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REPUTATION-BASED MAJORITY VOTING FOR MALICIOUS GRID RESOURCES

TOLERANCE
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Abstract. Recently, distributed computing infrastructures such as grid computing, have witnessed huge developments which
have a very important impact on computationally intensive scientific, industrial and engineering problems. Collaborative computing,
resources access and sharing facilitated by grid computing systems amplifies concerns about cyber attacks and misbehaviors of grid
resources (resources provider). In many cases, an organization may send out jobs for remote execution on untrustworthy machines.
Since resource sharing and cooperation among different administrative domains are among the central goals of grid computing, it is
necessary to guarantee that, among the shared resources, there are no malicious resources interested in invalidating or corrupting
the job results. In order to guarantee reliable jobs execution in grid systems, we have developed a new approach for malicious grid
resources tolerance using reputation to improve the efficiency of majority voting mechanisms. The grid broker service investigates
the trustworthiness of the grid resources used in the voting procedure; this investigation is based on distributed and hierarchical
reputation management system which maintains a reputation value for each grid resource based on its historical behavior. The
validation of the result is then decided based on the grid resources reputation level.
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1. Introduction. A grid system is a platform that provides access to various computing resources owned
by different institutions through the creation of virtual organizations [1]. A grid virtual organization (VO) allows
a seamless aggregation of computational resources in multiple administrative domains into a single pool. The
users can lease for a certain time-frame bundles of software, CPU cycles, bandwidth and storage space in order
to execute computationally intensive tasks, according to a service level agreement (SLA) between the user and
the grid broker service. This broker is acting as a service intermediate between users and grid resources. This
brokering role can either happened in strong structured grids, with long-lasting VOs inside the VO boundaries
or in volatile grid environments, with very dynamic VOs, where the grid resources can dynamically join and
leave in the middle of an execution without impediment. In the second scenario, which is very close to the
grid design adopted by the XtreemOS project [15], the execution of a task may be halted arbitrarily. It is
then mandatory for VO manager to tolerate these misbehaviors in order to assure the security of the user jobs
execution.

Moreover, as the grid resources are connected through the Internet, and with the fusion of web services
and grid technologies, and due to the inherently dynamic and complex nature of grid system, a range of new
security threats and vulnerabilities are coming to the fore with the broadening scope of grid computing [3],
and especially the grid resources has become a subject of several unknown attacks. Introduction of grids in
the commercial sector has open up new ventures in the business arena [8]. However, the contemporary grid
application domains require many protections from malicious entities. These applications and their underlying
infrastructure have to protect the critical information about their owners; provide safeguards to the economic
interests of the enterprises using the grid system; and win the confidence of the society which is already doubtful
of the digital data processing [5].

Conventional grid security mechanisms [21] can ensure several security services. Some of them guarantee
communication confidentiality between grid nodes [17, 18] while others investigate resources access [19, 20].
As far as data integrity is concerned, most mechanisms that have been proposed to guarantee it will do it
only during the transmission; employing authentication and encryption technologies (as in Globus system) [22,
23, 24]. However in order to really guarantee data integrity in a grid system, it is also needed to ensure the
integrity of the job result processed by the grid resources. Hence, it is necessary to protect the applications in
process in the grid against possible malicious behavior of attacked resources that can affect the efficiency of the
grid system by returning erroneous jobs results.

In addition, the existing attacks/intrusions detection and prevention mechanisms are not efficient against
unknown attacks. Therefore, another kind of defense mechanism is needed to implement the precaution against
all possible attacks/intrusions. This creates the requirement that grid environments should detects and tolerates
the grid resources attacked by an adversary, which tamper with the computation and return corrupted results,
in order to guarantee reliable execution in such a suspicious environment.
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In this paper, we propose a new approach for tolerating malicious grid resources by using majority voting
mechanisms, and then investigate the trustworthy of the grid resources which are used in voting procedure.
This investigation is based on reputation management system. And the validation of result is decided based on
the reputation level of the grid resources.

The remainder of this paper is organized as follow. Section 2 presents our motivation of using sabotage
tolerance techniques in grid. Section 3 survey the background of these techniques. In section 4, we present our
vision of basic components of grid system and the possibility of attacking these components. Section 5 describes
our approach of using majority voting with reputation. Section 6 presents how the grid broker service will build
the reputation of grid resources. At last, section 7 concludes the paper.

2. Motivation. Sabotage tolerance is gaining importance in grid environments notably in the situation
where different grid domains have conflicting interests. The term sabotage tolerance was originally coined
in the specific area of Desktop Grids, where voluntarily Internet users contribute to the grid with computing
cycles. Because everyone can take part in such a grid, the environment started loosing its trustworthiness. Since
computations run in an open and un-trustable environment, it is necessary to protect the integrity of data and
validate the computation results. Sabotage tolerance techniques need to be employed mainly for the detection
of malicious entities who may submit erroneous results.

In a classical grid, sabotage tolerance is not an issue because the grid environment is trustable, in the sense
that someone (grid node administrator) controls strictly the grid resources and their ownership. When a grid
resource is malfunctioning, the grid owner is notified. However, if the grid scales at the size of the Internet or
spans over multiple administrative domains without a hierarchical subordination of control and ownership, an
attacker might corrupt the grid resources by exploiting some of its vulnerabilities, then it is likely that grid
resources report erroneous job results. Sabotage tolerance becomes mandatory, for the protection of both the
grid users and other grid contributors.

Sabotage tolerance techniques are applied in grid systems that employ the master-worker computational
model [13]. This grid model is not restrictive and maps well on the wide variety of grids. This model can
be summarized as a server (referred further as the master) that distributes work units of an application to
grid nodes (workers). A result error is any result returned by a worker that is not the correct value or within
the correct range of values [10]. Sabotage-tolerance techniques imply detecting result errors, which are very
important as they can undermine long computations that have been executing during weeks or even months
by several workers [4]. The error rate ε is defined as the ratio of bad results or errors among the final results
accepted at the end of the computation. Thus, for a batch of N work units with error rate ε, the master
expects to receive εN errors. For every application, the master employs some sabotage-tolerance mechanism for
obtaining an acceptable error rate εacc with regard to its application. If a grid user comes with an application
divided on a big number of tasks (e.g. 10 batches of 100 work units each) and it requires a global error rate of
10−2, the sabotage tolerance technique should provide with a work unit error rate of about 10−5 [10]. Many
applications, especially the ones from computational biology and physics require bounds on the error rates, as
the correctness of the computed results is essential for making accurate scientific conclusions.

3. Background and related work. In this section, we provide a short overview for the principal sabotage
tolerance techniques in Desktop Grids. Sabotage tolerance techniques for Desktop Grids can be classified in
four big classes [4]: reputation systems, replication with voting, sampling, and checkpoint-based verification.

Reputation systems [26] are commonly used to estimate the reliability of grid resources based on past
interactions. The concept of trust-aware resource management for the Grid was proposed in [27], where a
technique is presented for computing trust ratings in a Grid using a weighted combination of past experience
and reputation. Zhao and Lo [16] propose augmenting peer-to-peer cycle sharing systems with a reputation
system to reduce the degree of replication required to verify results. GridEigenTrust [28] combines this trust-
computation technique with the EigenTrust reputation system [29] to provide a mechanism for rating resources
in a Grid. These existing reputation systems have focused on correctness as the primary metric, and have dealt
mainly with binary trust values. The key concept in our reputation model is the combination of the credibility,
availability, and security level to compute the overall grid resources reputation.

Replication with majority voting [13] is widely used in the BOINC Desktop Grid platform [2]. The master
distributes 2m−1 replicas of a work unit to workers and when it collects m similar results, it accepts that result
as being the correct one. Each collected result is seen as a vote in a voting pool with 2m− 1 voters and with
majority agreement being the decision criteria. The error rate of this method is determined by the number of
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identical results required (m), which is a measure of redundancy. High levels of redundancy provide very low
error rates (less than 10−5). The main benefit of the method is its simplicity, while the big drawback is the fact
that it wastes a lot of resources.

Sampling-based techniques are developed to overcome limitations of replication, especially redundancy.
Within sampling, the master determines the trustworthiness of the workers by verifying them only on a few
samples of their results. The basic sampling is the näıve one [14], where the master sends probes with verifiable
results to workers. If workers respond well to the probes, they are considered trustworthy. The main drawback
is the workers can easily recognize the probes and respond well to them, while cheating on the ordinary work
units. The probing by spot checking is introduced by Sarmenta [13]. A credibility based mechanism is presented
to protect a volunteer computing environment against malicious users. Probes, named now spotters, are tasks
with known results. If a worker fails to compute correctly a spotter, it will get blacklisted and all its results will
be invalidated. Based on spot-checking, Sarmenta defines the credibility of a worker and a result. The credibility
of a worker is an estimate of the probability the worker will return a correct result. The credibility of a result
is the conditional probability that the result originating from a worker will be accepted as correct. Sarmenta
approach is essentially a centralized one, the fact that adds an overhead to the central resource responsible for
the tests (every spotter job is also processed by the central resource). In our approach, which is based on a
distributed and hierarchical paradigm, we delegate the spot-checking operations to other resources known to be
trustworthy; we assume that there are some highly pre-trusted resources in the grid system we call reputation
agent. Moreover, we will use these highly pre-trusted resources to store the credibility value, and then to reduce
the traffic and the processing effort by a centralized resource according to the tests results.

Quizzes [16] are an improvement to basic probing. With this method, the master sends to workers batches
with work units and it places the probes inside of those batches. Given the actual required error rate, the master
can compute the number of quizzes to place inside a batch. A drawback of probing is the fact the master should
possess some heuristic in order to generate the probes and make them to resemble with the real work units.
Because this is a difficult task, the master can use actual work units as probes [13]. The master verifies (using
replication) only a sample of results and if a worker is caught cheating all its previous results are invalidated.

Checkpoint based verification addresses the problems with sequential computations that can be broken in
multiple temporal segments (St1, St2, . . . , Stn). At the end of each segment a checkpoint is submitted to a
stable storage. The checkpoints are stored locally to allow recovering the long tasks from faults. After finishing
a task, the worker sends back the result along with a list of hashes for the checkpoints. In the basic checkpoint
verification [11], the master randomly selects a checkpoint time Sti for a task and asks the worker to deliver its
local checkpoint C(Sti). Then the master computes the task from Sti up to the next checkpoint and compares
the results with the hash value submitted by the worker for C(Sti+1). If the hash verification succeeds, then
the worker passed the verification. In the distributed version of the checkpoint verification, the master selects a
third worker for verification purposes and let the verifier to compute the checkpoint verification. The distributed
version has the advantage of not overloading the master with a lot of verification tasks. The error rate of this
method strongly depends on the number of verified checkpoints - i. e. a high percentage of verified checkpoints
yield a low error rate, for the cost of increased computation (redundancy) and bandwidth.

4. Model and assumption. Fig. 4.1 shows the basic components of a grid system of interest, which
consists of N Virtual Organizations (VOs), where each VO contain a set of resources, services and middleware,
applications, and users, connected by a local network and the Internet (Fig. 4.2). From the service point of
view, these components are considered as resources provider and services provider. The former owns computa-
tional nodes or other physical resources, and has root privilege. It decides whether and when resources should
contribute and the quantity of available resources that are needed for job execution. The number of resources
is dynamic and undetermined. Besides, each resource provider may require different authentication, authoriza-
tion mechanisms and security policies. The second is the owner of the software solutions and the information
databases that are deployed on a resource provider’s assets. The software solution is an individual service or a
combination of services to solve user’s submitted jobs or requests. In combination situation, the service provider
then comes to be a user that requests other services.

In grid computing environment, a client is a parallel job submitter who requests results, he/she can submit
a job to grid broker service (after SLA establishment), which determines where and when to run the job. The
broker primarily mediates user access to grid resources by discovering suitable services and resources provided
by VOs and deploying and monitoring job execution. In the other hand, each VO in the grid has a single VO
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Fig. 4.1. Basic components of a grid system

Fig. 4.2. Virtual organization (VO) components

manager, which searches for available services. When it finds an interesting service, it negotiates with the service
provider to allow access to the service from their VO. Once the service provider authorizes the use of the service,
the service becomes available at this VO. The job is then divided into subjobs that have their own specific input
data. The subjob is called a task. The broker distributes tasks to selected grid resources (computing resources)
using scheduling mechanisms. When each grid resource subsequently finishes its task, it returns the result of
the task to the broker. Finally, the broker returns the final result of the job back to the client.

In our study, the VO manager includes a reputation agent component, responsible for spot-checking oper-
ations, and for the reputation value computation for each grid resource within the VO. The reputation values
are then returned to the broker.

In this execution scenario of jobs, there are several possible attacks to grid resources which might tamper
with the computation and return corrupted results (grid resources takeover by an unauthorized user can result to
malicious acts like corruption of job data, job termination etc.). Such attacks are usually related to security holes
of the services and resources provider [9]. Denial of Service (DoS) attacks [7] may also disrupt job completion
or temporarily prevent access to job output by cutting a site off the Resource Broker that has delegated the job
and is waiting for the output.

5. Malicious grid resources tolerance using reputation. Attacks on grid computing, as on any
other system, rely on a large number of different vulnerabilities in grid security. Therefore, these attacks
become an increasingly prevalent form of security threats, and the problem appears to be quite difficult to
solve, especially for attacks which can corrupt the grid resources and make them provide erroneous results of
execution. Nevertheless, there exist several defense mechanisms that have been proposed to detect and prevent
these attacks, these mechanisms can stop known attacks, but can not defend against new attacks which can
happen in grid system. To this end, tolerance mechanisms for malicious grid resources become necessary to
provide a safe result of job execution. As a solution, we propose an approach of tolerating these types of attacks
by using sabotage tolerance techniques.

The proposed method is based on reputation to improve the efficiency of majority voting mechanisms. With
majority voting the grid broker service (i. e. master) decide about the trustworthiness of a result immediately



Reputation-based Majority Voting for Malicious Grid Resources Tolerance 389

after having the result of all replicas of a task (i. e. work unit). This approach tolerates a certain number of
incorrect results in a vote. However, it does not resist when, for example an adversary gets control through a
virus over a large number of computing resources (i. e. workers), and make them return the same result. In
our approach, the broker will postpone the decision until the moment it gathers enough information to infer
the trustworthiness of the result. To achieve this information, we will use existing reputation lists of different
computing resources in VO.

5.1. Problem formulation. Let us assume that each task is replicated n times and allocated to several
computing resources Ci, so that a broker can collect m different results Vj , where i = 1, 2, . . . , n and j =
1, 2, . . . ,m. Each computing resource has its reputation value Ri, this reputation is collected by a grid broker
service, which contains the reputation lists for all computing resources Ci. The reputation is a value in the
range between 0 and 1. In Sect. 6 we will show how the reputation agent will compute the reputation value.

To make a decision about which result Vj is trustworthy (i. e. accepted result), the grid broker service
utilizes a majority voting based on reputation decision criteria.

Let the relativity vector Re(Vj) represents The aggregated vote of all computing resources that return the
same result.

Re(Vj) = [T (Vj , C1), T (Vj , C2), . . . , T (Vj , Cn)](5.1)

Where T (Vj , Ci) is the relationship between the result Vj and the computing resource Ci. It is calculated as
follow.

T (Vj, Ci) =

{

1, if Ci compute Vj

0, otherwise
(5.2)

We define the result reputationRR(Vj) of a given result Vj as the summation of reputations of the computing
resources returning the result Vj .
For each result Vj :

RR(Vj) =
n
∑

i=1

T (Vj , Ci)Ri(5.3)

To make a decision we fixe a positif threshold value λ < 1 and we pick the maximum of RR(Vj); (j =
1, . . . ,m).















if max(RR(Vj)) > λ
∑n

i=1
Ri; the result corresponding to this

maximum is accepted
Otherwise; the grid broker service should decide

for further replication

To avoid the possibility that a set of computing resources with a low reputation could undermine the result,
we impose the following condition.

Ri =

{

0 , if Ri < Θ
Ri , otherwise

(5.4)

Where Θ represents the minimum reputation value a computing resource should have for its results to be
taken in consideration.

6. Computing reputation. In this section, we present how the grid broker service will build the reputa-
tion value of each computing resource (or grid resource).

The reputation of an entity is an expectation of its behavior based on other entities observations or informa-
tion about the entities past behavior at a given time [6]. The reputation management services are responsible
for evaluating the reputation of grid resources, services, and users inside a VO. In our vision, the grid broker
service builds the reputation of each computing resource through its credibility, availability, and security level.
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6.1. Credibility. The credibility represents the likelihood of a particular object of the system to be
operating properly [12]. The reputation agent the credibility of the computing resource Ci by passing spot
checking (see Sect. 3). If f is the proportion of compromised computing resources, the credibility of a computer
resource which correctly computed ki spotters (tasks), when blacklisting is not used, will be computed by [13]:

CR(Ci, ki) =

{

1− f

ki

, if Ki 6= 0

1− f, otherwise
(6.1)

With blacklisting policy [25], the malicious resources which return an erroneous result for the spotter job
are immediately blacklisted, i. e. the malicious resources are never allowed to return results or to get any more
jobs. In our study, we prefer to compute credibility without the blacklisting policy, because in some way it
is possible that a malicious resource may change its behavior with the time. For instance, resources may be
infected by a virus and after being repaired it will become reliable again. Thus, these repaired resources can
participate in a computation and return a correct result, and can then improve the performance of the grid
system.

After the computing resources pass enough tasks kmin, they succeed to obtain enough credibility (minimum
credibility) to guarantee that their results are correct given the error rate εacc. First, we initialize the credibility
value CRinit(Ci) of all computing resources. The initial value is no more than the minimum credibility of the
computing resource itself.

CRinit(Ci) = CR(Ci, kmin)(6.2)

The credibility value is incremented in such a way that if a computing resource returns a validated result
by the reputation-based majority voting described above. We propose to consider as a passed spotter each
task successfully validated by the broker, using the reputation-based majority voting. Then, we update the
credibility value using this equation:

CR(Ci, ki) = CR(Ci, ki + 1)(6.3)

In the same manner, we do decrease the credibility of those computing resources whose result was not
validates by the reputation-based majority voting. To this end, we update the credibility value using this
equation:

CR(Ci, ki) = CR(Ci, ki − 1)(6.4)

6.2. Availability. The Availability Ai is the ratio of the number of successful contacts to the computing
resource Ci and the total number of requests. A non-available resource means that it is not accessible [30].
Thus, the computation of availability is given by:

Ai =
NS

NR

(6.5)

Where NS is the number of successful contacts to the computing resource, and NR is the Number of the
total number of requests.

When a computing resource joins the grid system, it may participate in the computation of several jobs.
Every time, its availability value will be updated.

6.3. Security level. In our approach, we consider the security level of a computing resource as a self-
protection capability.

As defined in [31], the self-protection capability of a computing resource is calculated by aggregating the
security factors. The values of these factors differ in the range between 0 and 1. Based on their contributions to
security, a proportion is given to each security factor as a final point aggregated to compute the self-protection
capability. The security factors and their related proportions are listed in Table 6.1 [32].

Thus, the security level (SLi) is calculated using the following equation:

SLi =

∑n

s=1
P (s)L(s)

n
(6.6)

Where n is the total number of factors. P (s) is the proportion and L(s) is the value of the factor determined
by the reputation agent trust strategy.
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Table 6.1

Proportion of security factors.

Security Factors Proportion (P)

IDS Capabilities 0.825
Anti-virus Capabilities 0.85
Firewall Capabilities 0.9

Authentication Mechanism 0.8
Secured File Storage Capabilities 0.7

Interoperability 0.6
Secured Job Execution 0.75

6.4. grid Resources reputation. The reputation Ri value of a computing resource Ci, that will be used
by the reputation-based majority voting, computed by the reputation agent, is the product of the following
three metrics: credibility, availability, and security level, and it is computed using the following equation:

Ri = CR(Ci, ki)×Ai × SLi(6.7)

As the SLi of a computing resource is usually stable for a period of time, when a new computing resource
joins the grid, it will be calculated as the initial reputation value of the computing resource. Each result
produced by the computing resource will enter the reputation-based majority voting competition. If the result
is accepted, the reputation of the computing resource will be increased. If not, it will be decreased.

7. Conclusion. In this work, the proposed approach for tolerating attacks in grid resources is discussed.
This approach is based on majority voting mechanisms and reputation management system. The voting result
that is generated by the majority voting can be combined with the reputation of grid resources owned by
VOs, and then it may be possible to decide on the authenticity of suspicious grid resources. Using reputation
information with majority voting, our grid computing system can provide job results correctness. Thus, our
tolerance scheme for detecting suspicious grid resources is more accurate and more reliable. And help to improve
the security of grid computing system.
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