
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 45�55. http://www.spe.org ISSN 1895-1767© 2005 SWPSJUXMEM: AN ADAPTIVE SUPPORTIVE PLATFORM FOR DATA SHARING ON THEGRIDG. ANTONIU∗, L. BOUGÉ† , AND M. JAN∗Abstrat. We address the hallenge of managing large amounts of numerial data within omputing grids onsisting of afederation of lusters. We laim that storing, aessing, updating and sharing suh data should be onsidered by appliations asan external servie. We propose a hierarhial arhiteture for this servie, based on a peer-to-peer approah. This arhiteture isillustrated through a software platform alled JuxMem (for Juxtaposed Memory), whih provides transparent aess to mutabledata, while enhaning data persistene in a dynami environment. Managing the volatility of storage resoures is speially empha-sized. As a proof of onept, we desribe a prototype implementation on top of the JXTA peer-to-peer framework, and we reporton a preliminary experimental evaluation.Key words. data sharing, grid, peer-to-peer, hierarhial arhiteture, JXTA.1. Introdution. A major ontribution of the grid omputing environments developed so far is to havedeoupled omputation from deployment. Deployment is then onsidered as an external servie provided bythe underlying infrastruture, outside the appliation. This servie is in harge of loating and interatingwith the physial resoures, in order to e�iently shedule and map the omputation. In ontrast, as of today,no suh sophistiated servie exists regarding data management on the grid. Paradoxially enough, omplexinfrastrutures are available for transparent omputation sheduling on distributed sites, whereas the user is stillleft to expliitly store and transfer the data needed by the omputation between these sites. At best, advanedFTP-like funtionalities are proposed by existing environments. Within the ontext of a growing number ofappliations using large amounts of data, this expliit data management arises as a major limitation against thee�ient use of modern omputational grids.Like deployment, we laim that an adequate approah to this problem onsists in deoupling data manage-ment from omputation, through an external servie tailored to the requirements of sienti� omputation. Inthis work, we fous on the ase of a grid onsisting of a federation of distributed lusters. Suh a data sharingservie should meet the following two properties.Persistene. The data sets used by the grid omputing appliations may be very large. Their transfer fromone site to another may be ostly (in terms of both bandwidth and lateny), so suh data movementsshould be arefully optimized. Therefore, a data management servie should allow data to be storedon the grid infrastruture independently of the appliations, in order to allow their reuse in an e�ientway. Suh a servie should also provide data loalization information, in order to o-operate with theomputation sheduling servie, and thereby enhane the global e�ieny.Transpareny. Suh a data management servie should provide transparent aess to data. It should handledata loalization and transfer without any help from the programmer. Yet, it should make gooduse of additional information and hints provided by the programmer, if any. The servie should alsotransparently use adequate repliation strategies and onsisteny protools to ensure data availabilityand onsisteny in a large-sale, dynami arhiteture. In partiular, it should support events suh asomputational and storage resoures joining and leaving, or even unexpetedly failing.At the same time, three main onstraints need to be addressed:Volatility and dynamiity. The lusters whih make up the grid are not guaranteed to remain onstantlyavailable. Nodes may leave due to tehnial problems or beause some resoures beome temporarilyunavailable. This should obviously not result in disabling the data management servie. Also, newnodes may dynamially join the physial infrastruture: the servie should be able to dynamially takeinto aount the additional resoures they provide.Salability. The algorithms proposed for parallel omputing have often been studied on small-sale on�g-urations. Our target arhiteture is typially made of thousands of omputing nodes, say tens ofhundred-node lusters. It is well-known that designing low-level, expliit MPI programs is most di�-ult at suh a sale. In ontrast, high-level, peer-to-peer approahes have proved to remain e�etive atmuh larger sales.
∗IRISA/INRIA Campus de Beaulieu, 35042 Rennes, FR. ({Gabriel.Antoniu,Mathieu.Jan}�irisa.fr).
†ENS Cahan/Bretagne Campus de Ker Lann, 35170 Bruz, FR. (Lu.Bouge�bretagne.ens-ahan.fr).45



46 G. Antoniu, L. Bougé and M. JanMutable data. In our target appliations, data are generally shared and an be modi�ed by multiple partners.A large number of strategies have been proposed for handling data repliation and data onsisteny,in the ontext of Distributed Shared Memory (DSM) systems. Again, these strategies and protoolshave been designed with the assumption of a small-sale, stati, homogeneous arhiteture, typially oflusters of few tens of nodes. A data sharing servie for the grid should onsider onsisteny protoolsadapted to a dynami, large-sale, heterogeneous arhiteture.The type of servie we propose is similar in some respets to several types of existing data manage-ment systems. However, these systems address only partially the goals and the three onstraints mentionedabove.Non-transparent, large-sale data management. Currently, the most widely-used approah to data man-agement for distributed grid omputation relies on expliit data transfers between lients and omputingservers. As an example, the Globus [7℄ platform provides data aess mehanisms (Globus Aess toSeondary Storage [3℄) based on the GridFTP protool [1℄. Though this protool provides authen-tiation, parallel transfers, hekpoint/restart mehanisms, et., it is still a FTP-like protool whihrequires expliit data loalization and transfer. Globus also integrates data atalogs, where multipleopies of the same data an be reorded. The management of these atalogs is manual: it is the user'sresponsibility to reord these opies and make sure they are onsistent: no onsisteny guarantee isprovided by Globus.Large-sale data storage. The IBP Projet [2℄ provides a large-sale data storage system, onsisting of a setof bu�ers distributed over Internet. The user an �rent� these storage areas and use them as temporarybu�ers for e�ient data transfers aross a wide-area network. IBP has been used by the Netsolve [18℄omputing environment to implement a servie of persistent data. Transfer management is still at theuser's harge. Besides, IBP does not handle dynami join/departure of storage nodes and provides noonsisteny guarantee for multiple opies of the same data.Transparent, small-sale data sharing. Distributed Shared Memory (DSM) systems provide transparentdata sharing, via a unique address spae aessible to physially distributed mahines. Within thisontext, a variety of onsisteny models and protools have been de�ned, in order to allow an e�ientmanagement of repliated data. These systems do o�er transparent aess to data: all nodes an readand write data in a uniform way, using a unique identi�er or a virtual address. It is the responsibilityof the DSM system to loalize, transfer, repliate data, and guarantee their onsisteny aording tosome semantis. Nevertheless, existing DSM systems have generally shown satisfatory e�ieny onlyon small-sale on�gurations, typially, a few tens of nodes [11℄.Peer-to-peer sharing of immutable data. Reently, peer-to-peer (P2P) has proven to be an e�ient ap-proah for large-sale data sharing. The peer-to-peer model is omplementary to the lient-server model:the relations between mahines are symmetrial, eah node an be lient in a transation and server inanother. This paradigm has been made popular by Napster [17℄, Gnutella [10℄, and now KaZaA [16℄.We an note that these systems fous on sharing immutable �les: the shared data are read-only andan be repliated at ease.Peer-to-peer sharing of mutable data. Reently, some mehanisms for sharing mutable data in a peer-to-peer environment have been proposed by systems like OeanStore [8℄, Ivy [9℄ and P-Grid [6℄. InOeanStore, for eah data only a small set of primary replias, alled the inner ring agrees, serializesand applies updates. Updates are then multiast down a dissemination tree to all other ahed opiesof the data, alled seondary replias. However, OeanStore uses a versioning mehanism whih has notproven to be e�ient at large sales. Seond, despite it provides hooks for managing the onsistenyof data, appliations still have to use low-level mehanisms for eah onsisteny model [12℄. Third,published measurements on the performane of updates only assume a single writer per data blok.Finally, servers making up inner rings are assumed to be highly available. The Ivy system has onemain limitation: appliations have to repair on�iting writes, thus the number of writers per datais very limited. Both Oeanstore and Ivy target general-purpose, persistent �le storage, not datamanagement for high-performane, omputing grids where for example distributed matries have tobe moved using parallel transfers. P-Grid proposes a �ooding-based algorithm for updating data, butassumes no on�iting writes. Besides, no experimental results have been published so far for thissystem.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 47
Cluster A1 Cluster A3

Cluster A2

Wide−Area
Network

Fig. 2.1. Numerial simulation for weather foreast using a pipeline ommuniation sheme with 3 lusters.2. Designing a data sharing servie for the grid.2.1. Motivating senarios. Let us onsider a distributed federation of 3 lusters: A1, A2 and A3, whiho-operate together as shown on Figure 2.1. Eah luster is typially interonneted through a high-performaneloal-area network, whereas they are all oupled together through a regular wide-area network. Consider forinstane a weather foreast simulation. Cluster A1 may ompute the foreast for a given day, then A2 for thenext day, and �nally A3 for the day after. Thus, A3 uses data produed by A2, whih in turn uses data produedby A1, as in a pipeline. Alternatively, luster A1 may simulate the weather foreast in a given ountry, while
A2 et A3 simulate it for two neighboring ountries.Suh simulations produe large amount of numerial data, and data-related ations are deeply intriatedwith omputation. The data management systems desribed in the previous setion do not provide any simpletehnique to support suh designs. Consider for instane transferring data from A1 to A2: a widely-usedtehnique onsists in expliitly writing the data on a disk within luster A1, then use a �le transfer tool to depositthem on a disk within luster A2. The appliation is diretly involved in this series of ations. In ontrast,we propose to deouple the appliation from the data management, by making data storage and loalizationtransparent with respet to the appliation. Cluster A1 should only store the data within the federation-widedata management servie, from whih luster A2 ould request them as needed. Data loalization and transferare then ompletely external to the appliations.Let us now suppose that our 3 appliations no longer o-operate aording to a pipeline sheme, but ratheraording to a multiple-writers sheme. For instane, eah appliation simulates a single phenomenon part ofthe global weather foreast: say, wind, rain and louds. In this ase, eah luster needs data from the otherones in order to make progress. A data sharing servie ould allow the onurrent appliations not only to read,but also to write to the globally shared data, while transparently handling data onsisteny. This is similar toDSM systems, but at a muh larger sale, and in a fully dynami ontext. Also, assume that some nodes fail inluster A2. Some of the data neessary for A3 ould thus beome unavailable. The data sharing servie shouldalso provide mehanisms to tolerate suh faults, for instane, based on redundany.2.2. Design priniples. We onsider two major soures of inspiration for the design of a data sharingservie for sienti� grid omputing:DSM systems, whih propose onsisteny models and protools for e�ient transparent management of mu-table data, on stati, small-saled on�gurations (tens of nodes);P2P systems, whih have proven adequate for the management of immutable data on highly dynami, large-sale on�gurations (millions of nodes).These two lasses of systems have been designed and studied in very di�erent ontexts. In DSM systems, thenodes are generally under the ontrol of a single administration, and the resoures are trusted. In ontrast,P2P systems aggregate resoures loated at the edge of the Internet, with no trust guarantee, and loose ontrol.Moreover these numerous resoures are essentially heterogeneous in terms of proessors, operating systems andnetwork links, as opposed to DSM systems, where nodes are generally homogeneous. Finally, DSM systemsare typially used to support omplex numerial simulation appliations, where data are aessed in parallel by



48 G. Antoniu, L. Bougé and M. JanTable 2.1A grid data sharing servie as a ompromise between DSM and P2P systems.DSM Grid data servie P2PSale 10
1�10

2
10

3�10
4

10
5�10

6Resoure ontroland trust degree High Medium NullDynamiity Null Medium HighResourehomogeneity Homogeneous(lusters) Rather heterogeneous(lusters of lusters) Heterogeneous(Internet)Data type Mutable Mutable ImmutableAppliationomplexity Complex Complex SimpleTypialappliations Sienti�omputation Sienti� omputation anddata storage File sharing andstoragemultiple nodes. In ontrast, P2P systems generally serve as a support for storing and sharing immutable �les.These antagonist features are summarized in the �rst and third olumns of Table 2.1.Our data sharing servie targets physial arhitetures with features intermediate between DSM and P2Psystems. We address sales of the order of thousands of nodes, organized as a federation of lusters, say tens ofhundred-node lusters. At a global level, the resoures are thus rather heterogeneous, while they an probablybe onsidered as homogeneous within the individual lusters. The ontrol degree and the trust degree are alsointermediate, sine the lusters may belong to di�erent administrations, whih set up agreements on the sharingprotool. Finally, we target numerial appliations like heavy simulations, made by oupling individual odes.These simulations proess large amounts of data, with signi�ant requirements in terms of data storage andsharing. These intermediate features are illustrated in the seond olumn of Table 2.1.The ontribution of this paper is namely to propose an arhiteture for suh a data sharing servie, whihaddresses the problem of managing mutable data on dynami, large-sale on�gurations. Our approah aimsat taking bene�t of both DSM systems (transparent aess to data, onsisteny protools) and P2P systems(salability, support for resoure volatility and dynamiity).2.3. The JXTA implementation framework. Our proposal is partly inspired by the P2P approah. Itan usefully bene�t from a platform providing basi mehanisms for peer-to-peer interation. To our knowledge,the most advaned implementation platform in this area is JXTA [14℄. The name JXTA stands for juxtaposed,in order to suggest the juxtaposition rather than the opposition of the P2P and lient-server models. JXTA isa projet originally initiated by Sun Mirosystems.JXTA is an open-soure framework, whih spei�es a set of language- and platform-independent XML-basedprotools [15℄. JXTA provides a rih set of building bloks for the management of peer-to-peer systems: resouredisovery, peer group management, peer-to-peer ommuniation, et.Peers. The basi entity in JXTA is the peer. Peers are organized in networks. They are uniquely identi�ed byIDs. An ID is a logial address independent of the loation of the peer in the physial network. JXTAintrodues several types of peers. The most relevant as far as we are onerned are the edge peers andrendezvous peers. Edge peers are able to ommuniate with other peers in the JXTA virtual network.They an also store advertisements of resoures they disover in the network. Rendezvous peers havethe extra ability of forwarding the requests they reeive to other rendezvous peers. They an also o�era storage area for advertisements that have been published by edge peers. Finally, they are internallymanaged by JXTA using a distributed hash table (DHT) and are making up the frame of JXTA. Theyan thus be dynamially loated in an e�ient way. Joining, leaving, and even unexpeted failing ofrendezvous peers are supported by the JXTA protools.Peer groups. Peers an be members of one or several peer groups. A peer group is made up of several peersthat share a ommon set of interests, e.g., peers that have the same aess rights to some resoures.The main motivation for reating peer groups is to build servies olletively delivered by peer groups,instead of individual peers. Indeed, suh servies an then tolerate the loss of peers within the group,as its internal management is not visible to the lients.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 49Pipes. Communiation between peers or peer groups within the JXTA virtual network is made by using pipes.Pipes are unidiretional, unreliable and asynhronous logial hannels. JXTA o�ers two types of pipes:point-to-point pipes, and propagate pipes. Propagate pipes an be used to build a multiast layer atthe virtual level.Advertisements. Every resoure in the JXTA network (peer, peer group, pipe, servie, et.) is desribed andpublished using advertisements. Advertisements are strutured XML douments whih are publishedwithin the network of rendezvous peers. To request a servie, a lient has �rst to disover a mathingadvertisement using spei� loalization protools.JXTA protools. JXTA proposes six generi protools. Out of these, two are partiularly useful for buildinghigher-level peer-to-peer servies: the Peer Disovery Protool, whih allows for advertisement publish-ing and disovery; and the Pipe Binding Protool, whih dynamially establishes links between peersommuniating on a given pipe.The data sharing servie that we propose is designed using the JXTA building bloks desribed above.3. JuxMem: a supportive platform for data sharing on the grid. The arhiteture of the datasharing servie we propose, mirrors an arhiteture onsisting of a federation of distributed lusters. Thearhiteture is therefore hierarhial, and is illustrated through the proposition of a software platform alledJuxMem (for Juxtaposed Memory), whose goal is to be the foundation for a data sharing servie for gridomputing environments, like DIET [4℄.
Group "cluster A"

Group "data"

Group "cluster B"

Physical network

Overlay network

Group "cluster C"

Cluster C

Cluster B

Cluster A

Node

Group "juxmem"

Client

Provider

Cluster managerFig. 3.1. Hierarhy of the entities in the network overlay de�ned by JuxMem.3.1. Hierarhial arhiteture. Figure 3.1 shows the hierarhy of the entities de�ned in the arhitetureof JuxMem. This arhiteture is made up of a network of peer groups (luster groups A, B and C), whihgenerally orrespond to lusters at the physial level. All the groups are inside a wider group whih inludesall the peers whih run the servie (the juxmem group). Eah luster group onsists of a set of nodes whihprovide memory for data storage. We will all these nodes providers. In eah luster group, a node is in hargeof managing the memory made available by the providers of the group. This node is alled luster manager.Finally, a node whih simply uses the servie to alloate and/or aess data bloks is alled lient. It shouldbe noted that a node an be at the same time a luster manager, a lient and a provider, but for the sake oflarity, eah node plays only one role in the example illustrated on the Figure 3.1.Eah blok of data stored in the system is assoiated to a group of peers alled data group. This grouponsists of a set of providers that host opies of that data blok. Note that a data group an be made up of



50 G. Antoniu, L. Bougé and M. Janproviders from di�erent luster groups. Indeed, a data an be spread over on several lusters (here A and C).For this reason, the data and luster groups are at the same level of the group hierarhy. Note also that theluster groups ould also orrespond to subsets of the same physial luster.Another important feature is that the arhiteture of JuxMem is dynami, sine luster and data groupsan be reated at run time. For instane, for eah blok of data inserted into the system, a data group isautomatially instantiated.API of the data sharing servie. The Appliation Programming Interfae (API) provided by JuxMemillustrates the funtionalities of a data sharing servie providing data persistene as well as transpareny withrespet to data loalization.allo(size, attributes) allows to reate a memory area of the spei�ed size on a luster. The attributesparameter allows to speify the level of redundany and the default protool used to manage theonsisteny of the opies of the orresponding data blok. This funtion returns an ID whih an beseen at the appliation level as a data blok ID.map(id, attributes) allows to retrieve the advertisement of a data ommuniation hannel whih has tobe used to manipulate the data blok identi�ed by id. The attributes argument allows to speifyparameters for the view of the data blok desired by the lient, like for instane what we all the degreeof onsisteny: some lients may have weaker onsisteny requirements than the one ensured by thedefault protool used to manage the data blok.put(id, value) allows to modify the value of the data blok identi�ed by id. The new value is then value.get(id) allows to get the urrent value of the data blok identi�ed by id.lok(id) allows to lok the data blok identi�ed by id. A lok is impliitly assoiated to eah data blok.Clients whih aess a shared data blok need to synhronize using this lok.unlok(id) allows to unlok the data identi�ed by id.reonfigure(attributes) allows to dynamially reon�gure a node. The attributes parameter allows toindiate if the node is going to at as a luster manager and/or as a provider. If the node is going to atas a provider, the attributes parameter also allows to speify the amount of memory that the nodeprovides to JuxMem.3.2. Managing memory resoures.Publishing and plaement of resoure advertisements. Memory resoures are managed using advertisements.Eah provider publishes the amount of memory it o�ers within the luster group to whih it belongs, by themeans of a provider advertisement. The luster manager of the group stores all suh advertisements availablein his group. He is also responsible for publishing the amount of memory available in the luster by using aluster advertisement. This advertisement lists the amounts of memory o�ered by providers of the assoiatedluster group. These luster advertisements are published inside the juxmem group, so that they an then beused by all the lients in order to alloate memory.Cluster managers are thus in harge of making the link between the luster group and the juxmem group.They make up a network organized using a DHT at the level of the juxmem group level, in order to build theframe of the data sharing servie. This frame is represented by the ring on the Figure 3.2. Eah luster managerG1 to G6 is responsible for a luster, respetively A1 to A6, eah of whih is made up of �ve nodes. At the levelof the juxmem group, the DHT works as follows. Eah luster advertisement ontains a list whih enumeratesthe amounts of memory available in the luster. Eah individual amount is separately used to generate anID, by means of a hash funtion. This ID is then used to determine the luster manager responsible for alladvertisements having this amount of available memory in their list. This luster manager is not the peer thatstores the advertisement, it only knows the luster manager whih published it in the JuxMem network. Thisplaement of luster advertisements allows lients to easily retrieve advertisements in order to alloate memory:any request for a given amount of memory is direted to the luster manager responsible for that amount ofmemory, using the hash mehanisms desribed aboveSearhing for advertisements is therefore short, and responses are exat and exhaustive, e.g., all the ad-vertisements that inlude the requested memory size will be returned. But sine using a DHT on memorysizes means to generate a di�erent hash for eah memory size, JuxMem uses a parameterizable poliy for thedisretization of the spae of memory sizes. Thus, JuxMem will searh for the minimum memory size, givenby the poliy used, that is superior to the one requested by lients. For example, if a lient wants to alloate amemory area of 1280 bytes, JuxMem will internally and automatially searh for a memory area of 2048 bytes,



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 51
1

G1

G2 P

C

Group "cluster A4"

G4

3a

G3

3a

5

Group "cluster A3"

Group "cluster A1"

3b

4

6

2

3b

G6

G5

Group "cluster A5"

Group "cluster A6"

Group "cluster A2"

Provider

Client

Cluster managerFig. 3.2. Steps of an alloation request made by a lient.if it uses a power of 2 law for the spae disretization. Providers also internally use the same law when o�eringmemory areas, but provide the maximum memory size, given by the poliy used, that is inferior to the one theywish to o�er.One of the onstraints we �xed is to support the volatility of nodes whih make up the lusters. Therefore,the advertisements published at a time t1 an be invalid at the time t2 > t1, sine providers an disappear fromJuxMem at any time. The mehanism used to manage this volatility of peers is based on republishing the lusteradvertisements whenever a hanging of the amount of memory provided is deteted. Besides, advertisementshave a limited but parameterizable lifetime, so it is neessary to periodially republish them.Proessing an alloation request. Clients make alloation requests by speifying the size of the memory areathey want to alloate. The di�erent steps for suh a request, numbered on the Figure 3.2, are the following:1. The lient C of the luster group A1 wants to alloate a memory area of 8 MB with a redundanydegree of two. Consequently, it submits its request to the luster manager G1 to whih it is onneted.2. The luster manager G1 then determines that the peer responsible of advertisements having a memorysize of 8 MB in their list is the luster manager G3, using the hash mehanism desribed previously.Therefore, the luster manager peer G1 forwards the request to G3.3. The luster manager G3 then determines that luster managers G2 and G4 math the riterion of thelient, and asks them to forward their luster advertisement to the lient C.4. The lient C then hooses the luster manager G2 as the peer having the �best� advertisement: forinstane the orresponding luster o�ers a higher degree of redundany than the luster handled by theluster manager G4. Thus, it submits its alloation request to G2.5. The luster manager G2 reeives the alloation request and handles it. If it an satisfy the request thenit asks one of its providers, for example P , to alloate a 8 MB memory area. If the request annot besatis�ed, an error message is sent bak to the lient.6. If the provider P an satisfy this request, it reates a 10 MB memory area, then sends bak theadvertisement of this memory area to the lient C. P beomes the luster manager of the assoiateddata group, whih means that it is responsible for repliating the data blok stored in that memoryarea. If the provider P annot satisfy the request, an error message is sent bak to the luster manager
G2, whih an try other provider peers of the luster group.If no providers an be found on the last step of an alloation request, an error message is sent bak to the lient.Then the lient an restart the alloation request from step 4, e.g., with another luster manager mathing therequested memory size. Finally, if no luster manager an alloate the memory area, the lient inreases therequested memory size and restarts the alloation request from the beginning. This an be done N times (forexample N = 3) until the request is satis�ed or an error is reported at the appliation level.



52 G. Antoniu, L. Bougé and M. Jan3.3. Managing shared data. When a memory area is alloated by a lient, a data group is reatedon the hosen provider and an advertisement is sent to the lient. This advertisement allows the lient toommuniate with the data group. This advertisement is published at the juxmem's group level, but only theID of this advertisement is returned at the appliation level. Aess to data by other lients is then possible byusing this ID: the platform transparently loates the orresponding data blok.Storage of data bloks is independent of lients. Indeed, when lients disonnet from JuxMem, data bloksstill remain stored in the data sharing servie on the providers. Consequently, lients an have aess to databloks previously stored by other lients: they simply need to look for the advertisement of the data groupassoiated with the data blok (whose identi�er is assumed to be known). The map primitive of the API ofJuxMem does this by taking in input the ID of the data blok. In this way, the storage of data bloks ispersistent.Eah data blok is repliated on a �xed, parameterizable number of providers for a better availability. Thisredundany degree is spei�ed as an attribute at alloation time. The onsisteny of the di�erent opies mustthen be handled. In this �rst version of JuxMem, the use of a multiast at the level of the juxmem group solvesthis problem: the di�erent opies of a same data blok are simultaneously updated whenever a writing aess ismade. Alternative onsisteny models and protools will be experimented in further versions. Note that lientswhih have previously read a data blok are not noti�ed of this update: lients do not store a opy of datablok. Therefore, the result of a reading whih is valid at a time t1, may not be valid at time t2 > t1. It isworth noting that this di�erene between lient and providers allows to handle a high number of lients withouthaving to deal with a high number of opies of data bloks. Synhronization between lients whih onurrentlyaess a data blok is handled using the lok/unlok primitives.3.4. Handling volatile providers. In order to tolerate the volatility of peers, a stati repliation of dataon a �xed and parameterizable number of providers is not enough. Indeed, the set of providers hosting a opyof the same data blok an suessively beome unavailable. A dynami monitoring of the number of opiesfor data is therefore needed. Consequently, eah data group has a manager (noted data manager) whih is inharge of monitoring the level of redundany of the data blok. If this number goes below the one spei�edby lients, the data manager must searh and ask a provider to host an extra opy of the data blok. Whenthe data manager deides to repliate it, it must �rst lok it (internally) in order to maintain onsisteny. Theprovider whih will host this new opy is then responsible for unloking it. A timeout mehanism followed by aping test is used in order to detet if the provider beame unavailable just before unloking the data blok. Ifit is the ase, then the data manager unloks itself the data blok.3.5. Handling volatile managers. If a luster manager goes down, this ould lead to the unavailabilityof resoures provided by a whole luster. The role of luster manager (noted main luster manager) is thereforeautomatially dupliated on another provider of the luster (alled seondary luster manager). Managersperiodially synhronize using a mehanism based on the exhange of provider advertisements, in order to �ndout new advertisements published. They an thus both know in a nearly aurate manner the amount ofmemory available in the luster. A mehanism based on periodial heartbeats allows to dynamially ensure thisdupliation of luster managers. Suh a mehanism is also used for the data managers (see Setion 3.4). Notethat, the possible hanges of managers in the luster and data groups, due to the unavailability of managers,are not seen outside these groups. The availability of lusters and of data bloks is thus maximized, whereasthe perturbation on the lient side is minimized.4. Implementation and preliminary evaluations.4.1. Implementation of JuxMem within the JXTA framework. In order to build a prototypeof the software arhiteture desribed in the previous setion, we have used the JXTA generi peer-to-peerframework (see Setion 2.3). Our JuxMem prototype uses the referene Java binding of JXTA (whih is todaythe only binding ompatible with the JXTA 2.0 spei�ation). JuxMem is written in Java and inludes about50 lasses (5000 ode lines).JXTA fully meets the needs of JuxMem. Thus, managers of data and luster groups are based onJXTA's rendezvous peers. Indeed, managers have to know if providers are still alive by using a ping test inorder to manage a luster or a blok of data. This an only be done if providers have previously publishedtheir advertisements on managers, whih need to extrat the address of eah provider. Moreover, only JXTA'srendezvous peers an forward requests inside the JXTA network; these peers orrespond to the role of main



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 53

0

20

40

60

80

100

160 140 120 100 80 60 50 40 30

Seconds elapsed between provider losses

R
el

at
iv

e 
ov

er
he

ad
 (

%
)

Fig. 4.1. Relative overhead due to the volatility of providers for a sequene lok -put -unlok , with respet to a stable system.managers. For example, data managers have to forward aess requests, made by lients, to providers hostinga opy of the data blok. In the same way, luster managers have to forward alloation requests, made bylients, to providers. Clients and providers whih do not at as data managers for one or several bloks of dataare based on JXTA's edge peers. Indeed, they do not have to play a role in the dynami monitoring of thenumber of opies for a blok of data in the system. Therefore, they do not have to store published provideradvertisements. Moreover, lients only need to disover and store luster advertisements whih will allow themto alloate memory areas. The various groups de�ned in JuxMem are implemented by JXTA's peer groups. Thejuxmem group implements a JXTA peer group servie providing the API of JuxMem (see Setion 3.1). Finally,the ommuniation hannels of JXTA also o�er the needed support for building multiast ommuniations forsimultaneously updating opies of the same blok of data.4.2. Preliminary evaluations. For our preliminary experiments, we used a luster of 450 MHz PentiumII nodes with 256 MB RAM, interonneted by a 100 MB/s FastEthernet network.We �rst measured the memory onsumption overhead generated by the di�erent JuxMem peers with respetto the underlying JXTA peers used to build JuxMem peers. This overhead is reasonable: it ranges between5% and 7.4%.We then measured the in�uene of the volatility degree of provider peers on the duration of a sequenelok-put-unlok exeuted in a loop by a lient. This sequene in the loop is made on a data blok stored inJuxMem. The goal of this measure is to evaluate the relative overhead generated by the repliations whihtake plae in order to maintain a given redundany degree for a given blok of data. This repliations aretransparently triggered when the servie detets that a provider holding a data blok goes down. If theserepliations take plae while a lient aesses the data blok being repliated, these aesses slow down.The test program �rst alloates a small memory area (1 byte) on a provider belonging to luster and writesto it a data blok. The redundany degree is set to 3. The alloation takes plae on a luster initially onsistingof 16 providers and one luster manager. 16 mahines of the luster previously desribed host a provider, onemahine of the same luster hosts a luster manager and another mahine of the same luster hosts a lient.The lient exeutes a 100 iteration loop, and eah iteration onsists of a sequene lok-put-unlok.During the exeution of this loop, a random provider hosting a opy of the data is killed every δ seonds,where δ is a parameter of the experiment. In order to measure only the overhead due to the volatility ofproviders, the data manager of the assoiated group is never killed.Figure 4.1 shows the relative overhead measured, with respet to a stable system (i.e. where no providergoes down during the loop exeution: δ = ∞). When the data manager detets that providers holding a opy ofthe data blok have gone down, it tries to repliate the blok on other available providers, whih are not alreadyhosting a opy of the data blok. To ensure the onsisteny of the data during its repliation, lients are notallowed to modify it. Therefore, the system has to internally lok the data. As a result of this internal loking,the sequene lok-put-unlok is longer, sine the lient is bloked and has to wait for the lok to be set free.



54 G. Antoniu, L. Bougé and M. JanThe urve pro�le is explained by the number of times the system repliates the data on providers, in orderto maintain the redundany degree spei�ed by the lient (whih is 3 for this test). For the whole duration ofour test, the number of triggered repliations is given in the Table 4.1 as a funtion of the δ parameter.For highly volatile systems (δ < 80 s), the number of repliations triggered beomes higher than 2 andthe relative overhead beomes signi�ant. For δ = 30 s, it reahes more than 65% (10 repliations triggered).However, in a realisti situation, the node volatility on the arhiteture we onsider is typially a lot weaker(δ ≫ 80 s). For suh values, the reon�guration overhead is less than 5%. We an reasonably say that theJuxMem platform inludes a mehanism whih allows to dynamially maintain a ertain redundany degree fordata bloks, in order to improve data availability, without signi�ant overhead, while authorizing node failures.Table 4.1Number of triggered repliations when the volatility of provider peers evolves from 160 to 30 seonds.Seonds 160 140 120 100 80 60 50 40 30Number of triggered repliations 1 1 1 1 2 2.5 5 5.5 105. Conlusion. This paper de�nes a hierarhial arhiteture for a data sharing servie managing mutabledata within a grid onsisting of a federation of lusters. This arhiteture has been designed using a peer-to-peerapproah, and demonstrated through the JuxMem platform. Not only the arhiteture allows to redue thenumber of messages to searh for a piee of data, thanks to a hierarhial searh sheme, but it also allows totake advantage of spei� features of the underlying physial arhiteture. The management poliy for eahluster an be spei� to its on�guration, for instane in terms of network links to be used. Thus, some lustersould use high-bandwidth, low-lateny networks for intra-luster ommuniation, if available.The JuxMem user an alloate memory areas in the system, by speifying an area size and some attributes,suh as a redundany degree. The alloation primitive returns an ID whih identi�es the blok of data. Then,data loalization and transfer is fully transparent, sine this ID is su�ient in order to aess and manipulatethe orresponding data wherever it is: no IP address nor port number needs to be spei�ed at the appliationlevel.Our arhiteture supports the volatility of all types of peers. This kind of volatility is also supported in peer-to-peer systems suh as Gnutella or KaZaA, whih enhane data availability thanks to redundany. However,this is a side e�et of the user ations. In ontrast, our system atively takes into aount this volatility: thisallows not only to maintain a ertain degree of data redundany (as in systems like Ivy or CFS [5℄), but also tosupport the volatility of peers with �spei�� responsibilities (e.g., luster managers, or data managers).The implementation of a JXTA-based prototype has shown the feasibility of suh a system. However,note that the design of JuxMem is not dependent on JXTA. Atually, other libraries ould be used, suh asJavaGroups [13℄. We used the Java version of JXTA, sine this is the most advaned binding of JXTA, the onlyone ompatible with the JXTA 2.0 spei�ation.The modular arhiteture of JXTA allows to easily add and remove servies and/or protools, inludingommuniation protools. This should eventually allow the platform to take advantage of high-performanenetworks (suh as Myrinet or SCI) for data transfer. We plan to address this problem in the future. We alsoplan to use JuxMem as an experimental platform for di�erent data onsisteny strategies supporting peervolatility, in order to build a on�gurable, adaptive data sharing servie for mutable data. The �nal goal is tointegrate this servie into large-sale omputing environments, suh as DIET [4℄, developed at ENS Lyon. Thiswill allow an extensive evaluation of the servie, with realisti odes, using various data aess shemes.REFERENCES[1℄ B. Allok, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder and S. Tueke, GridFTP ProtoolSpei�ation, GGF GridFTP Working Group Doument, Sept. 2002.[2℄ A. Bassi, M. Bek, G. Fagg, T. Moore, J. Plank, M. Swany and R. Wolski, The Internet Bakplane Protool: A studyin resoure sharing, In 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002),pages 194�201, Berlin, Germany, May 2002. IEEE.[3℄ J. Bester, I. Foster, C. Kesselman, J. Tedeso and S. Tueke, GASS: A data movement and aess servie forwide area omputing systems, In 6th Workshop on I/O in Parallel and Distributed Systems (IOPADS '99), pages 77�88,Atlanta, GA, May 1999. ACM Press.



JuxMem: An Adaptive Supportive Platform for Data Sharing on the Grid 55[4℄ E. Caron, F. Desprez, F. Lombard, J.-M. Niod, M. Quinson and F. Suter, A salable approah to network enabledservers, In B. Monien and R. Feldmann, editors, 8th International Euro-Par Conferene, volume 2400 of Leture Notesin Computer Siene, pages 907�910, Paderborn, Germany, Aug. 2002. Springer-Verlag.[5℄ F. Dabek, F. Kaashoek, D. Karger, R. Morris and I. Stoia, Wide-area ooperative storage with CFS, In 18th ACMSymposium on Operating Systems Priniples (SOSP '01), pages 202�215, Chateau Lake Louise, Ban�, Alberta, Canada,Ot. 2001.[6℄ A. Datta, M. Hauswirth and K. Aberer, Updates in highly unreliable, repliated peer-to-peer systems, In 23rd Interna-tional Conferene on Distributed Computing Systems (ICDCS 2003), pages 76�87, Providene, Rhode Island, USA, May2003.[7℄ I. Foster and C. Kesselman, Globus: A metaomputing infrastruture toolkit, The International Journal of SuperomputerAppliations and High Performane Computing, 11(2):115�128, 1997.[8℄ J. Kubiatowiz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,C. Wells and B. Zhao, OeanStore: An arhiteture for global-sale persistent storage, In 9th International Confereneon Arhiteture Support for Programming Languages and Operating Systems (ASPLOS 2000), number 2218 in LetureNotes in Computer Siene, pages 190�201, Cambridge, MA, Nov. 2000. Springer.[9℄ A. Muthitaharoen, R. Morris, T. M. Gil and B. Chen, Ivy: A read/write peer-to-peer �le system, In 5th Symposiumon Operating Systems Design and Implementation (OSDI '02), Boston, MA, De. 2002.[10℄ A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive Tehnologies, hapter Gnutella, pages 94�122, O'Reilly, May2001.[11℄ J. Proti¢, M. Tomasevi¢ and V. Milutinovi¢, Distributed Shared Memory: Conepts and Systems, IEEE, Aug. 1997.[12℄ S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao and J. Kubiatowiz, Pond: the oeanstore prototype, In2nd USENIX Conferene on File and Storage Tehnologies (FAST '03), Californie, CA, USA, Mar. 2003.[13℄ JavaGroups, http://www.javagroups.om/javagroupsnew/dos/index.html[14℄ The JXTA projet, http://www.jxta.org/[15℄ JXTA v2.0 protool speifiation, http://spe.jxta.org/nonav/v1.0/dobook/JXTAProtools.pdf, Mar. 2003.[16℄ KaZaA, http://www.kazaa.om/[17℄ Napster protool speifiation, http://opennap.soureforge.net/napster.txt, Mar. 2001.[18℄ The NetSolve projet, http://il.s.utk.edu/netsolve/Edited by: Wilson Rivera, Jaime Seguel.Reeived: June 26, 2003.Aepted: September 1, 2003.


