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ON THE FORMALIZATION OF ZSYNTAX
WITH APPLICATIONS IN MOLECULAR BIOLOGY

SOHAIB AHMAD, OSMAN HASAN, UMAIR SIDDIQUE∗

Abstract. Recent progress in nanotechnology and optical imaging offers promising features to develop effective drugs to cure
chronic diseases, such as cancer and malaria. However, qualitative characterization of biological organisms (such as molecules)
is the foremost requirement to identify key drug targets. One of the most widely used approaches in this domain is molecular
pathways, which offers a systematic way to represent and analyse complex biological systems. Traditionally, such pathways are
analysed using paper-and-pencil based proofs and simulations. However, these methods cannot ascertain accurate analysis, which
is a serious drawback given the safety-critical nature of the applications of molecular pathways. To overcome these limitations, we
recently proposed to formally reason about molecular pathways within the sound core of a theorem prover. As a first step towards
this direction, we formally expressed three logical operators and four inference rules of Zsyntax, which is a deduction language
for molecular pathways. In the current paper, we extend this formalization by verifying a couple of behavioural properties of
Zsyntax based deduction using the HOL4 theorem prover and developing a biologist friendly graphical user interface. Moreover,
we demonstrate the utilization of our work by presenting the formal analysis of cancer related molecular pathway, i.e., TP53
degradation and metabolic pathway known as Glycolysis.
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1. Introduction. Molecular biology is extensively used to construct models of biological processes in
the form of networks or pathways, such as protein-protein interaction networks and signalling pathways. The
analysis of these biological networks, usually referred to as biological regulatory networks (BRNs) or gene
regulatory networks (GRNs) [10], is based on the principles of molecular biology to understand the dynamics
of complex living organisms. Moreover, the analysis of molecular pathways plays a vital role in investigating
the treatment of various human infectious diseases and future drug design targets. For example, the analysis of
BRNs has been recently used to predict treatment decisions for sepsis patients [15].

Traditionally, the molecular biology based analysis is carried out by biologists in the form of wet-lab ex-
periments (e.g. [7, 13]). These experiments, despite being very slow and expensive, do not ensure accurate
results due to the inability to accurately characterize the complex biological processes in an experimental set-
ting. Other alternatives for deducing molecular reactions include paper-and-pencil proof methods (e.g. using
Boolean modelling [27] or kinetic logic [28]) or computer-based techniques (e.g. [29]) for analysing molecular
biology problems. The manual proofs become quite tedious for large systems, where the calculation of unknown
parameters takes several hundred proof steps, and are thus prone to human errors. The computer-based methods
consist of graph-theoretic techniques [21], Petri nets [11] and model checking [3]. These approaches have shown
very promising results in many applications of molecular biology (e.g. [8, 14]). However, these methods are not
generic and hence have been used to describe some specific areas of molecular biology only [4]. Moreover, the
inherent state-space explosion problem of model checking [20] limits the scope of this success only to systems
where the biological entities can acquire a small set of possible levels.

Theorem proving [12] can be considered as the second most widely used formal method. It does not
suffer from the state-space explosion problem of model checking and has also been advocated for conducting
molecular biology based analysis [30]. The main idea behind theorem proving is to construct a computer based
mathematical model of the given system and then verify the properties of interest using deductive reasoning.
The foremost requirement for conducting the theorem proving based analysis of any system is to formalize
the mathematical or logical foundations required to model and analyse that system in an appropriate logic.
There have been several attempts to formalize the foundations of molecular biology. For example, the earliest
axiomatization even dates back to 1937 [31] and other efforts related to the formalization of biology are presented
in [32, 25]. Recent formalizations, based on K -Calculus [6] and π-Calculus [22, 23, 24], also include some formal
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reasoning support for biological systems. But the understanding and utilization of these techniques is very
cumbersome for a working biologist as highlighted by Fontana in [9].

In order to develop a biologist friendly formal deduction framework for reasoning about molecular reactions,
we propose to formalize the Zsyntax [4] language in higher-order logic. Zsyntax is a formal language that
supports modelling and logical deductions about any biological process. The main strength of Zsyntax is
its biologist-centred nature as its operators and inference rules have been designed in such a way that they
are understandable by the biologists. Traditionally, logical deductions about biological processes, expressed in
Zsyntax, were done manually based on the paper-and-pencil based approach. This limits the usage of Zsyntax to
smaller problems and also makes the deduction process error-prone due to the human involvement. As a first step
towards overcoming this limitation, we formalized the logical operators and inference rules of Zsyntax in higher-
order logic [2]. In the current paper, we build upon these formal definitions to verify a couple of key behavioural
properties of Zsyntax based molecular pathways using the HOL4 theorem prover. The formal verification of
these properties raises the confidence level in our definitions of Zsyntax operators and inference rules, which
have complex interrelationships. Moreover, these formally verified properties can be used to facilitate the formal
reasoning about chemical reactions at the molecular level. In order to illustrate the usefulness and effectiveness
of our formalization for analysing real-world problems in molecular biology, we present the formal analysis of a
cancer related molecular pathway involving TP53 degradation and a metabolic pathway known as Glycolysis.
As a part of this work, we have also developed a user-friendly graphical user interface (GUI) for conducting
the Zsyntax based formal analysis of molecular pathways. The distinguishing features of this tool includes its
biologist friendliness and dedicated proof tactic that allows the users to perform automated reasoning about
molecular pathways.

Our current framework handles static reactions but it can be further extended to study the reaction kinetics
[4] due to the flexibility of Zsyntax. The main motivation behind using higher-order-logic theorem proving in our
work is to be able to leverage upon the high expressiveness of higher-order logic and thus reason about differential
equations and probabilistic properties, which form an integral part of reaction kinetics. However, the scope of
the current paper is on the formalization of Zsyntax based deduction calculus for molecular pathways but this
formalization can later be extended to support reaction kinetics as well because it is done in a higher-order-logic
theorem prover.

The rest of the paper is organized as follows: Section 2 provides an introduction to Zsyntax and the HOL4
theorem prover. The higher-order-logic formalization of Zsyntax operators and inference rules using HOL4 are
described in Sect. 3. This is followed by the descriptions of the behavioural properties of Zsyntax along with
their formal proof sketches in Sect. 4 and 5, respectively. We provide a brief overview of the GUI developed as
a part of this work in Sect. 6. In order to demonstrate the use of our formalization, we present two case studies
on the TP53 degradation and glycolytic pathway in Sect. 7. We conclude the paper in Sect. 8 while highlighting
some interesting potential applications of our work.

2. Preliminaries.

2.1. Zsyntax. Zsyntax [4] exploits the analogy between biological processes and logical deduction. Some
of the key features of Zsyntax are: 1) the ability to express molecular reactions in a mathematical way; 2)
heuristic nature, i.e., if the conclusion of a reaction is known, then one can deduce the missing data from the
initialization data; 3) computer implementable semantics. Zsyntax consists of the following three operators:
Z-Interaction: The interaction of two molecules is expressed by the Z-Interaction (∗) operator. In biological
reactions, Z-interaction is not associative.
Z-Conjunction: The aggregate of same or different molecules (not necessarily interacting with each other) is
formed using the Z-Conjunction (&) operator. Z-Conjunction is fully associative.
Z-Conditional: A path from A to B under the condition C is expressed using the Z-Conditional (→) operator
as: A → B if there is a C that allows it.

Zsyntax supports four inference rules, given in Table 2.1, that play a vital role in deducing the outcomes of
biological reactions:

Besides the regular formulas that can be derived based on the above mentioned operators and inference rules,
Zsyntax also makes use of Empirically Valid Formulae (EVF). These EVFs basically represent the non-logical
axioms of molecular biology and are assumed to be validated empirically in the lab.
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Table 2.1

Zsyntax Inference Rules

Inference Rules Definition

Elimination of Z-conditional(→E) if C ⊢ (A → B) and (D ⊢ A) then (C&D ⊢ B)
Introduction of Z-conditional(→I) C&A ⊢ B then C ⊢ (A → B)
Elimination of Z-conjunction(&E) C ⊢ (A&B) then (C ⊢ A) and (C ⊢ B)
Introduction of Z-conjunction(&I) (C ⊢ A) and (D ⊢ B) then (C&D) ⊢ (A&B)

It has been shown that any biological reaction and its final outcome can be derived by using the above
mentioned three operators and four inference rules [4]. For example, consider a scenario in which three molecules
A, B and C react with each other to yield another molecule Z. This can be represented as a Zsyntax theorem
as follows:

A & B & C ⊢ Z

The Z-Conjunction operator & is used to represent the given aggregate of molecules and then the inference rules
from Table 1 are applied on these molecules along with some EVFs (chemical reactions verified in laboratories)
to obtain the final product Z. For the above example, these EVFs could be:

A * B → X and X * C → Z

meaning that A will react with B to yield X and X in return will react with C to yield the final product Z.
The main contribution of our paper is the formal verification of the Zsyntax based deduction method based

on the higher-order-logic formalization of the above-mentioned operators and inference rules using the HOL4
theorem prover. This work will in turn facilitate the derivation of biological reactions within the sound core of
HOL4.

2.2. HOL4 Theorem Prover. HOL4 is an interactive theorem prover developed at the University of
Cambridge, UK, for conducting proofs in higher-order logic. It utilizes the simple type theory of Church [5]
along with Hindley-Milner polymorphism [17] to implement higher-order logic. HOL4 has been successfully
used as a verification framework for both software and hardware as well as a platform for the formalization of
pure mathematics.

In order to ensure secure theorem proving, the logic in the HOL4 system is represented in the strongly-typed
functional programming language ML [19]. An ML abstract data type is used to represent higher-order logic
theorems and the only way to interact with the theorem prover is by executing ML procedures that operate on
values of these data types. The HOL4 core consists of only 5 basic axioms and 8 primitive inference rules, which
are implemented as ML functions. Soundness is assured as every new theorem must be verified by applying
these basic axioms and primitive inference rules or any other previously verified theorems/inference rules.

A HOL4 theory is a collection of valid HOL4 types, constants, axioms and theorems, and is usually stored
as a file in computers. Users can reload a HOL4 theory in the HOL4 system and utilize the corresponding
definitions and theorems right away. Various mathematical concepts have been formalized and saved as HOL4
theories by the HOL4 users. We utilize the HOL4 theories of Booleans, arithmetics and lists extensively in
our work. Table 2.2 provides the mathematical interpretations of some HOL4 symbols and functions frequently
used in this paper.

3. Formalization of Zsyntax. We modelled the molecules as variables of arbitrary data types (α) in our
formalization of Zsyntax [2]. A list of molecules (α list) represents the Z-Interaction or a molecular reaction
among the elements of the list. The Z-Conjunction operator forms a collection of non-reacting molecules and can
now be formalized as a list of list of molecules (α list list). This data type allows us to apply the Z-Conjunction
operator between individual molecules (a list with a single element) or multiple interacting molecules (a list
with multiple elements). The Z-Conditional operator is used to update the status of molecules, i.e., generate
a new set of molecules based on the available EVFs (wet-lab verified reactions). Each EVF is modelled in our
formalization as a pair (α list # α list list) where the first element is a list of molecules (α list) indicating the
reacting molecules and the second element is a list of list of molecules (α list list) indicating the resulting set of
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Table 2.2

HOL4 Symbols and Functions

HOL4 Symbol Standard Symbol Meaning

∧ and Logical and
∨ or Logical or
¬ not Logical negation
:: cons Adds a new element to a list
++ append Joins two lists together
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
MEM a L member True if a is a member of list L
LENGTH L length Length of list L

FST fst (a, b) = a First component of a pair
SND snd (a, b) = b Second component of a pair
SUC n n+ 1 Successor of a num

molecules after the reaction between the molecules of the first element of the pair has taken place. A collection
of EVFs is represented as a list of EVFs ((α list # α list list)list) in our formalization.

The elimination of Z-Conditional rule is the same as the elimination of implication rule (Modus Ponens)
in propositional logic and thus it can be directly handled by the HOL4 simplification and rewriting rules.
Similarly, the introduction of Z-Conditional rule can also be inferred from the rules of propositional logic and
can be handled by the HOL4 system without the introduction of a new inference rule. The elimination of the
Z-Conjunction rule allows us to infer the presence of a single molecule from an aggregate of inferred molecules.
This rule is usually applied at the end of the reaction to check if the desired molecule has been obtained. Based
on our data types, described above, this rule can be formalized in HOL4 by returning a particular molecule
from a list of molecules:

Definition 3.1. Elimination of Z-Conjunction Rule
⊢ ∀ L m. z conj elim L m = if MEM m L then [m] else L

The function z conj elim has the data type (α list → α → α list). The above function returns the given
element as a single element in a list if it is a member of the given list. Otherwise, it returns the argument list
as it is.

The introduction of Z-Conjunction rule along with Z-Interaction allows us to perform a reaction between
any of the available molecules during the experiment. Based on our data types, this rule is equivalent to the
append operation of lists.

Definition 3.2. Intro of Z-Conjunction and Z-Interaction
⊢ ∀ L m n. z conj int L m n = FLAT [EL m L; EL n L]::L

The above definition has the data type (α list list → num → num → α list list). The HOL4 functions
FLAT and EL are used to flatten a list of list to a single list and return a particular element of a list, respectively.
Thus, the function z conj int takes a list L and appends the list of two of its elements m and n on its head.

Based on the laws of stoichiometry [4], the reacting molecules using Z-Conjunction operator have to be
deleted from the aggregate of molecules. The following function represents this behaviour in our formalization:

Definition 3.3. Reactants Deletion
⊢ ∀ L m n. z del L m n = if m > n

then del (del L m) n

else del (del L n) m

Here the function del L m deletes the element at index m of the list L and returns the updated list as follows:
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Definition 3.4. Element Deletion
⊢ ∀ L. del L 0 = TL L ∧

∀ L n. del L (n + 1) = HD L::del (TL L) n

Thus, the function z del L m n deletes the mth and nth elements of the given list L. We delete the higher
indexed element before the lower one in order to make sure that the first element deletion does not effect the
index of the second element that is required to be deleted. The above data types and definitions can be used to
formalize any molecular pathway (which is expressible using Zsyntax) and reason about its correctness within
the sound core of the HOL4 theorem prover.

4. Formal Reasoning support for Zsyntax. Our main objective is to develop a framework that accepts
a list of initial molecules and possible EVFs and allows the user to formally deduce the final outcomes of the
corresponding biological experiment within the sound core of HOL4.

In this regard, we first develop a function that compares a particular combination of molecules with all
the EVFs and upon finding a match introduces the newly formed molecule in the initial list and deletes the
consumed instances.

Definition 4.1. EVF Matching
⊢ ∀ L E m n. z EVF L E 0 m n =

if FST (EL 0 E) = HD L

then (T,z del (TL L ++ SND (EL 0 E)) m n

else (F,TL L) ∧

∀ L E p m n.

z EVF L E (p + 1) m n =

if FST (EL (p + 1) E) = HD L

then (T,z del (TL ++ SND (EL (p + 1) E)) m n

else z EVF L E p m n

Here, HD and TL returns head and tail of a list respectively. Similarly, FST and SND returns first and second
element of a pair respectively. The data type of the function z EVF is: (α list list → (α list#α list list) list →
num → num → num → bool # α list list). The function LENGTH returns the length of a list. The function
z EVF takes a list of molecules L and recursively checks its head, or the top most element, against all elements
of the EVF list E. If there is no match then the function returns a pair with its first element being false (F),
indicating that no match occurred, and the second element equal to the tail of the input list L. Otherwise, if
a match is found then the function replaces the head of list L with the second element of the EVF pair and
deletes the matched elements from the initial list as these elements have already been consumed. This modified
list is then returned along with a true (T) value, which acts as a flag to indicate an element replacement.

Next, in order to deduce the final outcome of the experiment, we have to call the function z EVF recursively
by placing all the possible combinations of the given molecules at the head of list L one by one. This can be
done as follows:

Definition 4.2. Recursive Function to model the argument n in Def. 4.1
⊢ ∀ L E m. z recur1 L E m 0 =

z EVF (z conj int L m 0) E (LENGTH E - 1) m 0 ∧

∀ L E m n.

z recur1 L E m (n + 1) =

if FST (z EVF (z conj int L M (n + 1)) E (LENGTH E - 1) m (n + 1)) ⇔ T

then z EVF (z conj int L m (n + 1)) E (LENGTH E - 1) m (n + 1)

else z recur1 L E m n

Definition 4.3. Recursive Function to model the augment m in Def. 4.1
⊢ ∀ L E n.z recur2 L E 0 n =

if FST (z recur1 L E 0 n) ⇔ T

then (T,SND (z recur1 L E 0 n))



42 S. Ahmad, O. Hasan and U. Siddiqu

else (F,SND (z recur1 L E 0 n)) ∧

∀ L E m n.

z recur2 L E (m + 1) n =

if FST (z recur1 L E (m + 1) n) ⇔ T

then (T,SND (z recur1 L E (m + 1) n))

else z recur2 L E m (LENGTH L - 1)

Both the above functions have the same data type, i.e, (α list list → (α list #α list list) list → num →

num → num → bool #α list list). The function z recur1 calls the function z EVF after appending the
combination of molecules indexed by variables m and n using the introduction of Z-Conjunction rule. Thus, the
new combination is always placed on the top of the list, which is passed as the variable L to the function z EVF.
Moreover, we provide the length of the EVF list (LENGTH E - 1) as the variable p of the function z EVF so
that the new combination is compared to all the entries of the EVF list. It is also important to note that the
function z recur1 terminates as soon as a match in the EVF list is found. This function also returns a flag
indicating the status of this match as the first element of its output pair. The second function z recur2 checks
this flag and if it is found to be true (meaning that a match in the EVF list is found) then it terminates by
returning the output list of the function z recur1. Otherwise, it continues with all the remaining values of the
variable m recursively. In the first case, i.e., when a match is found, the above two functions have to be called
all over again with the new list. These iterations will continue until there is no match found in the execution of
functions z recur1 and z recur2. This overall behaviour can be modelled by the following recursive function:

Definition 4.4. Final Recursion Function for Zsyntax
⊢ ∀ L E m n.

z deduction recur L E m n 0 = (T,L) ∧

∀ L E m n q.

z deduction recur L E m n (q + 1) =

if FST (z recur2 L E m n) ⇔ T

then z deduction recur

(SND (z recur2 L E m n)) E (LENGTH (SND (z recur2 L E m n)) - 1)

(LENGTH (SND (z recur2 L E m n)) - 1) q

else (T,SND (z recur2 L E (LENGTH L - 1) (LENGTH L - 1)))

The function z deduction rec also has the same data type as the above mentioned recursion functions.
The variable of recursion in this function should be assigned a value that is greater than the total number
of EVFs so that the application of none of the EVF is missed to guarantee correct operation. Similarly, the
variables m and n above should be assigned the values of (LENGTH L - 1) to ensure that all the combinations
of the list L are checked against the elements of the list of EVFs. Thus, the final deduction function for Zsyntax
can be expressed in HOL4 as follows:

Definition 4.5. Final Deduction Function for Zsyntax
⊢ ∀ L E. z deduction L E =

SND (z deduction recur L E (LENGTH L - 1) (LENGTH L - 1) LENGTH E)

The type of the function z deduction is (α list list → (α list # α list list) list → α list list). It accepts
the initial list of molecules and the list of valid EVFs and returns a list of final outcomes of the experiment
under the given conditions. Next, the output of the function z deduction has to be checked if the desired
molecule is present in the list. This can be done by using the elimination of the Z-Conjunction rule given in
Definition 1.

The formal definitions, presented in this section, allow us to recursively check all the possible combinations
of the initial molecules against the first elements of given EVFs. In case of a match, the corresponding EVF
can be applied and the process can restart again to find other possible matches from the new list of molecules.
This process terminates when no more molecules are found to be reacting with each other and at this point
we will have the list of post-reaction molecules. The desired result can then be obtained from these molecules
using the elimination of Z-Conjunction rule. The main benefit of the development, presented in this section, is
that it facilitates automated reasoning about the molecular biological experiments within the sound core of a
theorem, which will be demonstrated later.



On the Formalization of Zsyntax with Applications in Molecular Biology 43

5. Formal Verification of Zsyntax Properties. In order to ensure the correctness and soundness of
our definitions, we use them to verify a couple of properties representing the most important characteristics of
molecular reactions. The first property deals with the case when there is no combination of reacting molecules
in the list of molecules and in this case we verify that after the Zsyntax based experiment execution both the
pre and post-experiment lists of molecules are the same. The second property captures the behaviour of the
scenario when the given list of molecules contains only one set of reacting molecules and in this case we verify
that after the Zsyntax based experiment execution the post-experiment list of molecules contains the product of
the reacting molecules minus its reactants along with the remaining molecules provided initially. We represent
these scenarios as formally specified properties in higher-order logic using our formal definitions, given in the
previous section. These properties are then formally verified in HOL4.

5.1. Scenario 1: No Reaction. We verify the following theorem for the first scenario:

Theorem 1.
⊢ ∀ E L.

∼(NULL E) ∧ ∼(NULL L) ∧

(∀ a m n. MEM a E ∧ m < LENGTH L ∧ n < LENGTH L

⇒ ∼MEM (FST a) [HD (z conj int L m n)])

⇒ z deduction L E = L

The variables E and L represent the lists of EVFs and molecules, respectively. The first two assumptions
ensure that both of these lists have to be non-empty, which are the pre-conditions for a molecular reaction
to take place. The next conjunct in the assumption list of Theorem 1 represents the formalization of the no-
reaction-possibility condition as according to this condition no first element of any pair in the list of EVFs E is
a member of the head of the list formed by the function z conj int, which picks the elements corresponding
to the two given indices (that range over the complete length of the list of molecules L) and appends them
as a flattened single element on the given list L. This constraint is quantified for all variables a, m and n and
thus ensures that no combination of molecules in the list L matches any one of the first elements of the EVF
list E. Thus, under this constraint, no reaction can take place for the given lists L and E. The conclusion of
Theorem 1 represents the scenario that the output of our formalization of Zsyntax based reaction would not
make any change in the given molecule list L and thus verifies that under the no-reaction-possibility condition
our formalization also did not update the molecule list.

The verification of this theorem is interactively done by ensuring the no-update scenario for all molecule
manipulation functions, i.e., z EVF, z recur1,
z recur2 and z deduction recur, under the no-reaction-possibility condition [1]. For example, the correspond-
ing theorem for z EVF function is as follows:

Theorem 2.
⊢ ∀ E L m n P.

∼(NULL E) ∧ ∼(NULL L) ∧ m < LENGTH L ∧ n < LENGTH L ∧

P < LENGTH E ∧ (∀ a. MEM a E ⇒ ∼MEM (FST a) [HD L])

⇒ z EVF L E P m n = (F,TL L)

The assumptions of above theorem ensure that both lists L and E are not empty and the arguments of
the function z EVF are bounded by the LENGTH of L and E. The last conjunct in the assumption list models
the no-reaction-possibility condition in the context of the function z EVF. The conclusion of the theorem states
that no update takes place under the given conditions by ensuring that the function z EVF returns a pair with
the first element being F (False), representing no match, and the second element being equal to TL L, which is
actually equal to the original list L since an element was appended on head of L by the parent function.

5.2. Scenario 2: Single Reaction. The second scenario complements the first scenario and, caters for
the case when a reaction is possible and we verify that the molecules list is indeed updated based on the
outcomes of that reaction. In order to be able to track the reaction and the corresponding update, we limit
ourselves to only one reaction in this scenario but since we verify a generic theorem (universally quantified) for
all possibilities our result can be extended to cater for multiple reactions as well. The theorem corresponding
to this scenario 2 is as follows:
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Theorem 3.
⊢ ∀ E L z m’ n’.

∼NULL E ∧ ∼NULL (SND (EL z E)) ∧ 1 < LENGTH L ∧ m’ < LENGTH L ∧

n’ < LENGTH L ∧ z < LENGTH E ∧ ALL DISTINCT (L ++ SND (EL z E)) ∧

(∀ a b. a ̸= b ⇒ FST (EL a E) ̸= FST (EL b E)) ∧ m’ ̸= n’ ∧

(∀ K m n. m < LENGTH K ∧ n < LENGTH K ∧

(∀ j. MEM j K ⇒ MEM j L ∨ ∃ q. MEM q E ∧ MEM j (SND q)) ⇒

if (EL m K = EL m’ L) ∧ (EL n K = EL n’ L)

then HD (z conj int K m n) = FST (EL z E)

else ∀ a. MEM a E ⇒ FST a ̸= HD (z conj int K m n))

⇒ z deduction L E = z del (L ++ SND (EL z E)) m’ n’

The first two assumptions ensure that neither the list E, i.e., the list of EVFs, nor the second element of
the pair at index z of the list E is empty. Similarly, the third assumption ensures that the list L, i.e., the list of
initial molecules, contains at least two elements. These constraints ensure that we can have at least one reaction
with the resultant being available at index z of the EVF list. The next four assumptions ensure that the indices
m’ and n’ are distinct and these along with the index z fall within the range of elements of their respective
lists of molecules L or EVFs E. According to the next assumption, i.e., ALL DISTINCT (L ++ SND (EL z E)),
all elements of the list L and the resulting molecules of the EVF at index z are distinct, i.e., no molecule can
be found two or more times in the initial list L or the post-reaction list E. The next assumption, i.e., (∀ a b.

a ̸= b ⇒ FST (EL a E) ̸= FST (EL b E)), guarantees that all first elements of the pairs in list E are also
distinct. Note that this is different from the previous condition since the list E contains pairs as elements and
the uniqueness of the pairs does not ensure the uniqueness of its first elements. The final condition models the
presence of only one pair of reactants scenario. According to the assumptions of this implication condition, the
variable K is used to represent a list that only has elements from list L or the second elements of the pairs in
list E. Thus, it models the molecules list in a live experiment. Moreover, the variables m and n represent the
indices of the list K and thus they must have a value less than the total elements in the list K (since the first
element is indexed 0 in the HOL4 formalization of lists). Now, if the indices m and n become equal to m’ and n’,
respectively, then the head element of the z conj int K m n would be equal to FST of EL z E. Otherwise, for
all other values of indices m and n, no combination of molecules obtained by HD(Z conj int K m n) would be
equal to the first element of any pair of the list E. Thus, the if case ensures that the variables m’ and n’ point
to the reacting molecules in the list of molecules L and the variable z points to their corresponding resultant
molecule in the EVF list. Moreover, the else case ensures that there is only one set of reacting molecules in the
list L. The conclusion of the theorem formally describes the scenario when the resulting element, available at
the location z of the EVF list, is appended to the list of molecules while the elements available at the indices
m’ and n’ of L are removed during the execution of the function z deduction on the given lists L and E.

The proof of Theorem 3 is based on verifying sub-goals corresponding to this scenario for all the sub-
functions, i.e., z EVF, z recur1, z recur2 and z deduction recur. The formal reasoning for all of these proofs
involved various properties of the del function for a list element and some of the key theorems developed for
this purpose in our development are given in Table 5.1 and more details can be found in [1].

The formalization described in this section consumed about 500 man hours and approximately 2000 lines
of HOL4 code, mainly due to the undecidable nature of higher-order logic. However, this effort raises the
confidence level on the correctness of our formalization of Zsyntax. This fact distinguishes our work from all
the other formal methods based techniques used in the context of BRNs, where the deduction rules are applied
without being formally checked. Moreover, our formally verified theorems can also be used in the formal analysis
of molecular pathways. The assumptions of these theorems provide very useful insights about the constraints
under which a reaction or no reaction would take place. To the best of our knowledge, this is the first time that
properties, like Theorems 1 and 3, about a molecular pathway experiment have been formally verified. Thus,
the identification of these properties and their formal verification both constitute contributions of this paper.

As part of this work, we also developed a simplifier Z SYNTAX SIMP [1] that simplifies the proof with a single
iteration of the function z deduction recur and works very efficiently with the proofs involving our functions.
The proof steps can be completely automated and the proof can be done in one step as well. However, we
have kept the reasoning process manual purposefully as this way users can observe the status of the reaction
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Table 5.1

Formally verified Properties of the del Function

Signature Theorem

del ASSOC THM ⊢ ∀ L E m. m < LENGTH L

⇒ del (L ++ E) m = del L m ++ E

del LENGTH THM ⊢ ∀ L E m. m < LENGTH L

⇒ LENGTH (del L m) = LENGTH L− 1

del EL THM ⊢ ∀ L m n. m < n ∧ n < LENGTH L ∧ 1 < LENGTH L

⇒ EL m L = EL m (del L n)
del DISTINCT THM ⊢ ∀ L n. n < LENGTH L ∧ ALL DISTINCT L

⇒ ALL DISTINCT (del L n)
del MEM THM ⊢ ∀ L a m. m < LENGTH L ∧ MEM a (del L m)

⇒ MEM a L

del NOT MEM THM ⊢ ∀ L m. ALL DISTINCT L ∧ m < LENGTH L

⇒∼ MEM (EL m L) (del L m)

at every iteration, which is a very useful feature to get an insight of what is happening inside a reaction. Each
application of Z SYNTAX SIMP on the reaction, depicted in Fig. 7.1, would result in moving from a state n to
n+ 1.

6. Graphical User Interface. The interest of using formal methods in the domains of bio-informatics
and system biology has been rapidly growing since the last decade. However, there is a notable gap between
biologists, who prefer wet lab experiments, and computer scientists, who can provide efficient tools to perform
computer experiments with a unified framework. This fact has somewhat limited the usage of formal methods
by the bio-informatics and pharmaceutical industry in research and development. We believe that one of the
major reasons for the above-mentioned gap is the unavailability of biologists friendly formal tools. The idea
on which our GUI functions is that the user needs to provide the initial list of molecules and possible EVFs.
Consequently, the verification relating the two inputs can be done automatically. The GUI, developed in C#, is
capable of initiating a HOL4 session in the command line and automatically converting user provided data into
the language supported by HOL4. These translated texts are then utilized to form a HOL 4 theorem, which is
then passed to HOL4 via the command line and the verification process automatically starts using the formal
definitions and tactics developed in our work. Figure 6.1 provides a snapshot of our GUI while handling the
example of Glycolysis pathway, which will be described in more detail in the next section. Many real-world

Fig. 6.1. Graphical User Interface
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case studies have been automatically verified, including the examples that are described in the next section, by
our GUI. Upon the successful verification of a theorem the GUI returns a message that the given pathway has
been successfully deduced. The current version of our GUI is available for download at [1] and we are working
to further enhance its usability by providing graphical insights about the verification.

7. Case Studies. In the section, we present the utilization of our Zsyntax formalization and its corre-
sponding properties by two real-world cases studies: 1) Reaction involving TP53 degradation. 2) Molecular
pathway of Glycolysis which is responsible for the production of Pyruvate and also provides energy for cell
growth.

7.1. TP53 Degradation. TP53 gene encodes p53 protein, which plays a crucial role in regulating the
cell cycle of multicellular organisms and, thus, functions as a tumour suppressor for preventing cancer [4]. We
utilize the proposed framework to analyse the TP53 degradation reaction [4]. The regulatory loop leading to
the TP53 degradation is illustrated in Fig. 7.1, where the dark coloured circles denote the list of molecules
given by biologists and the hollow circles depict the molecules that do not interact with any other molecule in
a particular step of the reaction.

TP53 TP53 U PMDM2`

MDM2TP53 U P

TP53 * MDM2 U P

MDM2 TP53 * U P

(TP53 * U) * PMDM2

PUdTP53MDM2

Fig. 7.1. Reaction Representing Degradation of TP53

A theorem representing the regulatory loop involving MDM2, MDM2 and TP53 and leading to TP53
degradation [4], can be described as follows:

TP53 & TP53 & MDM2 & U & P ⊢ d(TP53)
In HOL4, this biological reaction can be written as the following theorem using our reported framework:

⊢ DISTINCT [TP53;dTP53;P;U;iMDM2;MDM2] =⇒

z conj elim (z deduction [[TP53];[TP53];[iMDM2];[U];[P]]

[([TP53;MDM2],[[MDM2]]);

([MDM2;TP53],[[TP53;MDM2]]);

([TP53;MDM2;U],[[TP53;U];[MDM2]]);

([TP53;U;P],[[dTP53];[U];[P]])]) [dTP53]

=[[dTP53]]

The DISTINCT function used in the assumption of the above theorem ensures that all the molecules are distinct.
The first list argument of the function z deduction is the initial aggregate (IA) of molecules that are available for
reaction and the second list argument of the function z deduction represents the valid EVFs for this reaction.
Thus, the function z deduction would deduce the final list of molecules under these particular conditions. The
function z conj elim will return the molecule dTP53 if it is present in the post-reaction list of molecules, as
previously described.
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Figure 7.1 shows the step-wise reaction leading to d(TP53). The blue-coloured circles show the chemical
interactions and green colour represents the desired product in the pathway, whereas each rectangle shows the
total number of molecules in the reaction at a given time. It is obvious from the figure that whenever a reaction
yields a product, the reactants get consumed (no longer remain in the list) hence satisfying the stoichiometry
of a reaction.

The script of TP53 Degradation Theorem is given below:

e(RW_TAC std_ss[DISTINCT,UNIQ_MEM,MEM]);

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(Z_SYNTAX_SIMP z_EVF_def );;

e(REWRITE_TAC [MEM,z_conj_elim_def]);

It is quite evident from the proof script of Theorem 1 that its proof steps can be completely automated and
the proof can be done in one step as well. However, we have kept the reasoning process manual purposefully
as this way the users can observe the status of the reaction at every iteration. For example, each application of
Z SYNTAX SIMP on the reaction, depicted in Fig. 7.1, would result in moving from a state n to n+ 1.

Note that we can also record the time required to complete each iteration. For example, in case of above
examples, the time for each step in the above case-study is given in Table 7.1.

Table 7.1

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 95.969
2 → 3 51.829
3 → 4 27.127
4 → 5 28.062
5 → 6 0.2130

7.2. Molecular Pathway of Glycolysis. Glycolysis is a metabolic pathway which converts glucose into
pyruvate and energy released in this process is used for the cell growth [18]. In molecular biology literature,
Glycolysis is a determined sequence of ten enzyme-catalyzed reactions. Formation of Glucose-6-phosphate,
Fructose-1,6-bisphosphate (F1,6P), etc. are intermediate steps in glycolysis [18]. In order to deduce the complete
Glycolysis pathway, it is convenient to divide the pathway in three blocks as shown in Fig. 7.2. All the
abbreviations used in Fig. 7.2 are described in Table 7.5. The dark coloured circles represent enzymes and
each of them participates in the reaction at a certain point and only helps in the formation of new molecules.
It is important to note that enzymes do not get consumed, which means that they retain their state after the
completion of the reaction.

The first phase of the pathway leads to formation of Fructose-1,6-bisphosphate (F1,6P). The theorem
representing the reaction of the glycolytic pathway leading from D-Glucose to F1,6P [4] can be described in
classical Zsyntax format as follows:

Glc & HK & GPI & PFK & ATP & ATP ⊢ F1,6P

We can formally encode this theorem in HOL4 as follows:

⊢ DISTINCT [Glc; HK; GPI; PFK; ATP; ADP; G6P; F6P; F16P] =⇒

(z conj elim (z deduction [[Glc];[HK];[GPI];[PFK];[ATP];[ATP]]

[([Glc;HK],[[HK;Glc]]);

([HK;Glc;ATP],[[HK];[G6P];[ADP]]);

([G6P;GPI],[[F6P];[GPI]]);

([F6P;PFK],[[PFK;F6P]]);

([PFK;F6P;ATP],[[PFK];[F16P];[ADP]])] ) [F16P]

= [[F16P]]
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Glc Glc * HK G6P

ATP

HK

ADP

G6P * GPI

GPI

F6P F6P * PFK F16P

ATP

PFK

ADP

F16P * ALD ALD

DAP

G3P

DAP * TPIG3PP13G G3P * TPD

NADH

TPD

NAD

P3G P13G * PGK

ATP

PGK

ADP

P3G * PGM

PGM

PP PP * PYK PY

ADP

PYK

ATP

P2G P2G * ENL

ENL

H2O

1

2

3

Fig. 7.2. Formation of Pyruvate through Glycolysis

where the first list argument of the function z deduction is the initial aggregate (IA) of molecules that are
available for reaction and the second list represents the valid EVFs for this reaction. The EVFs mentioned
in the form of pairs and involving the molecules (G6P, F6P, etc.) are obtained from wet lab experiments, as
reported in [4]. The DISTINCT function used above makes sure that all molecules (from initial aggregate and
EVFs) used in this theorem are indeed distinct. Thus, the function z deduction would deduce the final list
of molecules under these particular conditions. The function z conj elim returns the molecule F1,6P if it is
present in the post-reaction list of molecules. The verification time required for each iteration step is given in
Table 7.2.

Table 7.2

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 11.996
2 → 3 7.376
3 → 4 12.964
4 → 5 12.756
5 → 6 9.240
6 → 7 0.048

Fructose-1,6-bisphosphate formed in the above reaction further reacts with different enzymes to form 3-
Phosphoglycerate, which completes the second phase of Glycolysis pathway. Note that during this phase two
molecules of G3P are formed and each molecule follows the same path. For the sake of simplicity, we only
provided one NAD molecule so that only one molecule can complete the pathway to form one Pyruvate molecule.
After the successful deduction of first phase of Glycolysis, we can model the second phase as follow:

F16P & ADP & ALD & TPI & NAD & TPD & PGK ⊢ P3G

which can be formalized in HOL4 as follows:
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⊢ DISTINCT [F16P; ALD; TPI; NAD; TPD; PGK; G3P;

DAP; P13G; P3G; NADH; ADP; ATP] =⇒

(z conj elim (z deduction [[F16P];[ADP];[ALD];[TPI];[NAD];[TPD];[PGK]]

[([F16P;ALD],[[G3P];[DAP]]);

([DAP;TPI],[[G3P];[TPI]]);

([G3P;TPD],[[TPD;G3P]]);

([TPD;G3P;NAD],[[P13G];[TPD];[NADH]]);

([P13G;PGK],[[PGK;P13G]]);

([PGK;P13G;ADP],[[PGK];[P3G];[ATP]])] ) [P3G]

= [[P3G]]

The time required for each iteration of the second phase of Glycolysis is given in Table 7.3.

Table 7.3

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 24.940
2 → 3 20.532
3 → 4 22.676
4 → 5 16.804
5 → 6 20.780
6 → 7 17.120
7 → 8 0.188

3-Phosphoglycerate (P3G) formed in the above step further reacts with other enzymes to yield the final
product of Glycolysis pathway, i.e., Pyruvate. A theorem representing the conversion of 3-Phosphoglycerate
(P3G) to Pyruvate (PY) can be described as follows:

P3G & ADP & PGM & ENL & PYK ⊢ PY

Consequently, the corresponding HOL4 expression is given as follows:

⊢ DISTINCT [PGM; ENL; PYK; P3G; P2G; H2O; PP; PY; ADP] =⇒

(z conj elim (z deduction [P3G];[ADP];[PGM];[ENL];[PYK]]

[([P3G;PGM],[[P2G];[PGM]]);

([P2G;ENL],[[H2O];[PP];[ENL]]);

([PP;PYK],[[PYK;PP]]);

([PYK;PP;ADP],[[PYK];[PY];[ATP]])] ) [PY]

= [[PY]]

Similar to the above steps, the timing statistics for the above theorem are given in Table 7.4.

Table 7.4

Runtime per Iteration

Iteration Duration (Seconds)

1 → 2 5.860
2 → 3 5.676
3 → 4 9.384
4 → 5 7.784
5 → 6 0.044

This completes the description of the utilization of our work to formally reason about two real-world case
studies, i.e., TP53 degradation and molecular pathway of Glycolysis.

Our HOL4 proof script is available for download [1], and thus can be used for further developments and
analysis of different molecular pathways. It is important to note that formalizing Zsyntax and then verifying its
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Table 7.5

Abbreviations of molecules used in Glycolysis

Abbr. Biological Entity Abbr. Biological Entity

Glc Glucose PYK Pyruvate Kinase
HK Hexokinase G6P Glucose-6-phosphate
ATP Energy F6P Fructose-6-phosphate
GPI Phosphoglucomutase F16P Fructose-1,6-diphosphate
PFK Phosphofructokinase G3P Glyceraldehyde-3-Phosphate
ALD Aldolase DAP Dihydroxyacetonephosphate
TPI Triosephosphateisomerase P13G 1,3-biphosphoglycerate
TPD Triosephosphate Dehydrogenase P2G 2-phosphoglycerate
PGK Phosphoglycerokinase PP Phophoenolpyruvate
PGM Phosphoglyceromutase PY Pyruvate
ENL Enolase P3G 3-Phosphoglycerate

properties was a very tedious effort. However, it took around 10 lines of code to formally define and verify each
theorem related to the above case studies in HOL4, which clearly illustrates the usefulness of our foundational
work. We have shown that our formalization is capable of modelling molecular reactions using Zsyntax inference
rules, i.e., given a set of possible EVFs, our formalism can derive a final aggregate B from an initial aggregate
A automatically. In case of a failure to deduce B, the proposed method still provides the biologist with all the
intermediate steps so that one can examine the reaction in detail and figure out the possible cause of failure.
The evident benefit of our reasoning approach is its automatic nature as the user does not need to think about
the proof steps and which EVFs to apply where. However, the most useful benefit of the proposed approach is
its accuracy as the theorems are being verified in a formal way using a sound theorem prover. Thus, there is no
risk of human error or wrong application of EVFs. Finally, due to the computer-based analysis, the proposed
approach is much more scalable than the paper-and-pencil based analysis presented in [4].

8. Conclusions. Most of the existing formal verification research related to molecular biology has been
focussed on using model checking. As a complementary approach, the primary focus of the current paper
is on using a theorem prover for reasoning about molecular pathways. The main strength of this approach,
compared to existing model checking related work, is that the underlying methods and deduction rules can
also be formally verified besides the verification of a particular molecular pathway case. Leveraging upon this
strength, we formally verified two key behavioural properties of molecular pathways based on the Zsyntax
language, which presents a deduction style formalism for molecular biology in the most biologist-centred way.
Besides ensuring the correctness of our formalization of the Zsyntax operators and inference rules, the formally
verified properties also play a vital role in reasoning about molecular pathways in the sound core of a theorem
prover. The practical utilization and effectiveness of the proposed development has been shown by presenting
the automatic analysis of reaction involving TP53 degradation and metabolic pathway known as Glycolysis.

The proposed work opens the doors to many new directions of research. Firstly, we are enhancing our GUI
to add more biologist friendly features in it. Moreover, we are also targeting some larger case studies, such
as Dysregulation of the cell cycle pathway during tumour progression [16] and Fanconi Anemia/Breast Cancer
(FA/BRCA) pathway [26]. Another interesting future direction is to leverage upon the high expressiveness of
higher-order-logic and utilize calculus and differential theoretic reasoning to add reaction kinetics support in
our formalism.
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[14] M. Magnin L. Paulevé and O. Roux. Abstract Interpretation of Dynamics of Biological Regulatory Networks. Electronic

Notes Theoretical Computer Science, 272(0):43–56, 2011.
[15] C.J. Langmead. Generalized Queries and Bayesian Statistical Model Checking in Dynamic Bayesian Networks: Application

to Personalized Medicine. In Proc. International Conference on Computational Systems Bioinformatics, pages 201–212,
2009.

[16] R. Maglietta, V. Liuzzi, E. Cattaneo, E. Laczko, A. Piepoli, A. Panza, M. Carella, O. Palumbo, T. Staiano,

F. Buffoli, A. Andriulli, G. Marra, and N. Ancona. Molecular Pathways Undergoing Dramatic Transcriptomic
Changes During Tumor Development in the Human Colon. BMC Cancer, 12(1):608, 2012.

[17] R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System Sciences, 17(3):348–375,
1977.

[18] D. Nelson. Lehninger Principles of Biochemistry. W.H. Freeman, New York, 2008.
[19] L.C. Paulson. ML for the Working Programmer. Cambridge University Press, 1996.
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