
Scalable Computing: Practice and Experience

Volume 12, Number 4, pp. 377–384. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

TOWARDS A TAXONOMY OF WEB SERVICE COMPOSITION APPROACHES

DESSISLAVA PETROVA-ANTONOVA∗AND ALEKSANDAR DIMOV†

Abstract. Service-Oriented Architecture (SOA) is a well known paradigm for development of flexible and loose coupled
software applications using services that are available in a network. The latter provide business functionality through well-defined
interfaces that can be dynamically discovered. Services can be aggregated into more complex ones called composite services.
Currently, there exist a lot of composition approaches that serve different goals. In order to be able to comprehensively study the
web-service composition process, different approaches should be analyzed and organized into appropriate taxonomy framework.
This paper presents an overview of current approaches for service composition and further analyzes them toward various aspects
of the composition model.

Key words: Composition model, Service-Oriented Architecture, Web services

1. Introduction. Latest trend in software engineering is presented by the so-called Service-Oriented Ar-
chitecture (SOA). It makes possible development of software intensive systems via loosely coupled services,
which provide business functionality through contractually specified interfaces. The promise of services is for
increased maintainability and scalability of systems, achieved at predictable time with less efforts and decreased
cost of development.
The preferred way to realize SOA is based on web services. The basic web service infrastructure founded on
standards like WSDL, SOAP and UDDI provides simple interaction between clients and web services. Func-
tionality of the latter is often combined into composite ones that satisfy specific business goals. In such case,
additional composition models, languages, as well as development and run-time environments should be elab-
orated. Although a lot of efforts for development of web service composition methods are available, most of
them aim toward satisfying particular needs. Some composition approaches focus mainly on QoS aspects of the
composition [2], [8], [9], while the goal of others is to provide web service orchestration [4], [6], [7], [12], [14].
In such context this paper aims to study the fundamental characteristics and essential aspects of different ap-
proaches. For this purpose we extend the number of the dimensions of an existing composition model and
provide comparative analysis of different web service composition approaches according to these dimensions.
Some currently existing literature surveys on web service composition approaches directly relate to our work.
For instance, in [21], authors present in details a large number of approaches, but only few of them are com-
pared according to the preliminary defined criteria. Rao and SU discuss in [22] only the approaches based on
AI Planning. The approaches using Petri nets, statecharts and other techniques for orchestration modeling are
not considered. In this paper several categories of orchestration modeling techniques are presented and used as
a comparison criterion of presented approaches. Evaluation of QoS Based web service selection techniques for
service composition is given in [23]. In this paper, other dimensions of the composition process such as data
modeling, transaction modeling and exception handling, are not mentioned. In our work we extend the above
mentioned research, by establishing a more sound classification and comparison scheme, which could serve as a
basis for a taxonomy framework of the web service composition process.
The rest of the paper abstract is organized as follows: Section 2 introduces the current web service composition
approaches, Section 3 analyzes the approaches with respect to aforesaid dimensions and Section 4 concludes the
paper.

2. Overview of Web Service Composition Approaches. This section introduces the key aspects of
the current web service composition approaches.
Chang and Lee [2] propose a quality driven web service composition methodology, which evaluates the quality
of web services in three dimensions: QoS (quality of services), QoC (quality of contents), and QoD (quality of
devices). QoS is related to the quality properties of web services such as performance, interoperability, security,
and so on. QoC considers the quality of the context in which the web services work. QoD addresses the qual-
ity of devices and the physical environment in which the web services operate. The web service composition
methodology uses Multi-Criteria Decision Making solution, called Preference Ranking Organization METHod

∗Sofia University, Faculty of Mathematics and Informatics, Department of Software Engineering, 1164 Sofia, Bulgaria
(d.petrova@fmi.uni-sofia.bg).

†Sofia University, Faculty of Mathematics and Informatics, Department of Software Engineering, 1164 Sofia, Bulgaria
(aldi@fmi.uni-sofia.bg).

377



378 D. Petrova-Antonova and A. Dimov

for Enrichment Evaluations (PROMETHEE). The proposed method for web service composition consists of
six steps. First, web service composition is described as abstract workflow using Business Process Modeling
Notation (BPMN). Next, quality factors from the three dimensions are selected and their quality weights are
determined. Then, constraints of quality factors are defined and preference indexes for all quality factors are
specified. The preference index expresses the preference of one service over another considering all quality
factors. Finally, outranking flows between web service candidates are determined according to the preference
indexes. The proposed methodology is implemented in a tool, named Event-driven web service composer, and
is evaluated through an example process with five tasks. Twenty five web services and ten event services are
developed as candidates for the execution of the process’s tasks.
Qiao et al. [3] a broker based architecture for dynamic QoS monitoring and adaptation for composite web ser-
vices. The web service compositions are described with Business Process Execution Language (BPEL), which
is extended with a new construct, called flexPath, allowing definition of multiple execution paths of the BPEL
process. The proposed architecture consists of two main components: QoS broker and BPEL compiler. The
QoS broker is responsible to monitor and adapt the QoS properties. It keeps track of the execution of the
BPEL process based on the schema of the running instance and the current execution point. The values of QoS
properties are measured at run-time using a probing technique. The key role of the QoS broker is to decide
whether the adaptation has to be triggered and if so, to find a better execution path in order to improve the
QoS. The BPEL compiler instruments the BPEL process with a new logic in order to communicate with the QoS
broker. The proposed components of the architecture are implemented in a prototype tool and verified through
a BPEL process that invokes a number of dummy partner Web services. A disadvantage of the architecture
is that it handles only Response time as QoS property. The measured Response time in the broker is not the
same as those obtained from user experiences. This drawback is due to the usage a third party monitor.
Zheng and Yan [4] model web service composition problem as a Planning Graph (PG). Each web service in
a composition is mapped to an action of a PG. The input parameters of the web service are mapped to the
action’s preconditions, and its output parameters are mapped to the action’s effects. The input parameters of
the composition request are mapped to the initial state of a planning problem. The output parameters of the
composition request are mapped to goal propositions. The proposed algorithm takes as an input a set of actions,
an initial state, and a set of goal propositions. Firstly, it assigns an initial state to a proposition set in level
0 of a simplified PG. Then, the algorithm expands PG iteratively until it reaches a level where a proposition
set contains goal propositions or the fixed point level of PG. If the former happens first, then the algorithm
outputs a solution. Otherwise, the solution is not produced. The performance of the proposed approach is
studied through a sample repository, containing 143 web services. It is compared with the performance of
Service Composition Algorithm used in Georgetown Java Software. A drawback of the proposed approach is
that it sometimes produces redundant web services.
Yu and Reiff-Marganiec [5] propose a technique for web service composition using Planning as Model Checking
(PMC). They translate a message based paradigm to a state oriented one by allowing a single operation in the
web service to imply a state, which essentially encapsulates the change after execution of the operation. Each
operation is modeled in four aspects, namely quality, domain, purpose and communication. The quality aspect
captures non-functional requirements of the web service. The domain aspect describes the area of interest of
the operation. The purpose aspect refers to the aim of the operation. The communication aspect defines a
message exchange protocol that is used for interaction with the clients and other web services. The model of
the web service operation is applied in the design of a composition framework, which has four phases. The first
phase specifies the planning goal and describes initial knowledge about the client as input for the next phase.
On the second phase, a plan search space is built. The third phase runs the proposed algorithm to search for
plans. On the fourth phase, the clients choose the best plan. Then, the composition framework generates an
executable plan that is described in BPEL. It monitors the execution of the web service composition and in
case of failures automatically revises the executable plan using the alternative ones, obtained in the third phase.
A disadvantage of the composition framework is that the clients need to select the best plan instead of the
composition framework itself. This can be done automatically based on the non-functional properties of web
services.
The AI planning is also applied to the problem of web service composition by Klusch and Gerber [6]. They
propose a semantic web service composition planner, called OWLS-XPlan. OWLS-XPlan takes OWL-S web
service descriptions, OWL domain description and a planning goal as input and generates a planning sequence
of web services, which corresponds to the planning goal. The web service descriptions and domain descriptions



Towards a Taxonomy of Web Service Composition Approaches 379

are transformed in Planning Domain Definition Language (PDDL). They are used to create a PDDL plan that
solves a given problem in the actual domain. OWLS-XPlan is evaluated according to completeness of planning,
the average plan length in relation to the complexity of the problem definition and the average plan quality in
terms of the average distance of individual plans from the optimal solution of a given problem. Bartalos and
Bielikova [7] also propose a solution of semantic web service composition problem. They propose an approach,
which creates web services workflows, satisfying a given goal. The goal is described as a pair: concept type
and constraint. The concept type is a concept from the ontology used for semantic annotation of web services.
The constraint is defined as a first order logic formula. The proposed approach generates a plan containing
all possible alternative branches that lead to the goal. The condition determining which branch will be taken
is evaluated during execution. The composition process continues until there is no web service which has not
specified source for its input data. During the composition, the value restrictions defined in the goal are back
propagated based on the pre- and post-conditions of chained services. The proposed approach is evaluated with
respect of performance and usefulness.
Cardellini et al. [8] present a web service composition approach, where web service selection is carried out per
flows of requests rather than per request. The web service selection problem is scaled to Linear Programming
Optimization problem and takes into account QoS properties of the candidate web services. Its solution is used
in the design of a service broker, which performs several tasks. First, it defines a business process in BPEL for
the requested web service composition and discovers the candidate web services. Next, the service broker nego-
tiates Service Level Agreements (SLAs) with the providers of the candidate web services. During negotiation
it establishes the values of QoS properties of each web service in correspondence with a mean volume of re-
quests generated by the broker for that service. Then, the negotiation continues with the requestor establishing
the offered QoS level of the composition in correspondence with a mean volume of requests generated by the
requestor to the broker. Finally, the selection of concrete web services is realized by solving the optimization
problem. The service broker also collects information about web service composition usage. The collected data
is used to find out whether a new solution of the optimization problem is required.
Chakhar et al. [9] describe a framework for composite web services selection based on multicriteria evalua-
tion. The proposed solution extends the current web service architecture by adding a Multicriteria Evaluation
Component (MEC) in the UDDI registry. MEC takes as input a set of composite web services and a set of
evaluation criteria. Its output is a set of recommended composite web services. The set of QoS evaluation
criteria is extracted from the SOAP message sent by the client to the UDDI registry in order to find a given
web service. They are transformed into quantitative ones by assigning values to the qualitative data. Potential
web service compositions are constructed as graphs and then evaluated according to preliminary defined rules.
The proposed framework is under development, but its feasibility is shown through an illustrative example.
Aiello et al. [10] propose an algorithm that creates a web service composition, which satisfies the functional
requirements of the client. The algorithm is based on an extended Breadth First Search (BFS) algorithm that
uses a priority queue with cost based on Response time and Throughput. It is integrated in a system, called
RuGQoS, which consist of three components: XML parser, Composition engine and BPEL code generator. The
XML parser translates the WSDL, WSLA and OWL descriptions into a set of indexes where each operation
name is associated with a web service and its corresponding Response time and Throughput. The Composition
engine implements the BFS algorithm. The BPEL code generator converts the output from the Composition
engine into business process described in BPEL.
Lecue [11] proposes an approach for web service composition based on the semantic similarities between input
and output web service parameters. The semantic similarities are evaluated using semantic links that are speci-
fied by statecharts (S). The semantic links are valued with two quality criteria, namely Common description rate
and Matching quality. The common description rate provides one possible measure for the degree of similarity
between an output parameter of one web service and an input parameter of another one. The matching quality
is a value in the range of [0, 1] that can be 1 (Exact), 3/4 (PlugIn), 1/2 (Subsume) or 1/4 (Intersection). The
semantic links are also augmented with two QoS properties of web services: Execution price and Response time.
Thus, the proposed approach of web service computation optimizes both QoS and the quality of semantic fit.
Sohrabi and McIlraith [12] present a template based web service composition system using Hierarchical Task
Networks (HTNs). The system assumes that both web services and composition templates, specified by the
clients, are described in OWL-S. OWL-S service profiles and process models are translated into HTNs. The
client preferences are described with extension of Planning Domain Definition Language (PDDL3), which allows
specification of preferences over how tasks are decomposed as well as over QoS properties of web services. The



380 D. Petrova-Antonova and A. Dimov

web service compositions generated by the proposed system adhere to policies and regulations expressed as a
subset of Linear Temporal Logic (LTL). Thus, the system guarantees that the synthesized composition preserves
certain properties of the world.
Pistore et al. [13] address the web service composition problem by developing a planning technique based on
the Planning as Model checking approach. The planning process uses a BPEL4WS description of the external
protocols and client requirements for the composition. The external protocols are represented by means of finite
state machines due to their nondeterminism and partial observability. The clients requirements are expressed
in a goal language, called EaGLe, and are used to navigate the planning. As a result, an executable BPEL4WS
process and a monitor are generated. The monitor checks the actual interactions of the BPEL4WS process
with the external web services and detects incorrect ones. The proposed planning technique is implemented in
a BPM planner and is evaluated on a sample case study.
Farhan et al. [14] propose a framework for web service composition that consists of four main components:
Translator, Evaluator, Composer, Execution Engine and Matching Engine. The Translator converts the client
request into a form used by the framework. The Matching Engine checks for the requested web services in a web
service database. If the requested web services are not found, then it starts to search in UDDI registries. The
results of searching are sent to the Evaluator, which evaluates the web services using interface and functionality
based rules. After that it sends selected services to the Composer in order to generate a composition. The
result composition is executed by the Execution Engine. Finally, the results are sent to the client through the
Translator.
Zeng et al. [15] propose a middleware platform for QoS-driven web service composition, called AgFlow. The QoS
properties of web services are presented with a multi-dimensional QoS model. The model considers only five
QoS properties, namely Execution price, Execution duration, Reputation, Reliability, and Availability, which
are also used to evaluate the quality of the final web service composition. The composition is specified as a
collection of generic service tasks described in terms of service ontologies and combined according to a set of
control-flow and data-flow dependencies. These dependencies are presented as statcharts. AgFlow implements
two composition approaches: local optimization and global planning. The local optimization approach performs
optimal web service selection for each individual task without considering QoS properties of web services. The
global planning approach is based on the preferences specified for the whole composition as well as QoS prop-
erties of web services. It uses integer programming in order to compute optimal plan that correspond to the
composition. The proposed platform provides an adaptive execution engine, which re-plans the execution of
the composition in response to changing QoS. It is implemented as a prototype system and is evaluated over a
travel planning application.
Mili et al. [16] address web service composition problem as a function cover problem. The web service com-
position process starts an algorithm with the strictest interpretation of type equivalence, and then invokes
looser versions only if the current ones fail to return appropriate results. The proposed solution is inspired by
the programming languages, which handle type equivalence using one of two strategies: name equivalence and
structural equivalence.
Che et al. [17] use a XML nets to model control flows and data flows of web service compositions as well as
to discover and select web services for that compositions. Control flows can be easily modeled with XML nets
due to their graphical nature. The data flow modeling is more complex due to problems that can occur during
message passing. One of them is incompatibility between an output message of one web service and an input
message of another one. XML nets adjust output and input messages by adding a web service chaining tran-
sition as mediator between two web service invocation transitions. The mediating transitions are applicable to
message aggregation or disassembly. Web service discovery and selection process is aligned to definition and
(re)configuration of XML net process rules. Transition inscriptions are used to define constraints for web service
selection.
Lin et al. [18] propose a web service composition technique, in which the web services are described in OWL-S
and the client preferences are described in PDDL3. The planning of web service composition combines HTNs
with best-first search using a heuristic selection mechanism based on ontological reasoning. Thus, the proposed
technique provides web service compositions with a minimal cost of violations of the user preferences.
Ge et al. [19] solve the web service composition problem by using OWL ontology. The candidate web services
are semantically matched and composed based on their OWL descriptions. Four cases for check similarity of
an output and input parameter from the same ontology are defined. First, if the input and output parameters
are the same, then the similarity is maximal. Second, if the output parameter of one service is subsumed by



Towards a Taxonomy of Web Service Composition Approaches 381

Table 3.1: Comparison of web service composition approaches.

Ref. OM CM QM T DDAM EH SSM TS
2 BPMN WSDL Yes No Partial Yes Yes Yes
3 BPEL WSDL Partial No No No Yes Yes
4 PG WSDL No No No No No Yes
5 PMC WSDL No No No Yes Yes Yes
6 AIP OWL–S,OWL No No No No No Yes
7 OWL–S SWRL No No Yes No No Yes
8 WS–BPEL WSDL,SLA No Yes Partial No No No
9 GM WSDL,UDDI Yes Partial No Partial No Yes
10 GM WSDL,WSLA,OWL Partial No No No No Yes
11 S OWL-S,SAWSDL Partial No Yes No No Yes
12 HTN OWL-S Yes No No No Yes Yes
13 PMC WSDL No No Yes Yes Yes Yes
14 AIP WSDL Yes No No No Yes Yes
15 S WSDL,SLA Partial No No Yes Yes Yes
16 SM WSDL,UDDI No No No No No Yes
17 XML Nets OWL–QoS Yes No Yes No Yes No
18 HTN OWL–S No No No No No Yes
19 OWL WSDL No No Yes No No Yes

the input parameter of another one, then the similarity value depends on their distance in the ontology. Third,
the output parameter of one service subsumes the input parameter of another one and the properties of the
parameters are partially satisfied. Fourth, if two parameters do not have subsumption relation or they are come
from different ontology, then the similarity value can be obtained by Tversky’s feature-based similarity model.
The final composition is presented as direct graph and is converted to executable business process described in
BPEL4WS.

3. Analysis of Web Service Composition Approaches. This section presents a comparative analysis
of web service composition approaches. It is based on a composition model proposed by Alonso et al. [1].
According to this model, web service composition is characterized with six different dimensions: Component
Model (CM), Orchestration Model (OM), Data and Data Access Model (DDAM), Service Selection Model
(SSM), Transactions (T), and Exception Handling (EH). The CM considers the type of components that par-
ticipate in a composition as well as assumptions about them. The OM deals with the way in which web services
are composed into more complex services. DDAM is responsible for data exchange among components. The
SSM defines whether a particular web service is selected as a component dynamically or statically. Transactions
define transactional semantics associated to the composition. Finally, the EH specifies the mechanisms for
handling of exceptional situations that is possible to occur during composition invocation.
Evaluation of the composition quality is an important aspect of the composition process. When several can-
didate web services have the same functionality, their QoS properties are examined in order to select the best
one. Thus we identify QoS support as an additional dimension of the composition model, called Quality Model
(QM).
Table 3.1 summarizes the comparison of the web service composition approaches. The first column refers to
composition approaches. The last column, named Tool Support (TS), shows which of the approaches are imple-
mented as software tools or platforms. They are marked with filled circle. The rest of the columns correspond
to the dimensions of composition model presented above.

OM column in Table 3.1 shows the abstractions and languages used for modeling of control flow of the
compositions in terms of sequence of operation execution. Here, variety of paradigms exists. Most common are
techniques based on AI Planning such as HTNs, PGs, and Semantic Markup for Web Services (OWL-S) and
Web Ontology Language (OWL) [4], [6], [7], [12], [14], [18], [19]. PMC is another planning technique that is
also applicable to OM [5], [13]. The languages for description of business processes like BPEL and BPMN are
also proposed for web service orchestration [2], [3], [8]. Statecharts are abstractions that extend state machines
with possibility to define activities while moving between states [11], [15]. HPNs have the ability to model
concurrency of the systems, analyze concurrent behavior, and express the dynamically changing software. Here,
they are presented by XML nets, which provide advantages in the description of process objects and inter-
organizational exchange of XML structured data [17]. Graph Models (GM) are another way for design of OMs,



382 D. Petrova-Antonova and A. Dimov

Fig. 3.1: Classification scheme of web service

where web services are presented with graph nodes and the sequence of their execution is shown by the graph
edges. They are applied in [9] and [10]. Signature Matching (SM) is a technique used in [16] in order to compose
web services. It is instance of more general problem, called function realization problem [20]. A classification
scheme that summarizes web service orchestration techniques is shown on Figure 3.1.

The CM column shows the standards and languages used for description of composition components. Cur-
rently, most of the composition approaches (along with the analyzed ones here) assume that components are
WSDL services based on standards such as HTTP, SOAP and WS-Transaction. As shown in Table 3.1, some
approaches rely on additional standards like SLA and OWL-S in order to enrich the composition model with
QoS and semantic data. They take into account the QoS properties of candidate web services in order to produce
composition that aggregates web services with the maximum quality. This aspect of the composition process
is presented in column QM of the table. Here, Ÿesm̈eans that the proposed QM is capable to covers all QoS
properties. The P̈artialv̈alue shows that given approach supports QM with limited number of QoS properties.
We call such approaches QM limited. For example, the QM proposed in [3] concerns only Response time.
QMs can be further classified according to the formalism that is applied to the composition when QoS properties
are taken into account. For example the QM proposed in [2] is based on Multi Criteria Decision Making. It
considers quality in three aspects: QoS that is related to web service execution, Quality of Contents (QoC)
referring to the quality of the content with which the web services work, and Quality of Devices (QoD), con-
cerning physical environment. The T column shows whether given approach consider transactional behavior
of web service composition. Since the underlying middleware is often responsible for providing transactional
capabilities, approaches presented in Table 3.1 do not consider this dimension of the composition model. For
example, the compensation logic for roll back of web service activities may be handled by engine that imple-
ments WS-Transaction specifications.
The DDAM column shows which approaches compose web services in terms of data types and data transfer.
According to [1] the data of given web service composition can be divided into application-specific data and
control flow data. Data exchanged by web service messages is called application-specific data. Data that is used
for evaluation of branching conditions is called control flow data. Data transfer method can follow blackboard
approach or explicit data flow approach. The first one relies on a blackboard, which is a collection of variables
defining the output and input of each web service activity. The explicit data flow allows developers to specify
that the input data of an activity should be taken from the output data of previously executed activities. For
instance, the DDAM presented in [17] uses data type definitions of XML Schemas. The proposed approach
solves a problem with message passing, where an output message of a web service may be incompatible with the
required input message of another WS. The approach uses XML nets to create mediating transition between
two web service invocation transitions. In [19] the similarity of an output and input parameter of web service
activities are checked according to preliminary defined rules using OWL.
The EH column indicates approaches that take into account unexpected behavior of web service compositions.
A possible solution is to use conditional branch that checks the result from invocation of an activity for failures



Towards a Taxonomy of Web Service Composition Approaches 383

or timeout according to which an activity will be terminated if the timeout expires. Another solution is to
associate exception handling logic to an activity or group of activities. Rule-based languages are also applicable
to the exception handling problem. For example, the approach presented in [13] uses Computation Tree Logic
(CTL) to model web service composition failures. A global planning approach is used in [15] to reconfigure
composition execution in case of one or several failures during web service invocations.
The SSM column show which approaches support dynamic binding of web services in a composition. Dynamic
binding have advantage on dealing with web services that change their URIs.

4. Conclusion. Composition of web services is appealing tactic to enable even more powerful business
processes and enrich software applications. A lot of web service composition approaches exist in the literature
differing in the applied techniques and strategies for web service orchestration, data modeling, transaction
support, QoS awareness and exception handling. In this paper we analyze a number of such approaches and
distinguish them according to their essential characteristics.
Directions for future work include further developing the proposed classification into ontological framework for
web service composition process and also a composition meta-model. This will help software architects to choose
a particular approach best suited for a given application domain.

Acknowledgments. The work presented in this paper was partially supported by the FP7 Specific Pro-
gramme ’Capacity’ - Research potential under Grant No. 205030 and project BG 051PO001-3.3.04/13 of the
HR Development OP of the European Social Fund 2007-2013.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno and V. Machiraju, Web services, Concepts Architectures and Applications, Springer-Verlag
Berlin Heidelberg (2004).

[2] H. Chang and K. Lee, Quality-Driven Web Service Composition Methodology for Ubiquitous Services, Journal of Information
Science and Engineering 26(6) (2010), pp. 1957–1971.

[3] M. Qiao, F. Khendek, A. Serhani, R. Dsouli and G. Roch, An Architecture for Automatic QoS Adaptation for Composite
Web Services, Journal of Web Services Practices, Vol. 4, No.1 (2009), pp. 18–27.

[4] X. Zheng and Y. Yan, An Efficient Syntactic Web Service Composition Algorithm Based on the Planning Graph Model,
8th IEEE Int. Conf. on Web Services (2008), pp. 691–699.

[5] H. Q. Yu and S. Reiff-Marganiec, Semantic Web Services Composition via Planning as Model Checking, Technical report
CS-06-003, University of Leicester (2006).

[6] M. Klusch and A. Gerber, Evaluation of service composition planning with QWLS-XPlan, Int. Conf. on Web Intelligence
and Intelligent Agent Technology (2006), pp. 117–120.

[7] P. Bartalos and M. Bielikova, Fast and Scalable Semantic Web Service Composition Approach Considering Complex
Pre/Postconditions, Int. Workshop on Web Service Composition and Adaptation (2009), pp. 414–421.

[8] V. Cardellini, E. Casalicchio, V. Grassi and F. Lo Presti, Flow-Based Service Selection for Web Service Composition
Supporting Multiple QoS Classes, IEEE Int. Conf. on Web Services (2007), pp. 743–750.

[9] S. Chakhar, S. Youcef, V. Mousseau, L. Mokdad and S. Haddad, Multicriteria Evaluation-Based Conceptual Framework
for Composite Web Service Selection, http://www.lipn.univ-paris13.fr/ youcef/BookQoS.

[10] M. Aiello, E. Khoury, A. Lazovik, P. Ratelband, Optimal QoS-Aware Web Service Composition, IEEE Conf. on Com-
merce and Enterprise Computing (2009), pp. 491–494.

[11] F. Lecue, Optimizing QoS-Aware Semantic Web Service Composition, 8th Int. Semantic Web Conference, LNCS Vol. 4273,
(1989), pp 375–391.

[12] S. Sohrabi, S. A. McIlraith, Optimizing Web Service Composition While Enforcing Regulations, 8th Int. Semantic Web
Conference, USA (2009), pp. 601–617.

[13] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and P. Traverso, Planning and Monitoring Web Service Composition,
Lecture Notes in Computer Science Vol. 3192 (2004), pp. 106–115.

[14] H. K. Farhan, M. Y. Javed, B. Saba and H. K. Sikandar, QoS Based Dynamic Web Services Composition and Execution,
Int. Journal of Computer Science and Information Security, Vol. 7, Issue 2, USA (2010), pp. 147–152.

[15] L. Zeng, B. Benatallah, A.Ngu, M. Dumas, J. Kalagnanam and H. Chang, QoS-aware Middleware for Web Services
Composition IEEE Transactions on Software Engineering, Vol. 30 Issue5 (2004), pp. 311–327.

[16] H. Mili, G. Tremblay, A. Caillot and R. B. Tamrout, Web service composition as a function cover problem, MCeTech
Montreal Conference on eTechnologies, Canada (2005), pp. 73–85.

[17] H. Che, Y. Li, A. Oberweis and W. Stucky, Web Service Composition Based on XML Nets, Hawaii Int. Conf. on Systems
(2009), pp. 1–10.

[18] N. Lin, U. Kuter and E. Sirin, Web service composition with user preferences, 5th European semantic web conference on
semantic web: research and applications, LNCS Vol. 5021, Spain (2008), pp. 629–643.

[19] J. Ge, Y.Qiu and S. Yin, Web Services Composition Method Based on OWL, Int. Conf. on Computer Science and Software
Engineering, China (2008), pp. 74–77.

[20] H. Mili, O. Marcotte and A. Kabbaj, Intelligent Component Retrieval for Software Reuse, Third Maghrebian Conference
on Artificial Intelligence and Software Engineering, Rabat, Morocco (1994), pp. 101–114.



384 D. Petrova-Antonova and A. Dimov

[21] S. Dustdar and W. Schreiner, A survey on web services composition,International Journal of Web and Grid Services, Vol.
1, No. 1 (2005), pp. 1–30.

[22] J. Rao and X. Su, A Survey of Automated Web Service Composition Methods, 1st Int. Workshop on Semantic Web Services
and Web Process Composition, USA (2004), pp. 43–54.

[23] M. Sathya, M. Swarnamugi, P. Dhavachelvan and G. Sureshkumar, Evaluation of QoS Based Web- Service Selection
Techniques for Service Composition, Int. Journal of Software Engineering, Vol. 1 Issue 5 (2011), pp. 73–90.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: November 1, 2011
Accepted: November 30, 2011


