of problems [17℄. In [17℄ the problem of optimallypartitioning and sheduling operations for two lasses of problems identi�ed as query proessing and imageproessing respetively, has been studied. The problem haraterizations were based on the ommuniationharateristis and more spei�ally, the relation between the ommuniation ost and the assigned load. Thispaper �lls a gap left by that work by proposing a model and an analytial solution to image-query proessingappliations.The ontribution of our work is that for the �rst time a fully analytial model is employed to devise anoptimizing strategy for the total exeution time, given ommuniation osts and the state (and not just theapabilities) of the parallel platform. Our simulation study shows that the bene�ts of the proposed frameworkare signi�ant, in both a single-shot and a series of queries senarios. Also, by isolating the spei�s of themathing algorithms, our proposed solution is more adept to easy implementation and deployment, given thefew system parameters that need to be known/estimated.The organization of the paper goes as follows: in setion 2 the ost model used in our analysis is introduedand explained within a broader ontext. Setion 3.1 ontains a study of the two-node senario that ultivates toTheorem 3.1 for the optimum sequene of operations. The losed-form solutions to the partitioning problem for

N nodes in 1-port on�guration, is given in 3.2, while the N-port problem is solved in Setion 4. An algorithmfor managing the ahe size of the ompute nodes towards minimizing the exeution time, is given in setion 5.Finally, the simulation study in Setion 6 highlights the bene�ts and drawbaks of our analytial approah andbrings-up interesting fats about the di�erent ommuniation setups.2. Model Formulation. The arhiteture targeted in this paper onsists of N heterogeneous omputingnodes that reeive image data from a load originating node and return the results of the image mathing proessto it. The network arhiteture is a single-level tree or a bus-onneted one. Beause this an be a repetitiveproess, eah node an build up a loal image ahe that an be reused for subsequent queries. Hene the loadoriginating node has to ommuniate to the omputing nodes only what they are missing, either beause of theinorporation of new images or beause of the departure of nodes from the omputing pool.Our treatment of the problem is based on the formulation of an a�ne model that desribes the omputationand ommuniation overheads assoiated with the query data distribution, the image mathing proess and the



Optimizing Image Content-Based Query 223Table 2.1NotationsSymbol Desription Units
b is the onstant overhead assoiated with load distribution. It onsists of theimage to be mathed in addition to any query spei� data (e.g. mathingthresholds). B

d is the onstant overhead assoiated with result olletion. Typially d < b. B
eX is the part of the load whih is resident at node X , i. e. a loal image ahe. B
I is the typial size of an image used for image mathing. B
L the load that is has to be ommuniated to the omputing nodes B
lX is inversely proportional to the speed of the link onneting X and its loadoriginating node. sec/B

pX is inversely proportional to the speed of X . sec/B
partX is the part of the load L assigned to X , hene 0 ≤ partX ≤ 1. The total loadassigned to X is partXL+ eX

NAresult olletion phase. These models are losely related with the ones introdued in [17℄ although the semantisfor some of the onstants used here are di�erent. Given a node X that is onneted to a load originating nodewith a onnetion of (inverse) speed lX , we assume that the load distribution tdistr, the omputation tcomp andthe result olletion tcoll osts are given by:
tdistr = lX (partXL+ b) (2.1)

tcomp = pX (partXL+ eX) (2.2)
tcoll = lXd (2.3)The symbols used above, along with all the remaining ones to be introdued later in our analysis, are summarizedin Table 2.1.The total load to be proessed by N nodes is

N−1
∑

i=0

(partiL+ ei) (2.4)and for the ommuniated load parts we have:
N−1
∑

i=0

parti = 1 (2.5)The ontribution of the above omponents to the overall exeution time of node X depends on how om-muniation and omputation overlap. We an identify two ases:
• Blok-type omputation: no overlap between ommuniation and omputation. Node X an startomputing only after all data are delivered:

tX = lX (partXL+ b+ d) + pX (partXL+ eX) (2.6)
• Stream-type omputation: node X an start using eah loal image ahe immediately after reeivingthe query data. Computation an run onurrently with the ommuniation of the extra data partXL.There are two ases depending on the relative speed between ommuniation and omputation:� Communiation speed is high enough to prevent X from going idle i. e.

pX (partXL+ eX − I) ≥ lXpartXL (2.7)where I is the size of the last image to be ompared against the required one. Then:
tX = lX (b+ d) + pX (partXL+ eX) (2.8)
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DFig. 3.1. The four possible on�gurations of proessing by two nodes when 1-port ommuniations are used. Result olletionis assumed to be separated by a onstant delay D.� Node X has to wait for the delivery of data through a slow link, i. e. ondition (2.7) is invalid.Then:
tX = lX (b+ d) + lXpartXL+ pXI (2.9)The additional parameter that ontrols the overall ost when N nodes are used, is whether single-port or

N -port ommuniations are employed, e.g. whether the load originating node an distribute L onurrently tomultiple nodes.In the remaining setions we fous on blok-type tasks under both 1- and N-port ommuniation setups.Our derivations are based on the assumptions of uniform ommuniation media, i. e. li = l ∀i. A omparisonbetween the two ommuniation setups is performed in setion 6.It should be noted that the stati model proposed in this paper, while not apparently suitable for a gridomputing senario, in whih omputation and ommuniation osts hange over time, it an form the basisfor an adaptive sheduler that modi�es load distribution over time given ost estimates. This goes beyond thesope of this paper and should be the topi of further researh.3. The 1-port Communiation Case.3.1. The two-node senario. If we assume that there is a load originating node that distributes the loadto two nodes, then if single port ommuniations and a single installment [16℄ are used, the possible sequenesof ommuniation and omputation operations are shown in Fig. 3.1, as imposed by the need to have no gapsbetween stages (otherwise, exeution time is not minimized). For reasons that will beome obvious in the restof the setion, we also assume that the two result olletion phases are separated by a onstant delay D.The total exeution time for on�guration #1 is given by:
t1 = l (part0L+ b) + p0 (part0L+ e0) + ld (3.1)where

p0(part0L+ e0) = l(part1L+ b) + p1(part1L+ e1) + l d+D (3.2)Eq. (3.2) oupled with the normalization equation part0 + part1 = 1 an provide a solution for part0 and t1. Asimilar proedure an produe the times for the three remaining on�gurations. Thus we an form the pairwisedi�erenes of running times:
t3 − t4 =

l (e1p1 − e0p0) + (dl − bl +D) (p1 − p0)

p0 + p1 + l
(3.3)

t3 − t2 =
l (e1p1 − e0p0 − b (p1 − p0)− dl −D)

p0 + p1 + l
(3.4)

t3 − t1 =
(dl +D)(p1 − p0 − l)

p0 + p1 + l
(3.5)
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t1 − t4 =

l (e1p1 − e0p0 − b (p1 − p0) + d l+D)

p0 + p1 + l
(3.6)

t1 − t2 =
l (e1p1 − e0p0 − (b+ d) (p1 − p0))

p0 + p1 + l
−

D (p1 − p0)

p0 + p1 + l
(3.7)

t4 − t2 = −
(d l +D) (p1 − p0 + l)

p0 + p1 + l
(3.8)Clearly, the problem is too omplex to have a single solution even for the simplest ase of two nodes. Wean however isolate a number of useful speial ases that make a losed form solution to the N -node problemtratable:

• No image ahes (e0 = e1 = 0). If we assume than p0 ≤ p1 and given that b > d, we have:
t3 − t4 =

(dl − bl+D) (p1 − p0)

p0 + p1 + l
(3.9)

t3 − t2 =
l (−b (p1 − p0)− d l −D)

p0 + p1 + l
≤ 0 (3.10)

t3 − t1 =
(d l+D) (p1 − p0 − l)

p0 + p1 + l
(3.11)If dl−bl+D ≤ 0⇒ D ≤ l (b− d), then Eq. (3.11) ditates that either on�guration #3 or on�guration#1 are optimum based on whether p1 − p0 − l is negative or not. If we assume that the di�erenes inexeution speed are small relative to the ommuniation ost l (i. e. p1− p0 ≤ l) then on�guration #3is the optimum one.The exeution time is given by

t
(nc)
3 = l

(

part
(nc)
0 L+ b

)

+ p0part
(nc)
0 L+D + 2ld (3.12)where:

part
(nc)
0 =

p1L+ l(L− d+ b)−D

L (p0 + p1 + l)
(3.13)

• Homogeneous system (p0 = p1 = p). If we assume that e0 ≥ e1 then:
t3 − t4 =

pl (e1 − e0)

2p+ l
≤ 0 (3.14)

t3 − t1 = −
l (d l +D)

2p+ l
≤ 0 (3.15)

t1 − t2 =
pl (e1 − e0)

2p+ l
≤ 0 (3.16)whih again translates to having on�guration #3 as the optimum one. It should be noted that theoptimum order ditates that load is sent �rst to the node with the biggest ahe, whih is a ounter-intuitive result! The exeution time is given by

t
(homo)
3 = l

(

part
(homo)
0 L+ b

)

+ p
(

part
(homo)
0 L+ e0

)

+D + 2ld (3.17)where:
part

(homo)
0 =

p(L+ e1− e0) + l(L− d+ b)−D

L (2p+ l)
(3.18)
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Fig. 3.2. (a) A possible ordering of load distribution and result olletion for N nodes. (b) Improving the exeution time byordering the operations of Pi and Pi+1 in non-dereasing order of their speed (assuming pi ≤ pi+1). Note: the phase durationsare disproportionate to atual timings.The delay D that was introdued above allows us to extend our analytial treatment from 2 nodes to N . Dis supposed to model the time taken by the result olletion operations of other nodes. Hene, D is a multipleof d · l with a maximum value of (N − 2) d · l. For the ase of no-ahes, as long as D ≤ l (b − d)⇒ N ≤ b
d
+ 1and the di�erenes in omputation speed are smaller than the ommuniation speed, on�guration #3 is theoptimum one as stated by the following theorem. Given the 2-3 orders of magnitude di�erene expeted between

b and d, the range of N that the theorem applies is quite broad.Theorem 3.1. The optimum load distribution and result olletion order for an image query operationperformed by N nodes is given by:
• No image ahes: distributing the load and olleting the results in non-inreasing order of the nodes'speed (i. e. in non-dereasing order of the pi parameters). The su�ient but not neessary onditionsfor this to be true is N ≤ b

d
+ 1 and |pi − pj | ≤ l for any pair of nodes i, j.

• Homogeneous system: distributing the load and olleting the results in non-inreasing order of theloal image ahe sizes.Proof. We will prove the above theorem for the no-ahes ase via ontradition. The proof for thehomogeneous ase is idential. Let's assume that the optimum order is similar to the one shown in Fig. 3.2(a).Without loss of generality we assume that the distribution order is P0, P1, . . . PN−1For any two nodes Pi and Pi+1 that do not satisfy the order proposed by Theorem 3.1, we an rear-range the distribution and olletion phases so as the part of the load that is olletively assigned to them(L (parti + parti+1)) is proessed in a shorter time frame (as long as N ≤ b
d
+ 1), while oupying in anidential fashion the ommuniation medium (see Fig. 3.2(b)). Thus, the operation of the other nodes is notin�uened. At the same time the shorter exeution time would allow additional load to be given to nodes Pi and

Pi+1 resulting in a shorter total exeution time. The outome is a ontradition to having the original orderingbeing an optimum one. The only ordering that annot be improved upon by the proedure used in this proof,is the one proposed by Theorem 3.1.The above disussion settles the ordering problem, allowing us to generate a losed-form solution to thepartitioning problem for N nodes.3.2. Closed-form solution for N nodes.3.2.1. No image ahes. The following relation holds between every pair of nodes whih are onseutivein the distribution and olletion phases (without loss of generality we will again assume that the nodes' orderis P0, P1, . . . , PN−1):
pipartiL+ ld = l (parti+1L+ b) + pi+1parti+1L⇒

parti+1 = parti
pi

pi+1 + l
+

l (d− b)

L (pi+1 + l)
(3.19)This an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

i−1
∏

k=j

pk
pk+1 + l

+
l (d− b)

L

i
∑

k=j+1

[

(pk + l)
−1

i−1
∏

m=k

pm
pm+1 + l

] (3.20)



Optimizing Image Content-Based Query 227Equipped with Eq. (3.20), we an assoiate eah parti with part0 and use the normalization equation:
N−1
∑

i=0

parti = 1 (3.21)to ompute a losed form solution for part0:
part0 =

1− l(d−b)
L

∑N−1
i=1

∑i

k=1

∏i−1

m=k

pm
pm+1+l

(pk+l)

1 +
∑N−1

i=1

∏i−1
k=0

pk

pk+1+l

(3.22)Equations (3.22) and (3.20) solve the partitioning problem. The total exeution time is:
t
(nc)
total = l (part0L+ b) + p0part0L+N l d (3.23)The above onstitute a losed form solution that an be omputed in time N2

−N
2 + 3(N − 1) +Nlg(N) =

O
(

N2
), where Nlg(N) is the node-sorting ost.3.2.2. Homogeneous System. Following a similar proedure to the previous setion, it an be shownthat:

p (partiL+ ei) + l d = l (parti+1L+ b) + p (parti+1L+ ei+1)⇒

parti+1 = parti
p

p+ l
+

l (d− b) + p (ei − ei+1)

L (p+ l)
(3.24)This an be extended to any pair of nodes Pi and Pj , where i > j:

parti = partj

(

p

p+ l

)i−j

+

i−1
∑

k=j

l (d− b) + p (ek − ek+1)

L (p+ l)

(

p

p+ l

)i−k−1 (3.25)Again, Eq. (3.25), and the normalization equation an produe a losed form solution for part0:
part0 =

d− b

L
+

l + l N(b−d)
L

p+ l − p
(

p

p+l

)N−1
−

l
∑N−1

i=1

∑i−1
k=0

(ek−ek+1)
L

(

p

p+l

)i−k

p+ l − p
(

p

p+l

)N−1
(3.26)The total exeution time an be then omputed as:

t
(homo)
total = l (part0L+ b) + p (part0L+ e0) +N l d (3.27)As with the previous ase, the solution requires an O

(

N2
) omputational ost.A speial ase needs to be onsidered if L = 0 as the above equations annot be applied. The minimumexeution an be ahieved only if the loal ahes are appropriately sized to aommodate this. Similarly toEq. (3.25) for two nodes Pi and Pj , where i > j we would have:

piei + (j − i)ld = (j − i)lb+ pjej ⇒

ej = ei
pi
pj

+
(j − i)l(d− b)

pj
(3.28)If the ahes do not satisfy ondition (3.28), the load must be reassigned/transferred between nodes. Inthis paper we assume that this is performed by the load originating node and not by a diret exhange betweenthe ompute nodes. Setion 5 elaborates more on how we an treat this ase.
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Fig. 4.1. Optimum sheduling for a N-port ommuniation setup.4. The N-port Communiation Case.4.1. Closed-form solution for N nodes. The N-port ommuniation ase is muh simpler than the1-port one sine no expliit node ordering is neessary. It an be easily shown in this ase that the optimumload partitioning has to produe idential running times on all the partiipating ompute nodes, i. e. all nodesmust start reeiving data and �nish delivering results at the same instant. Sine all nodes must have the samestarting and ending times as shown in Fig.4.1, for any two nodes i and j, the following has to hold:
l (partiL+ b) + pi (partiL+ ei) + ld =

l (partjL+ b) + pji (partjL+ ej) + ld⇒

partiL (pi + l) + piei = partjL (pj + l) + pjej ⇒

parti = partj
pj + l

pi + l
+

pjej − piei
L (pi + l)

(4.1)The normalization equation (3.21) an then be used to produe a losed-form solution for part0 and subse-quently all parti:
N−1
∑

i=0

parti = 1⇒

part0

N−1
∑

i=0

p0 + l

pi + l
+

N−1
∑

i=1

p0e0 − piei
L (pi + l)

= 1⇒

part0 =
1 +

∑N−1
i=1

piei−p0e0
L(pi+l)

∑N−1
i=0

p0+l
pi+l

(4.2)The total exeution time is given by:
t
(Nport)
total = l (part0L+ b) + pi (part0L+ ei) + ld (4.3)4.2. Homogeneous System Solution. For a homogeneous system (∀pi ≡ p), the above equations aresimpli�ed to the following:

(4.1)⇒ parti = partj +
p (ej − ei)

L (p+ l)
(4.4)

(4.2)⇒ part0 = N−1

(

1 +
p

L

N−1
∑

i=1

ei − e0
p+ l

) (4.5)whih translates to having di�erenes in the loal ahes as the single ause of any imbalanes in the split ofthe new load L. Otherwise the load should be evenly split.



Optimizing Image Content-Based Query 2295. Image Cahe Management. Eq. (3.20), (3.25), (4.1) and (4.4) allow for negative values for partis.Suh an event indiates that the orresponding node should not partiipate in the alulation, either beauseit is too slow or beause the loal ahe size is too large for a node to proess and keep up with the othernodes. In the latter ase it is obvious that a node should use only a part of its ahe. The load surplus shouldbe transferred to other nodes. This situation an arise when following the initial distribution of load to thenodes, subsequent queries are no longer aompanied by big hunks of data, making the initial distribution asuboptimal one.In this setion we address this problem by proposing a algorithm for estimating the proper ahe size thatshould be used, along with the orresponding load L that should be ommuniated to other nodes.The algorithm presented below, is based on the assumption that the intersetion of all ahes is ∅. The keypoint of the algorithm is a re-assignment of load from the nodes with an over-full ahe (identi�ed as set S in line8) to the nodes with little or no ahe. This proess redues the total exeution time as long as ommuniationis faster than omputation.This algorithm has been also enhaned from the version presented in [18℄ to address the ase when L = 0,i. e. when proessing is based entirely on the nodes' loal data. In that ase, L an be initialized to a smallvalue, e.g. L = 1 (lines 2-5), whih would be subsequently subtrated one a redistribution is dimmed neessary(lines 32-36).Set S does not hange after line 8 as the subsequent inrease in L due to a load shift (line 31) does notpermit any other node from having a negative assignment. The loop of lines 13-46 is exeuted for as long asthere is a negative parti, or a load shift is neessary for balaning the node workload. In line 17 the size of theahe that should be used in a node with a negative assignment is estimated. Beause the load is reassignedolletively in line 31, the ahe size of eah node in S an be under-estimated (by �bloating" the load L thatshould be ommuniated). This defeats the optimization proedure by foring the ommuniation of data thatare already present at the nodes, and in order to guard against this possibility, lines 21-28 re-adjust any previousoverestimation for nodes that subsequently got to have positive partj . Lines 12 and 41-44 serve as sentinelsagainst ases where the outer while loop does not onverge. In that ase, �xing the part assigned to the last nodein the distribution sequene (smallest e) to 0, allows the onvergene of the outer loop. A value for threshold
THRES that was found to yield good results in our experiments is 20. Threshold values that depend on thenumber of ompute nodes did not provide any visible di�erene.Lines 32-36 anel the addition of 1 load unit that is done when L = 0. Finally, if L remains 0 after loadredistribution is examined, ahe sizes satisfy ondition (3.28) for a homogeneous system and nothing moreneeds to be done (lines 37-40).A key point that should be made here is that Algorithm 1 produes a sub-optimum solution when a seriesof query operations are to be sheduled. Designing an optimum algorithm for this senario is beyond the sopeof this paper.6. Simulation Study. Single-port ommuniation is surely not a ontemporary tehnology limitation. Itis rather a design feature whereas the load originating node dediates its attention to a single node at a time,with the objetive of minimizing the message exhange ost between itself and the orresponding node. Inthis setion we explore the impat of the two alternative design hoies with the assistane of our analytialframework. Also, we evaluate the performane ahieved by the use of Algorithm 1 for managing the imageahes through a battery of image queries.We base the bulk of our simulations on the assumption of a homogeneous platform. While the require-ment of a homogeneous system may seem unrealisti, it an be typial of many large sale installations in bigorganizations.The key points of our simulation senario whih onsists of a series of image query operations, are thefollowing:

• The image DB1 onsists originally of 10000 images of size 1MB eah. This is a small number relevantto the yearly �prodution" of mammograms generated at a national level. Additionally, the image sizemathes real data only in the order of magnitude as high resolution mammograms an be muh larger(e.g. 8MB).
• Eah new image that is mathed against the DB is also 1MB in size, hene b = 1MB.

1We use the term DB to loosely refer to the olletion of available, tagged, medial images, and not to an atual DBMS system.Storage servies are o�ered in MammoGrid [1℄ by MySQL and in NDMA by IBM's DB2 [10℄



230 G. BarlasAlgorithm 1 Estimating the loal image ahe sizes that yield the minimum exeution time for the next queryoperation1: load_shift← 02: if L = 0 then3: added← TRUE4: L← 15: end if6: In the ase of 1-port ommuniation and a homogeneous system, sort the nodes in desending order of their
ei parameters.7: Calulate the load part for eah node Pi via Eq. (3.26), (3.25) or (4.2), (4.1)8: Let S be the set of nodes with partj < 09: if S 6= ∅ then10: Copy the ahe sizes of all nodes in temporary variables e(orig)i11: end if12: iter← 013: while S 6= ∅ OR load_shift 6= 0 OR added = TRUE do14: load_shift← 015: for eah Pj ∈ S do16: if partj < 0 then17: aux← partjL+ ej18: load_shift← load_shift+ ej − aux19: ej ← aux20: else21: aux← partjL+ ej22: if aux > e

(orig)
i then23: diff ← e
(orig)
j − ej24: else25: diff ← aux− ej26: end if27: load_shift← load_shift− diff28: ej ← ej + diff29: end if30: end for31: L← L+ load_shift32: if added = TRUE then33: added← FALSE34: L← L− 135: load_shift← 136: end if37: if L = 0 then38: Set for all nodes Pj , partj ← 039: BREAK40: end if41: iter← iter + 142: if iter > THRES then43: Fix the partk assigned to the node with the smallest ek to 044: end if45: Calulate the load part for eah Pi, other than the nodes �xed in step 43.46: end while
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Fig. 6.1. Average sequential disk read speed per thread. The ideal urve represents the ase where the total bandwidth isevenly divided between the threads without losses.
• Every 100 queries, 100 appropriately tagged images are inorporated in the image DB, hene the residentload inreases gradually.
• The data olleted from eah node onsist of the best 10 mathes, along with the orresponding imageIDs and objetive funtion values, assumed in total to be of size d = 10 · (2 + 4) = 60B.
• The tiobenh utility [19℄ was used to estimate realisti values for the data rates between the load origi-nating nodes and the ompute nodes. A variable number of threads were used to represent simultaneousaess from multiple lients. The results whih were olleted on a Linux laptop mahine, equippedwith a ATA 100 100GB hard disk spinning at 4200rpm, formatted using the ReiserFS �lesystem, areshown in Fig. 6.1. The e�et of the disk ahe was minimized by using a 3GB �le size. These speedswere used in the 1- and N-port simulations that are reported in this paper. For 1-port ommuniationsin partiular, l was set equal to 0.00997sec/Mb, whih translates to 0.0837sec/image.The �rst question we would like to answer, is what would be the improvement of using our analytialapproah over an Equal load Distribution (ED) strategy that is traditionally used in homogeneous systems [15℄,in a single-shot senario, i. e. when only one query operation is performed. For this purpose, we tested both1- and N-port approahes, where the omputing speed of all nodes was set to be one of the following values

{0.08, 0.17, 0.33, 0.67, 1.34}sec/image, roughly orresponding to 1x, 2x, 4x, 8x and 16x the time required toommuniate a single image when 1-port ommuniation is used. In the remainder of this setion we will referto these proessing speeds as 1l, 2l, 4l , 8l and 16l respetively. Suh a seletion of proessing speeds/ostsmathes losely the running times reported in [15℄ for real-life tests and they are supposed to help us probe thee�ets of di�erent omputation/ommuniation ratios and the use of di�erent image registration algorithms.The results for the 1-port ase are shown in Figure 6.2 in the form of the improvement ahieved over theED approah. In all the omparative results reported in this setion, we use the exeution time provided bythe 1-port non-uniform proposed distribution strategy (as given by Eq.(3.27) and denoted below as tSP ) as thebaseline. The improvement is de�ned as:
tED − tSP

tSP

(6.1)whih is basially the perent overhead that ED (tED) is ausing over the proposed analytial solution. Allinitial ahes were set equal to 0 whih is a typial initialization senario. It should be noted that all the resultsreported in Fig. 6.2 and the remaining graphs of this setion, orrespond to ases where all available nodes anbe utilized, hene the lak of data points for big values of N when p is relatively small. This quali�ation wasimposed to avoid skewed results.As an be observed in Fig. 6.2, the improvement is even higher when the omputational ost is proportionallyhigher than the ommuniation, topping around 28% for the p = 16l ase. In the majority of the tested ases,the gain is above 10%.
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p=16lFig. 6.3. Exeution time improvement o�ered by the 1-port over the N-port approah, for a single-shot senario.Comparing the 1-port and N-port ases is less straightforward as there is a question of whether the N-portommuniation setup is aomplished by sharing the same medium - as is usually the ase in non-dediatedplatforms suh as Networks of Workstations (NoW) -, or the load originating node is having a dediated linkfor eah worker. In the following paragraphs we assume that the former setup is appliable.The improvement o�ered (!) by the 1-port over the N-port ase is shown in Figure 6.3, where improvementis now omputed by Eq. (6.1) by replaing tED with the exeution time of the N-port arrangement tNP . Itomes as a surprise that the N-port arrangement an be suh a poor performer! The reasons an be summarizedas follows: (a) sharing the ommuniation medium auses the omputation phase to be overly delayed whiledata are being downloaded and (b) the ost of swithing is taking a heavy toll on the available bandwidth, asobserved in Figure 6.1 if one ompares the measured against the ideal urves. In summary, the 1-port setupallows -some of- the ompute nodes to start proessing the load a lot sooner. Of ourse this result has to beseen in the proper ontext, i. e. we have blok-type tasks and the nodes have no image ahe. As it will beshown below, this piture is far from the truth for a sequene of query operations.



Optimizing Image Content-Based Query 233In order to test what would be the situation if a sequene of queries were performed, we simulated thesuessive exeution of 1000 queries. The orresponding improvement for the 1-port sheme is shown in Fig. 6.4(a). As an be observed, the ED strategy is not worst in every ase due to the ost of ahe redistribution thatAlgorithm 1 is ausing. Atually for fast omputation (p = l) and a relatively small number of nodes, ED isfaster. For the majority of the other ases, the gains seems insigni�ant (in the order of 1%) as the onstantshu�ing of the ahes slows down the whole proess. These e�ets an be minimized if queries are run in bathesas an be learly seen in Fig.6.4 (b) and (), for moderate (10 queries) and extreme bath sizes (100 queries)respetively. For bath proessing the same analytial models an be applied, if we multiply the onstants b,
d and p by the bath size. Bathing requests together does not ome lose to optimizing a sequene of themas performed in [20℄, but as it is shown in Fig.6.4, boosts performane substantially. Under suh onditionsthe proposed strategy is onsistently better than the ED one, although the atual gains depend on the ratiobetween omputation and ommuniation osts. If the former are dominant (e.g. as in the p = 16l ase), anybene�ts made by e�etively sheduling the ommuniation operations is marginalized.Fig. 6.4 does not onvey the omplete piture though, as the gains seem insigni�ant. However, when therunning times are as high as shown in Fig. 6.5 even small gains translate to big savings in time.For the N-port ase, bathing requests produes small absolute savings as shown at the bottom of Fig. 6.5(b), (). While the gain barely reahes 1 hour overall, the real bene�t omes from inreased salability, i. e. theability to use bigger sets of proessors for the task. For example, for p = l bathes of 100 queries an run on100 nodes, while individually queries are limited to 13 nodes.The piture is ompletely reversed for the N-port ase when multiple queries are onsidered, as an beobserved in Fig. 6.6. Even with the redued bandwidth available to eah ompute node and the deteriorationof the total available bandwidth, the N-port approah is a hands-down winner. This is espeially true whenthe number of nodes grows beyond a limit, making this the most salable strategy, despite the bandwidth lossidenti�ed in Fig. 6.1. Additionally, bathing queries together bene�ts the N-port approah even more than the1-port, non-uniform one.7. Conlusion. In this paper we present an analytial solution to the problem of optimizing ontent-based image query proessing over a parallel platform under ommuniation onstraints. We solve the problemanalytially for both the single and N-port ases and we also prove an important theorem for the sequene ofoperations that minimize the exeution time. Our analytial solution is aompanied by an algorithm for theahe management of the nodes of a system, either 1-port homogeneous or N-port heterogeneous. Our losed-form solution for the 1-port heterogeneous ase with no image ahes, an be employed when a single-shotoperation is preferred.The extensive simulations that were onduted were able to reveal the following design priniples, as far ashomogeneous platforms are onerned:

• If a single-shot exeution is desired, a 1-port non uniform distribution as highlighted in Setion 3.2.2 isthe best one.
• For a sequene of operations, the N-port strategy is the best performer, espeially if the omputationalost is proportionally higher, or the number of nodes is high.Future researh diretions ould inlude:
• Using the proposed methodology as a part of a Grid middleware sheduler. It is possible that the highoverhead of typial grid shedulers ompromises the bene�ts shown in this paper, requiring furtheroptimizations.
• Devising a solution for a heterogeneous system with loal ahe.
• Examine the ase of multiple image soures instead of a single load originating node. Although urrentgeneration systems rely mostly on a single image repository, next generation ones are moving away fromthis paradigm [1℄. REFERENCES[1℄ S. R. Amendolia, F. Estrella, R. MClathey, D. Rogulin, and T. Solomonides, �Managing pan-european mammographyimages and data using a servie oriented arhiteture,� in Pro. IDEAS Workshop on Medial Information Systems: TheDigital Hospital (IDEAS-DH'04), September 2004, pp. 99�108.[2℄ M. M. Rahman, T. Wang, and B. C. Desai, �Medial image retrieval and registration: Towards omputer assisted diagnostiapproah,� in Pro. IDEAS Workshop on Medial Information Systems: The Digital Hospital (IDEAS-DH'04), September2004, pp. 78�89.



234 G. Barlas

0 20 40 60 80 100

0

0.005

0.01

0.015

0.02

Im
p

ro
v

em
en

t
p=l

p=2l

p=4l

p=8l

p=16l

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Im
p

ro
v

em
en

t

0 20 40 60 80 100

Nodes

0

0.1

0.2

0.3

0.4

Im
p

ro
v

em
en

t

(a)

(b)

(c)

Fig. 6.4. Exeution time improvement o�ered by the 1-port sheme over the ED strategy, for a sequene of 1000 queries: (a)when eah query is run individually, (b) when queries are run in bathes of 10, and () when queries are run in bathes of 100.[3℄ S. Sneha and A. Dulipovii, �Strategies for working with digital medial images,� in Pro. 39th Annual Hawaii InternationalConferene on System Sienes (HICSS'06), January 2006, p. 100a.[4℄ Y. Kawasaki, F. Ino, Y. Sato, S. Tamura, and K. Hagihara, �Parallel adaptive estimation of range of motion simulation fortotal hip replaement surgery,� IEICE Transations on Information and Systems, vol. E90-D, no. 1, pp. 30�39, 2007.[5℄ H. Zhou, X. Yang, H. Liu, and Y. Tang, �First evaluation of parallel methods of automati global image registration basedon wavelets,� in 2005 International Conferene on Parallel Proessing (ICPP'05), July 2005, pp. 129�136.[6℄ I. D. Falo, D. Maisto, U. Safuri, E. Tarantino, and A. D. Cioppa, �Distributed di�erential evolution for the registrationof remotely sensed images,� in 15th Euromiro International Conferene on Parallel, Distributed and Network-BasedProessing (PDP'07), February 2007, pp. 358�362.[7℄ S. Ait-Aoudia and R. Mahiou, �Medial image registration by simulated annealing and geneti algorithms,� in GeometriModelling and Imaging (GMAI '07), July 2007, pp. 145�148.[8℄ Y. Bentoutou, N. Taleb, K. Kpalma, , and J. Ronsin, �An automati image registration for appliations in remote sensing,�IEEE Trans. on Geosiene and Remote Sensing, vol. 43, no. 9, pp. 2127�2137, September 2005.[9℄ J. Montagnat, H. Duque1, J. Pierson, V. Breton, L. Brunie, and I. E. Magnin, �Medial image ontent-based queries usingthe grid,� in Pro. of HealthGrid 03, 2003.
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