
Scalable Computing: Practice and Experience

Volume 19, Number 1, pp. 15–29. http://www.scpe.org

DOI 10.12694/scpe.v19i1.1390
ISSN 1895-1767
c⃝ 2018 SCPE

SCALE-EA: A SCALABILITY AWARE PERFORMANCE TUNING FRAMEWORK FOR

OPENMP APPLICATIONS
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Abstract. HPC application developers, including OpenMP-based application developers, have stepped forward to endeavor the
future design trends of exa-scale machines, such as, increased number of threads/cores, heterogeneous architectures, multiple levels
of memories, and so forth; and, they have initiated procedures to address application level challenges, such as, data-driven scalability
issues, energy consumption requirements, data availability needs, and so forth. Despite the existence of manual performance tuning
solutions, users still deem it to be an intricate process. This paper proposes a scalability aware autotuning framework (SCALE-
EA) that automatically identifies an efficient number of threads for OpenMP parallel regions using a Firefly Algorithm (FA) and a
newly designed Modeling Assisted Firefly Algorithm (MAFA). MAFA of SCALE-EA was implemented in two approaches: Modeling
Assisted Firefly Algorithm with Random Forest Modeling support (MAFA-RFM) and Modeling Assisted Firefly Algorithm with
Linear Regression Modeling support (MAFA-LRM). The modeling and prediction algorithms of the proposed MAFA of SCALE-EA
were based on the execution time and the hardware performance events of code regions of OpenMP applications. Experiments were
conducted on two machines, namely, a Haswell based machine and an AMD Opteron based 48 core machine. The experimental
results of the MAFA of SCALE-EA manifested the energy efficiencies of 31.21 to 77.3 percentage and the search time efficiencies
of 5.53 to 32.56 percentage for candidate OpenMP applications such as CoMD, Arraybench, Taskbench, and Syncbench.
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1. Introduction. High Performance Computing (HPC) application developments are invariably cropping
up among various scientific domains, such as, High Energy Physics (HEP), bioinformatics, eyewear computing,
visualizations, electronic automation, graph-based machine learning, and so forth. OpenMP based programming
model is indeed reaching out to become a prominent programming model among a sector of HPC application
developers owing to the adequate doctrine of standards (OpenMP 4.0 and 4.5), ease of use, controlled program-
ming support, smooth applicability to programmers belonging to various scientific disciplines, and due to the
notion of having millions of cores in future exascale machines.

However, the realization of efficiently utilizing HPC applications in its present form for future large scale
machines requires innovative approaches to mitigate the following possible risky scenarios:

1. the performance of applications becomes more sensitive to data movement, data availability, data prove-
nance, data management policies, and so forth – a future software-cum-hardware computing system
must consider the massive storage options of machines, resiliency nature of applications, dynamic com-
puting behavior of applications, and the dynamic nature of the data access patterns of applications (big
data).

2. the current implementations of OpenMP applications might not have considered the design aspects of
emerging memory models (including data persistence of modern memory architectures), infrastructural
improvements, future parallel data structures, and so forth.

3. the scalability of applications might get an impoverished lead as applications are usually not ported
and tested for scalable machines.

4. the energy efficiency of applications could exhibit a daunting scenario when executed on machines with
varying degrees of parallelism – smaller or larger.

5. the current OpenMP application developers might not have quantified the possible uncertainties that
might evolve due to the underlying future parallel software frameworks.

In short, to mitigate these challenges, programmers or developers have to diligently write scalable and
energy efficient parallel algorithms by employing the apt scalability features of programming languages and by
considering the underlying requirements of machines. Vividly, OpenMP based application programmers have
to gain sophisticated knowledge on handling the newer OpenMP constructs in order to attain higher scalability,
portability, and energy efficiency – for instances, the synchronization points of OpenMP applications, such as,
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OpenMP barrier constructs should be limited or enriched; the granularity of OpenMP parallel regions should
be optimized to achieve higher scalability; and, the programmers should efficiently utilize the OpenMP private
data clauses in an application.

In general, the non-scalable and the energy/performance inefficient code regions of an application can be
identified and manually tuned. However, the manual tuning processes might laid down hefty responsibilities to
users – an intricate process. One solution that makes sense and intends to work in large scale HPC scenarios is to
establish an autotuning tool or a framework that automatically finds the non-scalable or energy inefficient parts
of the code regions of applications and tunes them accordingly. Historically, a notion of framing autonomic
computing systems was highly appreciated by researchers for decades [11, 29]. Moreover, researchers had
shown their keen interest in counteracting the scalability and the energy consumption issues of applications
[2, 4, 15, 31] at various levels of computing systems so that the existing applications could be executed on future
machines at ease.

Auto tuning, although a promising solution for tuning HPC applications, easily leads to voluminous com-
binations of optimization options which might impede the search time of the tuning process. In addition, the
autotuning process could inundate the search space with an immense volume of performance data, as autotuning
systems are, in general, self-aware, self-configurable [42], context-aware, and self-optimizable systems. In most
cases, the autotuning systems are guided in a single-objective or in a multi-objective modes of operations based
on pre-defined objectives, such as, minimizing energy consumption of code regions of applications, maximizing
the utilization of machines, minimizing the data movement to Dynamic Random Access Memory (DRAM), and
so forth. Thus, there is an increasing need for autotuning solutions or frameworks that intelligently minimizes
the search time of the tuning processes.

This paper proposes the SCALE-EA framework, a Scalability-Aware performance tuning framework using
EnergyAnalyzer (EA), for OpenMP applications – EnergyAnalyzer tool is an online based energy consumption
analysis tool for HPC applications. SCALE-EA automatically identifies the efficient number of threads for
individual parallel regions of OpenMP applications using FA and MAFA. The proposed FA and MAFA of
SCALE-EA improved the search time of the tuning process and enhanced the energy efficiency of applications.
The proposed method was evaluated using several OpenMP applications / benchmarks, such as, CoMD from
the co-design center of LLNL, USA [14], and OpenMP benchmarks from EPCC [17], on a Haswell processor
based HP-Zbook-15G machine and a 48 core HPProliant machine.

In succinct, the paper has the following contributions:

1. an SCALE-EA framework for automatically finding an efficient number of threads for the parallel
regions of OpenMP applications was proposed.

2. FA and modeling assisted heuristic algorithms were implemented in SCALE-EA in order to reduce the
search time of the tuning process. The modeling assisted heuristic algorithms were implemented in
two flavors: a) Modeling Assisted Firefly Algorithm using Linear Regression Modeling (MAFA-LRM)
and b) Modeling Assisted Firefly Algorithm using Random Forest Modeling (MAFA-RFM). MAFA
algorithms are the modified versions of FA.

3. Experimental evaluations of the proposed SCALE-EA and its associated algorithms were carried out
using OpenMP applications, such as, Arraybench, Syncbench, Taskbench, and CoMD applications.

The rest of the paper is organized as follows. Section 2 presents existing autotuning frameworks and
their solutions. Section 3 explains the proposed scalability-aware performance tuning framework for OpenMP
applications and Section 4 discusses the modified firefly algorithm which adds modeling support towards the
search process. Section 5 manifests the proposed mechanism called the SCALE-EA framework. And, finally,
Section 6 presents conclusions.

2. Related Works. HPC applications, specifically data-driven applications, are increasing in the scientific
market from various scientific disciplines, such as, massive graphs, HEP, bioinformatics, healthcare, distributed
manufacturing, electronic automation, visualization applications (social networks), multi-physics simulations,
and so forth. In the meantime, technological advances in hardware architectures are nearing exascale speed
through co-design architectural designs, abundant General Purpose Graphical Processing Units (GPGPUs),
hierarchical clustering of heterogeneous machines, and so forth. Despite the growth seen in the application
sector and in the hardware architectural design sector of HPC, the performances of applications, including the
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Fig. 3.1. SCALE-EA: Scalability Aware Performance AutoTuning Framework for OpenMP Applications

scalability and the energy efficiency of applications, should be concerned about by the researchers.

The HPC community, therefore, oriented their mindset to mitigate the effects of known performance issues
of large scale systems such as the dynamic nature of big data in applications (data sizes), heterogeneous hardware
architectures [7], energy consumption issues, scalability issues [22, 39], uncertainty of resources (including data
resources), and so forth [18].

In fact, the energy consumption issues of HPC applications should be addressed due to the scarcity of power
sources (especially in the developing countries, such as, India), owing to the emission of carbon footprints [10]
which lead to environmental hazards, and, due to the emerging power wall problem of dark silicons [31].

There exists a few standalone energy reduction mechanisms for HPC applications [28, 36, 21]. The most of
the existing approaches are either manual [34] or application-centric.

Researchers have proposed autotuning frameworks/solutions [16, 23, 24, 25, 13] in order to achieve per-
formance/energy improvements. Studies have also led a subset of researchers to frame autotuning solutions
at compile time [2, 9, 12, 27, 32] and a few others at run time of applications [37, 3, 40, 8]. In addition,
a few autotuning solutions with more emphasis to IOs were designed in [5]. To improve the performance of
heterogeneous systems and applications, the authors of [6] have designed an autotuning solution. Additionally,
tool developers are constantly finding mechanisms to assist application developers in terms of automatically
improving the performance efficiency of HPC applications.

To avoid the burdens caused due to the search time and the emergence of abundant performance data, a
few researchers have utilized modeling mechanisms [26, 1] to forecast the performance issues of applications
and to tune applications. In addition, modeling assisted automated systems have been successful in cloud and
distributed environments [30]. Recently, researchers have adopted autotuning using Domain Specific Languages
for autotuning applications in ANTAREX project [13].

This paper proposed a combination of heuristics and modeling approach for the tuning process of OpenMP
based HPC applications. To do so, Firefly Algorithm (FA), a heuristic method, is modified with modeling
algorithms, such as, RFM and LRM, in this paper. A detailed description about the proposed SCALE-EA
framework based on FA and MAFA algorithms is discussed in Section 3.

3. Scalability Aware AutoTuning using EnergyAnalyzer (SCALE-EA). SCALE-EA framework
does scalability aware performance autotuning of OpenMP applications. The framework is built based on
EnergyAnalyzer tool, an online based energy consumption analysis tool. This section explains the SCALE-EA
framework and the entities involved in pursuing the performance aware autotuning mechanism for OpenMP
applications.
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3.1. SCALE-EA Framework Functionalities. The functionalities of the proposed SCALE-EA frame-
work, the extensions made towards EnergyAnalyzer tool, are described as follows:

SSTranslator and its Extension. SSTranslator, an entity of EnergyAnalyzer tool, is extended to support the
proposed SCALE-EA framework. It is a source-to-source translator which includes program statements, such
as,

#pragma start_user_region

---

#pragma end_user_region

These statements notify the Monitoring Manager entity of EnergyAnalyzer about the user-specified code re-
gions of applications. The performance / energy consumption values of these user-specified regions are measured
using the Monitoring Manager entity of EnergyAnalyzer at the runtime of applications.

The extended version of SSTranslator additionally identifies each parallel regions of OpenMP based appli-
cations. These parallel regions are marked with two additional statements, such as,

omp_set_dynamic(0);

omp_set_num_threads(SCALEEA_NUM_THREADS_filename_n);

where n resembles the unique number for each omp parallel regions in an application and filename is the
filename representation of applications.

The line omp set dynamic(0) is automatically added before the omp parallel regions of OpenMP-based
applications using the extended version of SSTranslator. This statement instructs compilers to disable dynamic
allocation of threads. The variable SCALEEA NUM THREADS filename n is automatically defined at the initial
stage of the file using #ifdef conditions of C/C++ definitions. This is mandatory for the proposed SCALE-
EA framework as the framework would later assign the number of threads for each omp parallel regions. The
heuristics of SCALE-EA are responsible for assigning the values to these variables.

In addition, the line numbers for omp parallel regions and the file names of applications where the regions
belong to are noticed in a separate .sst file (static source-to-source file) of the SCALE-EA framework.

Performance/Energy Measurements. After inserting the required statements for SCALE-EA, (for instances,
the statements which would disable the dynamic allocation of threads to OpenMP applications and enable per-
formance measurements), the application is compiled with the MMLibrary of EnergyAnalyzer. The MMLibrary
of EnergyAnalyzer measures the performance values of the user-specified code regions of applications and stores
the performance values in EAPerfDB, a no-sql (Mongodb) based performance database of EnergyAnalyzer tool.

Heuristic Support. Selecting efficient numbers of threads for each omp parallel regions of OpenMP appli-
cation is a time consuming task. Thus, SCALE-EA framework depends on heuristics which suggest efficient
numbers of threads for each omp parallel regions.

In this paper, Firefly Algorithm (FA) is applied in the SCALE-EA framework in order to find the efficient
number of threads for OpenMP applications. In addition, the time spent for finding the efficient number of
threads (the search time) is further reduced using the modified versions of FA – MAFA-RFM and MAFA-LRM.
Detailed discussions on the Firefly Algorithm (FA) and MAFA can be found in Section 4.

4. FA and MAFA of SCALE-EA. In this paper, FA and a modified version of FA, namely, Modeling
Assisted Firefly Algorithm (MAFA) are proposed for identifying an efficient number of threads for OpenMP
applications. MAFA is implemented in two approaches, namely, MAFA-RFM and MAFA-LRM. This section
describes the FA and MAFA in detail.

4.1. Firefly Algorithm (FA). Firefly Algorithm (FA) is a meta-heuristic algorithm which is actively
utilized by a few researchers [41, 19, 35] in order to solve their real-world combinatorial optimizations problems.
FA was developed in 2007 by Xin-She Yang at Cambridge University [41]. In fact, the idea of meta-heuristics
intrigued the real world problem solvers when compared to the classical optimization techniques for decades
owing to the algorithms’ problem independent nature – the classical optimization techniques find solutions based
on analytical models (continuous or differentiable functions).

FA, an iterative based heuristic technique or a population based meta-heuristics, was introduced in several
flavors, such as, adaptive, multi-objective, hybrid, DiscreteFA, and so forth. A wide survey of FA and its
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Fig. 4.1. Realization of FA in SCALE-EA – Thread String Formation

derivatives was elaborated in [20].
FA was named after fireflies which exist in tropical geographical locations. In general, FA depends on the

flashing and mating communication behavior of fireflies. In succinct, the male fireflies lit a specific flashing
behavior and the females subsequently respond to the flash with unique characteristics. The bonding between
the male and the female fireflies heavily rely upon the distance between them. FA assumes the following:

1. Fireflies of FA are unisex. This ensures that each firefly would be attracted to the other available
fireflies irrespective of what sex they belong to.

2. The attractiveness of fireflies is dependent on the brightness of the fireflies, which is the the objective
function of FA.

4.2. Realization of FA in SCALE-EA – Problem Definition. SCALE-EA based on FA identifies
efficient number of threads for each omp parallel regions of OpenMP applications. To do so, the following steps
are carried out in the SCALE-EA framework:

SCALE-EA Preparatory Phase. As mentioned earlier, SSTranslator of EnergyAnalyzer includes statements,
such as, omp set num threads(SCALEEA NUM THREADS filename n) for each OpenMP parallel regions of appli-
cations. Later, in the SCALE-EA preparatory phase, SCALE-EA represents those statements in a string form
so that the heuristics could literally assign the number of threads for applications at the initialization and the
iterative phases of SCALE-EA. The string form representation of the parallel regions of OpenMP applications
is given as shown below:

ompP_1 ompP_2 ompP_3 ... ompP_n

where n represents the number of parallel regions in an application. For instance, Figure 4.1 shows the assign-
ment of threads 4, 8, and 16 for three parallel regions ompP 1 ompP 2 and ompP n.

The string form based on the parallel regions of applications are uniquely represented irrespective of
the files of applications. For instance, the eleven omp parallel regions from 3 files, namely, eam.c, ini-
tAtoms.c, and ljForce.c, of the CoMD application are represented as ompP 1 ompP 2 ompP 3 ompP 4 ompP 5

ompP 6 ompP 7 ompP 8 ompP 9 ompP 10 ompP 11 based on parallel regions SCALEEA NUM THREADS eam 1 (for
ompP 1) to SCALEEA NUM THREADS ljForce 2 (for ompP 11).

FA Initialization Phase. During the initialization phase, the initial values of FA parameters are set. The FA
paramters include the number of initial population of sequences (fireflies), the objective functions, the number
of generations applied in FA, and epsilon, alpha, beta, and gamma values. In the experiments, the impacts of
six combinations of FA parameter variations are studied as shown in Table 5.3.

In addition, during this initialization phase of SCALE-EA, the initial population of sequences (Fn) is
generated. The pictorial representation of the sequences in the initialization phase of the SCALE-EA mechanism
for an application is shown in Figure 4.2.

Based on the initialization phase values, SCALE-EA assigns the number of threads for each omp parallel

regions and execute them on the underlying HPC machine. Meantime, the performance values for the user-
specified code regions of applications are recorded in the EAPerfDB of SCALE-EA. Subsequently, the objective
function values of these sequences are noticed for the next phase of FA.
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Fig. 4.2. Initialization Phase of FA at SCALE-EA

FA Iteration Phase. During this phase, FA iteratively evaluates the light intensities of the two series of
sequences (Fi=1 to nandFj=1 to n) based on the objective functions. In fact, the objective functions of sequences
decrease with respect to the distance between them. The objective functions applied in SCALE-EA is a Com-
bined Simultaneous Objective (CSO) function with weight functions as shown in equation 4.1. The weight
functions are mandatorily devised for CSO – 50 percentage weights were given to the scalability parameter and
the other 50 percentage weights were splitted into 20, 20, and 10 for execution time, energy and performance
parameters of equation 4.1:

CSO = 0.5 ∗ (
ET

ETp=1

) + 0.2 ∗ ET + 0.2 ∗ EY + 0.1 ∗ gistPerf(4.1)

where: ET is the execution time of Fn in seconds; EY is the energy consumption of Fn in Joules; gistPerf is
represented using formula 4.2, where the performance values are converted to a two-decimal rounded off values:

gistPerf =
∑

i=1...pf

Perfi(4.2)

where pf is the number of performance counters, and Perfi is the performance value for each performance
counters such as Level 1 cache misses, Level 3 cache misses, unconditional branches, and so forth. For example,
if the total number of instructions, level1 data cache misses, unconditional branches, and level3 total cache
misses for an application are measured as 11960995473, 5486, 869583951, and 3801, the gistPerf value would
be rounded off as 1.28 (actual value = 1.28 ∗ 1010).

If the light intensity IFj of Fj is better than IFi, then FA moves Fi to Fj . In SCALE-EA, the movement
of firefly Fi to an attractive firefly Fj is determined using the formula given in equation 4.3:

Movement F t+1

i = F t
i + β0e

−γr2ij (F t
j − F t

i ) + αtϵ
t
i(4.3)

where the first component represents the previous Fi sequence (thread sequence); the second component rep-
resents the essence of attraction parameter. This component relates to the distance between two fireflies – β0

represents attractiveness at distance 0 and r relates to the distance between them at a constant value γ; and
the third component represents the randomization parameter – αt is a scalable value specified at time t and ϵ

is a random number for each iteration of FA.
The second component of equation 4.3 moves the sequences in a discrete manner instead of pursuing a bare

continuous calculation.
FA Ranking Phase. In this phase, the sequences are ordered and the local best sequence LB F g for that

particular generation of sequences are noticed. FA continues the ranking process for each generations until the
final iteration are complete. And, finally, FA searches for the global best sequence GB F g for the OpenMP
application from the list of available LB F g and their corresponding light intensity values.

Thus, identifying the efficient number of threads for the parallel regions of OpenMP applications is based on
the global best sequence which is derived from the pre-defined objectives (minimizing execution time, minimizing
energy consumption and increasing speedup) calculated using the CSO formula (see equation 4.1).
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Fig. 4.3. Modeling Assisted Firefly Algorithm (MAFA)

4.3. Modeling Assisted Firefly Algorithm (MAFA) – a modified FA. Although classical FA would
reduce the time for searching the efficient number of threads in OpenMP applications, the search time of the
SCALE-EA tuning process can further be improved using prediction models. Reducing the search time of
tuning process is crucial while pursuing autotuning in large scale machines. For instance, an application with 9
OpenMP parallel regions might have 134217728 number of combinations of thread sequences when experimented
with 8 threads. This could deliberately issue hefty number of performance data for each combinations of thread
sequences. SCALE-EA, thus, proposed a Modeling Assisted Firefly Algorithm (MAFA) in order to further
reduce the search time of the SCALE-EA tuning process.

In MAFA, a few iterative portions of FA are executed and the other remaining iterative portions of FA are
predicted using prediction algorithms, such as, Random Forest Modeling (RFM) and Linear Regression Models
(LRM). In the previous works, prediction algorithms were applied for predicting the efficient problem sizes [38]
of applications at compile time. In this paper, these prediction algorithms are applied for the first time for
assisting the search process of FA based meta-heuristics – i.e., a modified implementation of firefly algorithm.
Based on the utility of RFM or LRM, MAFA is represented as MAFA-RFM and MAFA-LRM.

The working principle of MAFA is pictorially represented in flow chart (see Figure 4.3). In general, MAFA
assumes the four phases as similar to FA – Preparatory, Initialization, Iteration, and Ranking phases. During
the initialization phase of MAFA, the initial parameters of FA are set; initialization population is defined; and,
the maximum number of generations for the tests is initialized. Later, MAFA iteratively evaluates sequences
and their corresponding intensities (objective functions) for the pre-assigned number of generations as discussed
in Section 3.

The modification adopted to FA resides in the iterative phase of MAFA. During the iteration phase of MAFA,
all of the combinations of thread sequences that are suggested by FA are not executed. Thus, instead of executing
and evaluating all of the combinations of sequences (the thread sequences of OpenMP applications), some of
the combinations of thread sequences are executed and the others are predicted using prediction algorithms. To
do so, initially, the sequences are enrolled in the Training-Execute list (see Figure 4.3). This list ensures that
SCALE-EA executes the OpenMP application during the evaluation step of FA. After a few iterations, there are
sufficient number of entries in the Training-Execute list (for instance, 100 entries in the Training-Execute list of
SCALE-EA), the next 30 percentage of the population in the FA generation is enrolled in the Testing-Predict
list of SCALE-EA.

If the sequence is listed in the Testing-Predict list of SCALE-EA, the OpenMP application with the corre-
sponding thread sequence would not be compiled or executed in the underlying machine. Rather, the modeling-
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cum-prediction component of MAFA is invoked by SCALE-EA. During this step, the RFM/LRM prediction
algorithms model (and predict) the outcomes of sequences based on the performance counter values (based on
the experimental results) available in the EAPerfDB of SCALE-EA.

A detailed insights on the RFM and LRM algorithms are explained in the following paragraphs:
Random Forest Modeling. RFM applies tree based technique for modeling the independent variables and

for predicting the dependent variables. It gains knowledge using ensemble learning methods; it predicts the
unknown variables after a creation of the high variance of de-correlated trees was done. Thus, RFM has modeling
and prediction phases for predicting the dependent variables in a regression form or in a classification form.

RFM undergoes two processes in the modeling phase, namely, the bagging and ensembling processes. During
the bagging process, random forest trees (RFTrees) are grown with high variances and they are grouped in
separate bags. The ensembling process of RFM ensures that there is enough information from the created trees
to generate models. At the end of this phase, a model is created using RFM.

RFM, at the prediction phase, tries to reduce the noises of the generated trees of the modeling phase of
RFM. Testing data is utilized at this phase of RFM for the prediction process.

Linear Regression Modeling. LRM predicts the dependent variables based on the linear predictor functions.
LRM suits well if the dependent function is mostly linear in nature as it attempts to find the best fitting line.
In both the prediction cases (RFM and LRM), a squared error based calculation is utilized in order to find the
error.

5. Experimental Results. This section demonstrates the proposed mechanism, SCALE-EA, the scala-
bility aware performance tuning of OpenMP applications framework using EnergyAnalyzer (EA) tool by: i)
conducting a study on the impact of variants of FA parameters, ii) understanding the energy efficiencies of
FA and MAFA in SCALE-EA, and iii) analyzing the search time efficiencies of MAFA-LRM and MAFA-RFM
based tuning processes.

5.1. Experimental Setup. Experiments were conducted on two machines, namely, a HP-Zbook-15G
machine – a Haswell processor based workstation – and a 48 core HPProliant machine. In all experiments, the
EnergyAnalyzer tool was utilized to measure the energy / performance values for the code regions of applications.

The following OpenMP applications / benchmarks are considered to demonstrate the proposed SCALE-EA
mechanism:

1. Arraybench: This benchmark suite of EPCC [17] is written in OpenMP-C and it consists of ten bench-
marks which reflect the performance of shared memory architectures in terms of the impact due to
array operations of OpenMP applications. The array operations of OpenMP benchmarks are consid-
ered based on the private clauses of OpenMP, such as, copyin, threadprivate, and so forth, within loop
blocks. The thread private data that are operated within the functional blocks of Arraybench are in
the range of 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, and 59049. The Arraybench application of the
benchmark suite consists of four OpenMP parallel regions.

2. Syncbench: This benchmark consists of nine OpenMP parallel regions which are responsible for studying
the impact of utilizing synchronization points in OpenMP. In general, OpenMP applications can enter
into synchronization points at nine OpenMP constructs, such as, parallel regions, parallel for regions,
barriers, single regions, critical regions, ordered sections, atomic regions, reduction states, and OpenMP
locks. The impacts of these synchronization points of OpenMP constructs could be analyzed using
Syncbench application.

3. Taskbench: Taskbench studies the effects of task creation and scheduling aspects of OpenMP 3.0. For
instances, parallel task generation, master task generation, master task generation with busy slaves,
conditional task generation, and so forth, are analyzed in Taskbench application. This benchmark
consists of ten OpenMP parallel regions which could be tuned when executed on machines.

4. CoMD application: CoMD application [14] is an algorithmic representation of molecular dynamics
simulations. It was developed at the co-design center of LLNL, USA. For the tests, OpenMP version of
CoMD v.1.1 was utilized. This version of CoMD has eleven OpenMP parallel regions that are spread
across the files, such as, eam.c (4 regions), initAtoms.c (5 regions), and ljForce.c (2 regions).

In experiments, SCALE-EA identified an efficient number of threads for the OpenMP parallel regions of
the above mentioned applications based on the energy / performance values of user-specified regions of applica-
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Table 5.1

OpenMP Applications and Parallel Regions

Application No.of Parallel Parallel User User region No.of Perf.
regions region files region (lineNo) file Measurements

ArrayBench-3 to 4 arraybench.c lineNo: 46-88 arraybench.c 6
ArrayBench-59049
SynchBench 9 syncbench.c lineNo: 45-101 syncbench.c 6
TaskBench 10 taskbench.c lineNo: 44-97 taskbench.c 6
CoMD 4 eam.c lineNo: 119-136 CoMD.c 6

5 initAtoms.c
2 ljForce.c

Table 5.2

Energy and Performance Values of OpenMP Applications

Application Energy ExecutionTime TOT INS L1 DCM BR UCN L3 TCM EA Time
(Joules) (secs) (secs)

ArrayBench-3 16.04 0.395 1.05E+09 1.01E+07 2.80E+07 206 0.547
ArrayBench-9 13.43 0.37 9.70E+08 7.19E+06 2.70E+07 181 0.541
ArrayBench-27 15.27 0.363 8.60E+08 9.50E+06 2.70E+07 229 0.535
ArrayBench-81 11.58 0.279 7.20E+08 7.60E+06 2.50E+07 201 0.448
ArrayBench-243 14.29 0.349 9.20E+08 1.00E+07 2.40E+07 202 0.51
ArrayBench-729 12.15 0.284 7.40E+08 8.30E+06 2.60E+07 254 0.43
ArrayBench-2187 17.54 0.399 1.21E+09 4.60E+07 2.10E+07 279 0.56
ArrayBench-6561 16.71 0.35 1.04E+09 7.30E+07 1.59E+07 246 0.68
ArrayBench-19683 17.15 0.35 1.03E+09 6.79E+07 1.19E+07 373 0.537
ArrayBench-59049 13.75 0.277 7.40E+08 5.08E+07 9.70E+06 533 0.44
SynchBench 32.75 0.867 2.01E+09 1.30E+07 3.30E+07 262 1.02
TaskBench 25.42 0.69 2.14E+09 9.60E+06 3.50E+07 247 0.846
CoMD 285.99 7.845 5.41E+10 6.4E+07 9.8E+07 1.39E+07 8.23

tions. The number of parallel regions, the user-specified regions, and the number of performance measurements
undergone for OpenMP applications are listed in Table 5.1. The six performance measurements comprise of
four hardware performance events (mentioned in the following section), the execution time in seconds, and the
energy consumption of the code regions of applications in Joules.

5.2. Performance and Energy Consumption Values. In order to study the efficiency of SCALE-
EA, at first, applications were experimented without SCALE-EA and the performance / energy consumption
values of user-regions were recorded using EnergyAnalyzer tool. Table 5.2 shows the values obtained using
the EnergyAnalyzer tool when the applications were experimented using eight threads for all parallel regions
of OpenMP applications. The EnergyAnalyzer tool measured energy consumption values in Joules and four
hardware performance events, such as, total number of instructions (TOT INS), data cache misses in level 1
(L1 DCM), unconditional branches (BR UCN), and total cache misses in level 3 (L3 TCM).

From Table 5.2, it could be observed that CoMD application had the highest energy consumption value
when experimented with 8 threads (285.99 Joules). In this application, the total cache misses were in the order
of 107. The other applications had energy consumption values in the range of 11 to 32 Joules.

5.3. Impact of FA Parameters. In previous experiments, OpenMP applications were executed without
FA or MAFA. In this subsection, experiments were conducted using the FA algorithm of SCALE-EA for studying
the impacts of the variants of FA parameters.

In general, FA consists of seven parameters which control the performance of FA in terms of the convergence
speed of the algorithm. These seven parameters are named as number of generations, population size of
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Table 5.3

FA Parameters and their Variants

FA-Variant No.of Population Initial Epsilon Alpha Beta Gamma
Generations Size Randomness

FA-Variant-1 10 10 0.1 0.009 0.5 0.5 0.0001
FA-Variant-2 10 10 0.0001 0.009 1 1 0.0001
FA-Variant-3 10 10 0.0001 0.009 0.5 0.5 0.0001
FA-Variant-4 10 10 0.001 0.09 1 1 0.009
FA-Variant-5 10 10 0.5 0.009 0.5 0.5 0.005
FA-Variant-6 50 10 0.5 0.009 0.5 0.5 0.005

Fig. 5.1. FA Parameter variants and their Impacts on Energy / Search Time Efficiency on the Haswell Machine.

sequences, initial randomness, epsilon value, alpha value, beta value, and gamma value. The equations involved
to describe two fireflies (sequences) mate each other are discussed in the algorithmic section of this paper
(see 4.1).

It is crucial to understand the impact of these FA parameters during the process of identifying the efficient
number of threads for parallel regions of OpenMP applications. Thus, experiments were conducted using
Arraybench 19683 benchmark with seven varying combinations of FA parameters as shown in Table 5.3 on two
machines in order to observe the impact of these parameters on the quality of observations.

It could be observed from Figure 5.1 that FA-Variant-4 achieved better energy consumption values at the
reasonable amount of search time (3.841 Joules and 467.03 sec.) when compared to the others in the Haswell
machine. FA-Variant-6, which was experimented with 50 number of generations, recorded the highest search
time. Similar was the case when execution time efficiency was considered for the 48-core machine (see Figure 5.2).
FA-Variant-4 achieved only 2275.8 seconds of search time (represented as line in Figure 5.2) when compared
to FA-Variant-5 and FA-Variant-6 (2490.5 and 11969.5 seconds). The efficient number of threads identified by
SCALE-EA when FA-Variant-4 was utilized in SCALE-EA was listed as 7, 10, 12, and 11 for the parallel regions
of Arraybench-19683 benchmark. It should be noticed that the energy measurements could not be performed
for the 48-core machine owing to the lack of RAPL counters in it.

In subsections 5.4 and 5.5, FA and MAFA based SCALE-EA were, therefore, experimented based on the
FA-Variant-4 based parameter setting.

5.4. Energy Efficiency of OpenMP Applications – FA and MAFA. Fixing FA-Variant-4, SCALE-
EA was executed for OpenMP applications using FA on the Haswell machine. SCALE-EA identified the
efficient number of threads for parallel regions of applications as shown in Table 5.4. In addition, the energy
consumption values for the user-specified regions of OpenMP applications as identified by FA and MAFA are
given in Figure 5.3. As seen in Figure 5.3, all the applications showed better energy improvements when FA



SCALE-EA: A Scalability Aware Performance Tuning Framework for OpenMP Applications 25

Fig. 5.2. FA Parameter variants and their Impacts on Exec.Time / Search Time Efficiency on 48core Machine.

Table 5.4

Optimal Number of Thread Sequence Identified using FA of SCALE-EA

Application Optimal Thread Sequence
ArrayBench-3 2 3 2 3
ArrayBench-9 4 4 2 3
ArrayBench-27 4 2 3 5
ArrayBench-81 4 2 2 6
ArrayBench-243 2 1 4 5
ArrayBench-729 3 2 2 3
ArrayBench-2187 5 2 2 5
ArrayBench-6561 3 2 2 3
ArrayBench-19683 3 2 2 3
ArrayBench-59049 3 4 2 1
SynchBench 6 3 4 2 4 5 2 5 5 2
TaskBench 7 5 2 4 6 2 5 3 4 4
CoMD 1 3 1 7 2 4 1 5 2 3 2

and MAFA were applied. For instance, CoMD observed better energy consumption value when the eleven
OpenMP parallel regions of three files were automatically executed with 1 3 1 7 2 4 1 5 2 3 2 thread numbers –
i.e., the parallel regions of eam.c were executed with 1, 3, 1, and 7 threads; the parallel regions of initAtoms.c
were executed with 2, 4, 1, 5, and 2 threads; and, the parallel regions of ljForce.c were executed with 3 and 2
threads. Similarly, the other applications, such as, Arraybench-2187 and Syncbench showed improved energy
consumption values when experimented with SCALE-EA.

Figure 5.4 reveals the energy efficiencies of applications due to FA, MAFA-LRM and MAFA-RFM. The en-
ergy efficiencies of applications due to FA and MAFA were compared with the normal executions of applications
constituting eight threads throughout the OpenMP parallel regions of applications. For instance, the energy ef-
ficiencies of ArrayBench-3 while experimenting with FA, MAFA-LRM and MAFA-RFM were identified as 69.01,
77.30, and 74.05 – i.e., Energy=16.04J for normal execution (all parallel regions with 8 threads), Energy=4.97J
for FA, Energy=3.64J for MAFA-LRM, and Energy=4.161J for MAFA-RFM. Similarly, the experiments were
carried out for all test applications (see Figure 5.4).

As seen in Figure 5.4, the following points could be inferred:

1. FA and MAFA, in general, performed well while identifying the efficient number of threads for OpenMP
applications. In all experiments, the energy efficiencies achieved for the applications were from 31.21
percentage (MAFA-LRM for CoMD application) to 78.51 percentage (MAFA-LRM for Arraybench-
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Fig. 5.3. Comparison of Energy Consumption Values – FA, MAFA-LRM, and MAFA-RFM

Fig. 5.4. Energy Efficiency of MAFA-LRM and MAFA-RFM based on FA

6561).
2. MAFA-LRM could achieve better energy efficiency in applications, such as, Arraybench-3,27,243, and

Arraybench-6561. In some cases, FA produced better energy efficiency than the other two MAFA
based algorithms – see the results of Arraybench-9,81,729, 2187,59049, and Taskbench application in
Figure 5.4.

5.5. Search Time Efficiency of MAFA. Although FA achieved better energy efficiencies in six OpenMP
applications (see the previous subsection), it resulted from challenging the search time of the tuning process.
Figure 5.5 shows the search time efficiency of MAFA algorithms (MAFA-RFM and MAFA-LRM) with respect
to FA. The points represented in the graph clearly manifests the inability of FA when compared to MAFA based
algorithms – i.e., MAFA-RFM and MAFA-LRM outperformed traditional FA in terms of search time efficiency:
MAFA-RFM reached up to 32.56 percentage of search time improvement for Arraybench-2187 when compared
to FA. It is also important to notice the improved energy consumption values achieved for Arraybench-2187
application based on these algorithms (without-FA–16.71 (J); FA–4.72 (J); MAFA-LRM–3.59 (J); and MAFA-
RFM–6.192 (J)). Vividly, MAFA based algorithms outperformed FA and without-FA in terms of energy efficiency
and search time efficiency when compared to the other approaches.

In addition, the efficiency chart of MAFA-RFM and MAFA-LRM with respect to FA is represented as a
100 percentage stacked column chart (see Figure 5.5). As seen, the search time efficiency values of MAFA-RFM
and MAFA-LRM for ArrayBench 3 had higher variations, while the values for CoMD had lower variations.
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Fig. 5.5. Search Time Efficiency of MAFA-LRM and MAFA-RFM based on FA

6. Conclusion and Outlooks. Scalability and energy consumption issues must be considered for future
HPC applications. These issues are dependent on the underlying HPC machines and the software frameworks.
Autotuning is one of the solution that supports application developers in these contexts. However, autotuning
solutions suffer from hefty search time for obtaining better solutions. This paper proposed a scalability-aware
performance tuning framework (SCALE-EA) using the Firefly Algorithm and using Modeling Assisted Firefly
Algorithm (MAFA) for OpenMP applications. SCALE-EA identified an efficient number of threads for each
OpenMP parallel regions of applications at reduced search time. The results when experimented on the machines
manifested that SCALE-EA achieved energy efficiencies of of 31.21 to 77.3 percentage and search time efficiencies
of 5.53 to 32.56 percentage for candidate applications, such as, Arraybench, Syncbench, Taskbench, and CoMD
applications.
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