
Salable Computing: Pratie and ExperieneVolume 11, Number 3, pp. 239�249. http://www.spe.org ISSN 1895-1767© 2010 SCPEDESIGN AND ANALYSIS OF A SCALABLE ALGORITHM TO MONITORCHORD-BASED P2P SYSTEMS AT RUNTIME∗ANDREAS BINZENHÖFER†, GERALD KUNZMANN‡, AND ROBERT HENJES†Abstrat. Peer-to-peer (p2p) systems are a highly deentralized, fault tolerant, and ost e�etive alternative to the lassilient-server arhiteture. Yet ompanies hesitate to use p2p algorithms to build new appliations. Due to the deentralized natureof suh a p2p system the arrier does not know anything about the urrent size, performane, and stability of its appliation. Inthis paper we present an entirely distributed and salable algorithm to monitor a running p2p network. The snapshot of the systemenables a teleommuniation arrier to gather information about the urrent performane parameters of the running system as wellas to reat to disovered errors.1. Introdution. In reent years peer-to-peer (p2p) algorithms have widely been used throughout theInternet. So far, the suess of the p2p paradigm was mainly driven by �le sharing appliations. However,despite their reputation p2p mehanisms o�er the solution to many problems faed by teleommuniationarriers today [8℄. Compared to the lassi lient-server arhiteture they are deentralized, fault tolerant, andost e�etive alternatives. Those systems are highly salable, do not su�er from a single point of failure, andrequire less administration overhead than existing solutions. In fat, there are more and more suessful p2pbased appliations like Skype [14℄, a distributed VoIP solution, Oeanstore [4℄, a global persistent data store,and even p2p-based network management [10℄.One of the main reasons why teleommuniation arriers are still hesitant to build p2p appliations is thelak of ontrol a provider has over the running system. At �rst, the system appears as a blak box to its operator.The arrier does not know anything about the urrent size, performane, and stability of its appliation. Thedeentralized nature of suh a system makes it hard to �nd a salable way to gather information about therunning system at a entral unit. Operators, however, do not want to lose ontrol over their systems. They wantto know what their systems look like right now and where problems our at the moment. The �rst problemsalready our when testing and debugging a distributed appliation. Finding implementation errors in a highlydistributed system is a very omplex and time onsuming proess [9℄. A provider also needs to know whetherhis newly deployed appliation an truly handle the task it was designed for.The latest generation of p2p algorithms is based on distributed hash tables (DHTs). The algorithm thaturrently attrats the most attention is Chord, whih uses a ring topology to realize the underlying DHT [12℄.DHTs are theoretially understood in depth and proved to be a salable and robust basis for distributedappliations [7℄. However, the problem of monitoring suh a system from a entral loation is far from beingsolved. [11℄ gives a good overview of di�erent approahes to monitor and debug distributed systems in general.In the �eld of p2p, the proess of measuring and monitoring a running system was so far limited to unstruturedoverlays. [13℄, e.g., introdues a rawling-based approah to query Gnutella-like networks.In this paper, however, we exploit the speial features of strutured p2p overlays and present an entirelynovel and salable approah to reate a snapshot of a running Chord-based network. Using our algorithm aprovider an either monitor the entire system or just survey a spei� part of the system. This way, he is ableto reat to errors more quikly and an verify if the taken ountermeasures are suessful. On the basis of thegathered information it is, e.g., possible to take appropriate ation to relief a hotspot or to pinpoint the auseof a loss of the overlay ring struture. The overhead involved in reating the snapshot is evenly distributedto the partiipating peers so that eah peer only has to ontribute a negligible amount of bandwidth. Mostimportantly, the snapshot algorithm is very easy to use for a provider. It only takes one parameter to adjustthe trade o� between duration of the snapshot and bandwidth needed at the entral unit whih ollets themeasurements.The remainder of this paper is strutured as follows. Setion 2 gives a brief overview of Chord with a fouson aspets relevant to this paper. The snapshot algorithm as well as some areas of appliation are desribed inSetion 3. The funtionality of the algorithm is veri�ed analytially in Setion 4 and by simulation in Setion 5.Setion 6 onludes this paper.
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peer yFig. 2.2. Searh using the �ngers.2. Chord Basis. This setion gives a brief overview of Chord with a fous on aspets relevant to thispaper. A more detailed desription an be found in [12℄. The main purpose of p2p networks is to store datain a deentralized overlay network. Partiipating peers will then be able to retrieve this data using some sortof searh algorithm. The Chord algorithm solves this problem by arranging the partiipating peers on a ringtopology. The position idz of a peer z on this overlay ring is determined by an m-bit identi�er generated bya hash funtion suh as SHA-1 or MD5. In a Chord ring eah peer knows at least the id of its immediatesuessor in a lokwise diretion on the ring. This way, a peer looking up another peer or a resoure is able topass the query around the irle using its suessor pointers. Figure 2.1 illustrates a simple searh of peer z foranother peer y using only the immediate suessor. The searh has to be forwarded half-way around the ring.Obviously, the average searh would require n

2
overlay hops, where n is the urrent size of the Chord ring. Tospeed up searhes a peer z in a Chord ring also maintains pointers to other peers, whih are used as shortutsthrough the ring. Those pointers are alled �ngers, whereby the i-th �nger in a peer's �nger table ontains theidentity of the �rst peer that sueeds z's own id by at least 2i−1 on the Chord ring. That is, peer z with hashvalue idz has its �ngers pointing to the �rst peers that sueed (

idz + 2i−1
) mod 2m for i = 1 to m, where 2mis the size of the identi�er spae.Figure 2.2 shows �ngers f1 to f4 for peer z. Using this �nger pointers, the same searh does only take twooverlay hops. For the �rst hop peer z uses its �nger f4. Peer y an then diretly be reahed using the suessorof f4 as indiated by the small arrow. This way, a searh only requires 1

2
log2(n) overlay hops on average. Adetailed mathematial analysis of the searh delay in Chord rings an be found in [3℄. The snapshot algorithmpresented in Setion 3 makes use of the �nger tables of the peers.3. Design of the Snapshot Algorithm. In this setion we introdue a salable and distributed algorithmto reate a snapshot of a running Chord system. The algorithm is based on a very simple two step approah.In step one, the overlay is reursively divided into subparts of a prede�ned size. In step two, the desiredmeasurement is done for eah of these subparts and sent bak to a entral olleting point (CP ). In thefollowing, we desribe both steps in detail.3.1. Step 1: Divide Overlay into Subparts. The algorithm snapshot(Rs, Re, Smin, CP ) divides aspei� region of the overlay into subparts. This funtion is alled at an arbitrary peer p with idp. The peer thentries to divide the region from Rs = idp to Re into ontiguous subparts using its �ngers. The exat proedureis illustrated in Figure 3.1. In this example peer p has four �ngers f1 to f4. It sends a request to the �ngerlosest to Re within [Rs;Re]. At �rst, �nger f4 is disregarded sine it does not fall into the region between Rsand Re (f. a). This makes f3 the losest �nger to Re in our example. If this �nger does not respond to therequest, as illustrated by the bolt (f. b), it is removed from the peer's �nger list and the peer tries to ontatthe next losest �nger f2 (f. ). If this �nger aknowledges the request, peer p reursively tries to divide theregion from Rs = idp to R̂e = idf2 − 1 into ontiguous subparts. Finger f2 partitions the region from R̂s = idf2to Re aordingly.As soon as a peer does not know any more �ngers in the region between the urrent Rs and the urrent

Re, the reursion is stopped. The peer hanges into step two of the algorithm and starts a measurement of thisspei� region. In this ontext, the parameter Smin an be used to determine the minimum size of the regions,whih will be measured in step two. Taking into aount Smin, a peer will already start the measurement if it
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Fig. 3.1. Visualization of the algorithm.does not know any more �ngers in the region between the urrent Rs + Smin and the urrent Re. In this ase�nger f1 would be disregarded, as illustrated by the dotted line (f. d in Figure 3.1), sine it points into theminimum measurement region. Parameter Smin is designed to adjust the trade o� between the duration of thesnapshot and the bandwidth needed at the olleting point. The larger the regions in step two, the longer themeasurement will take. The smaller the regions, the more results are sent bak to the CP.Algorithm 2The snapshot algorithm (�rst all Rs = idp)snapshot(Rs, Re, Smin, CP )send aknowledgment to the sender of the request
idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})while idfm > Rs + Smin dosend snapshot(idfm, Re, Smin, CP ) request to peer idfmif aknowledgment from idfm thenall snapshot(idp, idfm − 1, Smin, CP ) at loal peerreturn //exit the funtionelseremove idfm from �ngerlist

idfm = max({idf |idf ∈ �ngerlist ∧ idf < Re})end ifend while
Ŝ = Re−Rs

⌈

Re−Rs

Smin

⌉ //explanation see step twoall ountingtoken(idp, Re, Smin, CP , ∅) at loal peerA detailed tehnial desription of the proedure is given in Algorithm 2. Peer p will ontat the losest�nger to Re until it does not know any more �ngers in between Rs + Smin and Re. If so, it hanges into steptwo and starts a measurement of this region alling the funtion ountingtoken(idp, Re, Smin, CP , result) atthe loal peer.3.2. Step 2: Measure a Spei� Subpart. The basi idea behind the measurement of a spei� subpartfrom Rs to Re is very simple. The �rst peer reates a token, adds its loal statistis, and passes the token to itsimmediate suessor. The suessor proeeds reursively until the �rst peer with an id > Re is reahed. Thispeer sends the token bak to the olleting point, whose IP is given in the parameter CP.Ideally, eah of the regions measured in step two would be of size Smin as spei�ed by the user. The problem,however, is that the region from Rs to Re is slightly larger than Smin aording to step one of the algorithm.In fat, if the responsible peer did not know enough �ngers, the region might even be signi�antly larger than
Smin. The solution to this problem is to introdue hekpoints with a distane of Smin in the orrespondingregion. Results are sent to the CP every time the token passes a hekpoint instead of sending only one answer
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Fig. 3.2. Results sent after eah hekpoint.at the end of the region. This is illustrated in the upper part of Figure 3.2. The ounting token is started at Rs.The �rst peer behind eah hekpoint sends a result bak to the CP as illustrated by the large solid arrows.The �nal result is still sent by the �rst peer with id > Re.A drawbak of this solution is that the hekpoints might not be equally distributed in the region. Inpartiular, the last two hekpoints might be very lose to eah other. We therefore realulate the positions ofthe hekpoints aording to the following equation:
Ŝmin =

Re −Rs⌈
Re−Rs

Smin

⌉ .The new hekpoints an be seen in the lower part of Figure 3.2. The number of hekpoints remains the same,while their positions are moved in suh a way, that the results are now sent at equal distane.As an be seen at the end of Algorithm 2, the realulation of Smin is already done in the �rst step,just before the ounting token is started. A detailed desription of the ounting token mehanism is given inAlgorithm 3. If a peer p reeives a ounting token it makes sure that its identi�er is still within the measuredregion, i.e. Rs ≤ idp ≤ Re . If not, it sends a result bak to the CP and stops the token. Otherwise it addsits loal measurement to the token and tries to pass the token to its immediate suessor. If it is the �rst peerbehind one of the hekpoints, it sends an intermediate result bak to the CP and resets the token.As mentioned above the parameter Smin roughly determines the minimum size of the regions measured instep two. If Sid is the total size of the identi�er spae, there will be Nc ounting tokens arriving at the CP ,whereas:
2 ·

⌈
Sid

Smin

⌉
≥ Nc ≥

⌈
Sid

Smin

⌉
.A more detailed analysis of the snapshot algorithm is given in Setion 4 as well as in [1℄.3.3. Collet Statistis. Generally speaking, there are two di�erent kinds of statistis, whih an beolleted using the ounting tokens. Either a simple mean value or a more detailed histogram. In the �rst asethe ounting token memorizes two variables, Va for the aumulated value and Vn for the number of values. Eahpeer reeiving the ounting token adds its measured value to Va and inreases Vn by one. The sample mean anthen be alulated at the CP as ∑

Va
∑

Vn
. In ase of a histogram, the ounting token maintains a spei� numberof bins and their orresponding limits. Eah peer simply inreases the bin mathing its measured value by one.If the measured value is outside the limits of the bins it simply inreases the �rst or the last bin respetively.There are numerous things that an be measured using the above mentioned methods. Table 3.1 summarizessome exemplary statistis and the kind of information whih an be gained from them. The most obviousappliation is to ount the number of hops for eah ounting token. On the one hand, this is a diret measurefor the size of the overlay network. On the other hand, it also shows the distribution of the identi�ers in the



Monitoring P2P Systems 243Algorithm 3The ountingtoken algorithm (�rst all Rs = idp)ountingtoken(Rs, Re, Smin, CP , result)send aknowledgment to the sender of the requestif Rs ≤ idp ≤ Re thenif idp > Rs + Smin thensend result to CP

result = 0
Rs = Rs + Sminend ifadd loal measurement to result

ids = id of diret suessorwhile 1 dosend ountingtoken(Rs, Re, Smin, CP , result) request to diret suessor idsif aknowledgment thenbreakelseremove ids from suessor list
ids = id of new diret suessorend ifend whileelsesend result to CPend if Table 3.1Possible statistis gathered during snapshotStatisti Information gainedNumber of hops per token Size of the network, Distribution of the identi�ersMean searh delay Performane of the algorithmSender ?

== predeessor Overlay stabilityNumber of timeouts per token Churn rateNumber of resoures per peer Fairness of the algorithmNumber of searhes answered User behaviorBandwidth used per time unit Maintenane overheadMissing resoures Data integrityidenti�er spae. To gain information about the performane of the Chord algorithm, the mean searh delay ora histogram for the searh time distribution an be alulated and ompared to expeted values. Furthermore,Chord's stability an only be guaranteed as long as the suessor and predeessor pointers of the individual peersmath eah other orrespondingly. This invariant an be heked by ounting the perentage of hops, where thesender of the ounting token did not math the predeessor of the reeiving peer. Additionally, the number oftimeouts per token an be used to measure the urrent hurn rate in the overlay network. The more hurn thereis, the more timeouts are going to our due to outdated suessor pointers. Similarly, the number of resouresstored at eah peer is a sign of the fairness of the Chord algorithm. The number of searhes answered at eahpeer an likewise be used to get an idea of the searh behavior of the end users. Finally, a peer an keep trakof the number of missing resoures to verify the integrity of the stored data. This an, e.g., be done ountingthe number of searh requests whih ould not be answered by the peer.All of the above statistis an be olleted periodially to survey the time dependent status of the overlay.Note, that it is also possible to monitor a spei� part of the overlay network by setting Rs and Re aordingly.This an, e.g., be helpful if there are problems in a ertain region of the overlay network and the operator needsto verify that his ountermeasures have been suessful.



244 A. Binzenhoefer, G. Kunzmann, and R. Henjes4. Analysis and Optimizations. To analyze our algorithm we derive the duration of a snapshot (f.Subsetion 4.1) and the temporal distribution of the token arrival times at the CP (f. Subsetion 4.2).4.1. Duration of a Snapshot. To alulate an estimate of the duration of a snapshot, we assume asenario without any peers joining or leaving the network. It is quite straightforward to estimate the durationof step one, the signaling step. The last ounting token whih will be started is the one overing the regiondiretly following the initiating peer. This is due to the fat, that the initiating peer will start its ountingtoken no sooner than it divided the ring into separate regions. Before it initiates the ounting token, it ontatsits �ngers until the �rst �nger is loser to itself than Smin. The initiating peer has at most log2(n) �ngers andeah of the �ngers sends an aknowledgment, before the peer an go on with the algorithm. If TO is the randomvariable desribing one overlay hop, then the duration of step one of the algorithm is at most
Dstep1 = 2 · log

2
(n) ·E[TO]. (4.1)The worst ase for step two would be that the initiating peer does not know any �ngers and diretly sendsthe ounting token. This would take n · E[TO], but is very unlikely to happen. In general, if there are n peersin the overlay, there are roughly Pr = n·Smin

Sid
peers per region. Furthermore, in the worst ase Smin is slightlylarger than a power of two and the region overed by a ounting token may beome almost twie as large as

Smin. Therefore a good estimate for the duration of the ounting step of the algorithm is:
Dstep2 = 2 · Pr · E[TO]. (4.2)This results in the following total duration of a snapshot:

D =

(
log

2
(n) +

n · Smin

Sid

)
· 2 · E[TO]. (4.3)4.2. Token Arrival Time Distribution. To get a rough estimate for the distribution of the arrival timesof the ounting tokens at the CP , we onsider the speial ase where the size of the overlay n = 2g is a power oftwo and Smin is suh that Nr = 2h with h < g. Furthermore, we assume that the individual peers are loatedat equal distanes on the ring as shown in Figure 4.1.It an be shown, that in this ase h = log2(Nr) is the number of overlay hops it takes until the �rst ountingtoken is started during a snapshot. Similarly, it takes 2 ·h hops until the last ounting token is started aordingto our assumptions. The probability pi that a ounting token is started after exatly i hops for i = h, h+1, ..., 2·han be alulated as:

pi =

(
h

i−h

)
∑2·h

x=h

(
h

x−h

) . (4.4)The above onsiderations are nontrivial, but an niely be explained using the simple example shown in Figure4.1, where g = 4, h = 2, and therefore n = 24 and Nr = 22. The solid arrows in the �gure show the messagesof the signaling step, the dotted arrows the orresponding aknowledgments. The numbers next to the arrowsrepresent the number of overlay hops, whih have passed sine the beginning of the snapshot.In the example, peer A starts a snapshot of the entire ring. It sends a request to B to over the regionbetween B and A. Peer B sends an aknowledgment bak to A and a simultaneous request to C to over theregion from C to A. C has no �ngers outside its minimum measurement region and starts the �rst ountingtoken after h = 2 overlay hops. Simultaneously, it sends an aknowledgment bak to B. Peer B then starts itsounting token after 3 overlay hops. In the meantime A signals D to over the region from D to B. Peer Dimmediately starts its ounting token after a total of 3 overlay hops. Peer A waits for the �nal aknowledgmentand starts its ounting token after 4 = 2 ·h overlay hops. Summarizing the above, there are four ounting tokensstarted after 2, 3, 3, and 4 overlay hops respetively.Aording to our assumptions, eah ounting token needs exatly Pr = 4 hops to travel the orrespondingregion and one �nal hop to arrive at the CP . A rough estimate for the distribution of the arrival times of theounting tokens at the CP is therefore given by the phase diagram shown in Figure 4.3. It indiates that thesignaling step takes i overlay hops with a probability pi for i = h, h + 1, ..., 2 · h, whih is followed by Pr hopsof the ounting token and the �nal hop to report the result bak to the CP .
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Fig. 4.3. Phase diagram of the token arrival time distribution.To validate our analytial results, we simulated a Chord ring of size n = 215 with Smin = 29 aordingto the above assumptions. Figure 4.2 shows the probability density funtion of the token arrival times at the
CP . Obviously, the urves math very well and the binomial distribution of the duration of step one an bereognized. So far, in our example eah peer has a �nger at an exat distane of Smin. In reality, however,the �nger would sit at a slightly di�erent position, whih again would result in an additional hekpoint atthe middle of the region. The urve labeled �Chekpoints� orresponds to a slightly modi�ed phase diagram,whih adds an intermediate result in the middle of the measurement region. The �rst rise of the probabilitydensity funtion (pdf) therefore represents the intermediate results sent bak to the CP at the hekpoint. Theseond rise still represents the regular results at the end of the region. In the following setion we will presentsimulations of more realisti senarios inluding hurn and timeouts.5. Results. The results in this setion were obtained using our ANSI-C simulator, whih inorporates adetailed yet slightly modi�ed Chord implementation. A good desription of the general simulation model anbe found in [5, 6℄. In this work an overlay hop is modeled using an exponentially distributed random variablewith a mean of 80ms. The results onsidering hurn are generated using peers, whih stay online and o�ine foran exponentially distributed period of time with a mean as indiated in the orresponding desription of the�gures.The snapshot algorithm takes one single input argument Smin whih diretly translates into Nr =

⌈
Sid

Smin

⌉,the number of areas the overlay will be divided into. This parameter in�uenes the duration of the snapshot aswell as the number of results arriving at the entral olleting point. Figure 5.1 shows the distribution of the
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Fig. 5.2. In�uene of Nr for 20000 peers.arrival times of the results in an overlay of 40000 peers using Nr = 1000 and Nr = 100 areas in times of nohurn. Obviously, the more areas the overlay is divided into, the faster the snapshot is ompleted. While thesnapshot using 1000 areas was �nished after about ten seonds, the snapshot with 100 areas took about oneminute. In exhange the latter snapshot produes signi�antly smaller bandwidth spikes at the CP. The twoelevations of the seond histogram orrespond to the intermediate results (�rst elevation) and the �nal resultsat the end of the measured subpart (seond elevation). Note that the �nal results arrive about twie as lateas the intermediate results. The �rst step of the algorithm uses the �ngers to divide the ring into subparts.Sine the distane between a peer and its �ngers is always slightly larger than a power of two it is usually notpossible to divide the ring exatly into the desired number of areas. In fat it is very likely, that a peer stopsthe reursion and starts its measurement one it ontated its xth �nger, where 2x−1 < Smin = Sid

Nr
≤ 2x. Thatis, the reursion stops at �nger x with idfx , whereas the distane between the peer and this spei� �nger mightalmost be twie as large as the desired Smin. It is therefore advisable to hoose Nr as a power of two itself inorder to ensure that idfx is only slightly larger than idp + Smin. Figure 5.2 shows the di�erent arrival times ofthe results for Nr = 512 and Nr = 500 in an overlay of 20000 peers without hurn. The skewed shape of thehistogram in the foreground results from the fat that 500 is slightly smaller than a power of two, whih in turnmakes Smin slightly larger than a power of two. In this ase it is likely that the peer has a �nger just beforethe end of the minimum measurement region idp + Smin. Thus, �nger x sits at a distane of about twie Sminfrom the peer. The resulting ounting token will therefore travel a distane of about twie Smin as well.A more detailed analysis of the in�uene of Nr an be found in Figure 5.3, whih shows the number ofresults reeived at the CP in dependene of Nr. As shown in [1℄, Nc, the number of ounting tokens sent tothe CP , is limited by 2 · Nr > Nc ≥ Nr. The straight lines in the �gure show the orresponding limits. Thesolid and dotted urves represent the results obtained for 20000 and 10000 peers, respetively. The number ofresults sent to the CP is within the alulated limits and independent of the overlay size. The urves roughlyresemble the shape of a stairase, whereas the steps are loated at powers of two. There are two main reasonsfor this behavior. First of all, the average ounting token sends two results bak to the CP , one intermediateresult and the �nal result at the end of the measurement region. Hene, the smaller the region overed by theaverage ounting token, the more results arrive at the CP . As explained above, the loser Nr gets to a powerof two, the smaller the region overed by the average ounting token. This aounts for the �rst part of the riseof the number of results reeived at the CP .The distribution of the arrival times of the results is also in�uened by the urrent size of the network. Thelarger the network, the more peers are within one region. However, the more peers are within one region, themore hops eah ounting token has to make, before it an send its results bak to the CP. Figure 5.4 shows thetoken arrival time distribution for three di�erent overlay sizes of 10000, 20000, and 40000 peers, respetively.We did not generate any hurn in this senario and set Nr = 512 areas. As expeted, the larger the overlaynetwork, the longer the snapshot is going to take. However, the urves are not only shifted to the right, butalso di�er in shape. This an again be explained by the inreasing number of hops per ounting token.As mentioned above, the average ounting token sends two results bak to the CP, whereas the hekpointsare equally spaed. Thus, the �nal result takes twie as many hops as the intermediate result. In a network of
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Fig. 5.4. Arrival times of the results at the CP .
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Fig. 5.6. Relative frequeny of timeouts and pointer fail-ures.10000 peers there are approximately 20 peers in eah of the 512 regions. The intermediate results are thereforesent after about 10 hops, the �nal results after about 20 hops, respetively. The two orresponding elevationsin the histogram overlap in suh a way, that they build a single elevation. In a network of 40000 peers, however,there are approximately 78 peers in eah of the 512 regions. The intermediate results are therefore sent afterabout 39 hops, the �nal results after about 78 hops, respetively. The di�erene between these two numbersis large enough to aount for the two elevations of the histogram in the foreground of Figure 5.4. Note, thatall urves are shifted to the right as ompared to the mere hop ount sine it takes some time for the signalingstep until the ounting tokens an be started. In pratie the urrent size of the overlay an be estimated to beable to hoose an appropriate value for Nr as suggested in [2℄.The arrival time of the results at the CP is also a�eted by the online/o�ine behavior of the individualpeers. To study the in�uene of hurn we onsider 80000 peers with an exponentially distributed online ando�ine time, eah with a mean of 60 minutes. This way, there are 40000 peers online on average, whih makesit possible to ompare the results to those obtained using 40000 peers without hurn. Figure 5.5 shows theorresponding histograms.As a result of hurn in the system, the two elevations of the original histogram beome notieably blurredand the snapshot is slightly delayed. This is due to the inonsistenies in the suessor and �nger lists of thepeer as well as the timeouts whih our during the forwarding of the ounting tokens. In return the spike inthe diagram and thus the required bandwidth at the CP beomes smaller.It is easy to show, that the probability to lose a token is almost negligible [1℄. Therefore, a more meaningfulmethod to measure the in�uene of hurn is to regard the number of timeouts whih our during a snapshot.Furthermore, the in�uene of hurn on the stability of the overlay network an be studied looking at the
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Fig. 5.7. Results of a snapshot ompared to the global view.frequeny at whih the predeessor pointer of a peer's suessor does not math the peer itself. Figure 5.6plots the relative frequeny of timeouts and pointer failures against the mean online/o�ine time of a peer. Thesmaller the online/o�ine time of a peer, the more hurn is in the system.The results represent the mean of several simulation runs, whereas the error bars show the 95 perent on�-dene intervals. The relatively small perentage of both timeouts and failures is to some extent implementationspei�. More interesting, however, is the exponential rise of the urves under higher hurn rates. The shapeof both urves is independent of the size of the overlay and only a�eted by the urrent hurn rate. The urvean therefore be used to map the frequeny of timeouts or failures measured in a running system to a spei�hurn rate.Until now, we only regarded the tra� pattern at the entral olleting point. From an operator's pointof view, however, it is more important to know, whether the snapshot itself is meaningful. To validate theauray of the snapshot algorithm, we again simulated an overlay network with 80000 peers, eah with a meanonline/o�ine time of 60 minutes. Due to the properties of the hash funtion and the hurn behavior in thesystem the number of douments on a single peer an be regarded as a random variable. The measurement weare interested in is the orresponding pdf in order to see whether the distribution of the douments among thepeers is fair or not. The pdf was measured using our snapshot algorithm as explained in Setion 3.3. The resultof the snapshot is ompared to the atual pdf obtained using the global view of our disrete event simulator (.f.Figure 5.7). The two urves are almost indistinguishable from eah other. The same is true for all the otherstatistis shown in Table 3.1, like the urrent size of the system or the average bandwidth used per time unit.That is, the snapshot provides the operator with a very aurate piture of the urrent state of its system. Thisniely demonstrates that the results obtained by the snapshot an be used to better understand the performaneof the running p2p system. The multiple possibilities to interpret the olleted data are well beyond the sopeof this paper.6. Conlusion. One of the main reasons that teleommuniation arriers are still hesitant to build p2pappliations is the lak of ontrol a provider has over the running system. In this paper we introdued an entirelydistributed and salable algorithm to monitor a Chord based p2p network at runtime. The load generated duringthe snapshot is evenly distributed among the peers of the overlay and the algorithm itself is easy to on�gure.It only takes one input parameter, whih in�uenes the trade-o� between the duration of the snapshot and thebandwidth required at the entral server whih ollets the results. In general it takes less than one minute toreate a snapshot of a Chord ring onsisting of 40000 peers. We performed a mathematial analysis of the basimehanisms and provided a simulative study onsidering realisti user behavior.The algorithm is resistant to instabilities in the overlay network (hurn) and provides the operator with avery aurate piture of the urrent state of its system. It o�ers the possibility to monitor the entire overlaynetwork or to onentrate on a spei� part of the system. The latter is espeially useful if a problem o-urred in a spei� part of the system and the operator wants to assure that his ountermeasures have beensuessful.
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