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DEADLOCK FREE RESOURCE MANAGEMENT TECHNIQUE FOR IOT-BASED POST
DISASTER RECOVERY SYSTEMS

MADHAVI DEVI B∗, SMRITI AGRAWAL†, AND R. RAJESHWARA RAO‡

Abstract. Disasters are inevitable, but their impact can be mitigated with careful planning. An IoT-based network with
limited resources can be used in the post-disaster recovery. However, the resource of common interest creates contention among
its contenders. This contention leads to tussle which in turn may lead to a deadlock. Some of the existing techniques prevent or
avoid deadlock by performing stringent testing with significant testing overhead. While others propose recovery action after the
deadlock is detected with significant overhead. A deadlock leads to a breakdown of the post-disaster recovery system while testing
overhead implies delayed response either case can lead to catastrophic losses. This paper presents a new class of techniques that
do not perform stringent testing before allocating the resources but still ensure that the system is deadlock-free and the overhead
is also minimal. The proposed technique suggests reserving a portion of the resources to ensure no deadlock would occur. The
correctness of the technique is proved in the form of theorems. The average turnaround time is approximately 18 % lower for the
proposed technique over Banker’s algorithm and also an optimal overhead of O (m).
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1. Introduction. The UN Office for Disaster Reduction (UNISDR) [1] survey reveals that natural disas-
ters such as floods, storms, heat-waves, etc., have claimed thousands of human lives, brought misery to millions
of people and profoundly affected the economy. The recent pandemic of the corona virus outbreak is no ex-
ception. Other than natural disasters caused due to accidents in factories, homes, trains, roads, etc. also have
catastrophic effects. In these circumstances, response to the disaster by effective utilization of the available
resources is critical for the mitigation of their effects. The management of the limited available resources is
essential for various post-disaster activities, such as evacuating or quarantining the people to safe places, provid-
ing medical help, etc. A network can connect these resources to find their whereabouts, availability, etc. This
network can be established using the Internet of Things (IoT) [2, 3, 4, 5, 6, 7, 8, 9]. The IoT utilizes the internet
and can be used in post-disaster recovery [10, 11, 12, 13, 14, 15, 16, 17, 18]. Authors [10, 11, 12, 13, 14, 15],
represented the IoT for post-disaster system as an operating system with the set of activities as processes. This
paper also considers the same.

Multiple post-disaster recovery activities (processes) of all types and sizes need to share resources for
their effective utilization [11].Contention for a resource occurs when two or more processes request for it.
This contention increases as the number of processes contending and the set of resources of interest increases.
Eventually, some processes hold some resources and wait for others, which are held by another set of processes
waiting for some other resources, forming a cycle of wait for. Hence, everybody is waiting for somebody to
complete and no one has sufficient resources to complete, hence no process completes. The system utilization
tends to become zero as none of the processes has the resources it needs to continue its execution. This situation
is referred to as Deadlock [19, 20, 21, 22, 23].

Resource sharing systems such as single processor, multiprocessor systems, IoT based systems, parallel
computing,cloud computing and distributed systems [15, 16, 17] with applications such as post-disaster man-
agement, distributed systems,automated manufacturing systems, etc. can be designed without keeping deadlock
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in account. The deadlock brings the system into a standby state which may have catastrophic effects. Further,
it cannot be resolved on its own and requires external intervention. This is because no process will release
the resources it has acquired without completing itself. Thus, efficient resource management[24, 25, 26, 27] is
needed to manage the resources for avoiding the deadlock as well as improve the system performance by effective
resource utilization and reduce the average turnaround time and increase the throughput of the system.

Coffman [22] suggested that a deadlock can occur only if, necessary conditions namely; Mutual exclusion,
Hold and wait, No preemption and Circular wait.Thus, the solution for a deadlock problem lies around these
conditions. The first set of the solutions suggests ensuring that one of the necessary conditions does not hold
such techniques are referred to as Deadlock Prevention (DP). The second set of techniques is called Deadlock
Avoidance (DA), it is a look forward technique to avoid deadlock in future. The next set of solutions advocates
reactive approach called Deadlock Detection and Recovery (DDR), where the system is recovered after the
deadlock is detected. Most recently, authors [24, 25, 26, 27],suggested a new class of techniques called Resource
Reservation Techniques (RR) for deadlock handling.

The Resource Reservation (RR) techniques handle deadlock with lower overhead. They supported re-
serving a set of resources, in a reserve pool such that these resources can be used for avoiding deadlock. The
remaining unreserved resources were allocated injudiciously to any process requesting it. All these resource
reservation techniques[24, 25, 26, 27], reduce the cost for testing the avoidance condition in the deadlock avoid-
ance techniques. They reserve the resources and hence are not completely blind as the reactive technique of
deadlock detection and recovery while allocating the resources. Thus, these techniques reduce the overhead of
the avoidance techniques and deadlock frequency as compared to deadlock detection and recovery techniques.

In post-disaster recovery systems, deadlock may imply that the recovery activities are held up which may
have catastrophic effects. At the same time,a delayed response in resource allocation can also lead to the
unavailability of the critical resources when they are most needed. The existing resource reservation techniques
present a promising reduction in the computing overhead for resource management. However, none of them is
100 % deadlock-free.Thus, this paper aims to propose a resource handling policy to ensure that the deadlock
never occurs while maintaining a low response time. This work aims to re investigate the resource reservation
policies to answer the question of;how many resources must be reserved and how they must be allocated to avoid
deadlock completely? The correctness of the proposed technique is proved in the form of theorems.

The rest of the paper is organized as follows. Section 2 provides a further look at the existing literature.
While Section 3 describes the system model, motivational examples are given in Section 4 to illustrate the
various existing techniques for deadlock management. Section 5 presents the proposed Deadlock Free Resource
Reservation (DFRR) technique, followed by results and analysis in Section 6. Finally, the paper concludes with
Section 7.

2. Related Work. The post-disaster response needs dynamic and instantaneous updates for which IoT
is one of the best solutions [10, 11, 12, 13]. Zhang et. al. [10] proposed an agent based resource allocation
in emergency management systems considering the severity of the disasters at various levels. Authors [11, 12]
studied an IoT- based post-disaster response system and estimated the response time of the resources as they
wait to be scheduled using Banker’s Algorithm. In [33] uses priority basis stable matching algorithm for
effective allocation of resources during disasters using IoT. In a post-disaster response system, the response
time is critical and can impact lives and property. In such a system there are limited resources and deadlock of
these resources can have catastrophic effects. This paper aims to develop a deadlock-free system with a reduced
response time of the resource management system and also estimate the resources needed for establishing an
optimal emergency response center.

Deadlock is a well-known problem in computing as well as in all those fields where resources are shared.
It attributes to major overhead in the system in both cases: disregarded or managed. In case the deadlock is
completely disregarded, it may seize the system. However, the deadlock management has the corresponding
overhead, it has been studied over the years. One of the earliest studies used a graph based model proposed by
Coffman et. al. [22] for inferring the conditions that must simultaneously hold for the deadlock to occur. There
are four strategies to handle deadlocks; DDR (deadlock detection and recovery), DA (deadlock avoidance), DP
(deadlock prevention) and RR (Resource Reservation).

DDR is the simplest technique suggesting to ‘do nothing’, that is till the time the deadlock actually occur
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do nothing. The DDR technique advocates detecting the deadlock and suggests recovering from it. Holt [21]
suggested one of the oldest technique for deadlock detection. This technique represented the resource hold
and request as a graph and reduced it for detecting a deadlock.Cheng Xin et.al [30], used threads for deadlock
detection in distributed systems. Xiao and Lee [39], suggested a parallel algorithm for deadlock detection
on Multi-Processor System-on-a-Chip (MPSoC). Shiu et. al. [40], presented a low cost hardware solution
for deadlock detection.DDR techniques though simple yet have the overhead of deadlock detection algorithm
running periodically, and may need to restart one or more process for recovering from the deadlock which may
not be possible in all the systems. The DP techniques target to prevent one of the necessary conditions from
occurring so that the deadlock will not occur.

Deadlock avoidance (DA) methods perform forward calculation based on the knowledge of the resources
required by the processes in future to avoid deadlock. Havender [25], suggested to allocate all the resources a
process demands in the beginning to avoid deadlock. This method was though effective had serious limitation,
because the resources remained underutilized. Other methods suggested by Havender [25] include i) ordering
the resources and ii) preempting and re-requesting. The ordering technique ordered the resources in such a
fashion that the deadlock would not occur. The resources were preempted and re-requested if sufficient resources
were not available when an incremental request was made. Another one of the most renowned DA algorithm is
Banker’s Algorithm, derived by Dijkstra [19] for a single resource type. Habermann [20] extended this algorithm
to multiple resource types. Banker’s Algorithm tests all possible allocations and ensures that the request for
resources is granted only when no deadlock is foreseen. Lang [28] extended the Banker’s algorithm using a
control flow graph to determine the resources are released before the control are transferred to the processes in
the next region.

Yin et.al. [37] studied the deadlock problem in multithreaded program in a multicore architecture. The
authors converted the program source code into a formal model which was used by the discrete control theory
to automate the lock acquisition on the resources. They suggested to postpone the resource lock acquisition
to avoid deadlock. Wang et. al. [38] used Banker’s Algorithm for broadcasting in wireless network, where
carrier frequency are one of the resources. Lee and Mooney [31] implemented the DA as a hardware, for a
Multi-Processor System-on-a-Chip (MPSoC). Pyla and Varadarajan [42] reiterated the fact that deadlock can
be avoided completely only when some prior knowledge of the resource requirement of the processes in the
system is available and it is likely to occur if the resources are allocated arbitrarily. They suggested ‘Sammati’a
tool for threaded applications using POSIX for automatic deadlock detection and recovery. Youming Li et. al.
[43] proposed a modification of Banker’s algorithm (BA). Permutation matrices were used for each resources
and the process was selected greedily. However, their space requirement was more than the original Banker’s
Algorithm.

Kawadkar et. al. [44] extended the Banker’s algorithm by examining the processes in the waiting queue.
A process entered the waiting queue when its requested resources are either unavailable or could not be
granted.They suggested to pick a process from the waiting queue based on the resources it is holding and
needing. However, authors do not mention how selected process from the waiting queue should be allocated
the resources such that the deadlock is avoided. Dixit and Khuteta [45] suggested to change the resource
requirement at the run-time to prevent a possible deadlock.

All the deadlock avoidance techniques have high computation time as they must perform some test before
each allocation to avoid deadlock. The Resource Reservation (RR) techniques eliminated this test for deadlock
avoidance and thus, reduce the turnaround time of the processes. The RR techniques suggest to reserve some
resources that can be used to avoid the deadlock. Botlagunta et. al. [25] first introduced this idea and suggested
to reserve resources based on a threshold. Agrawal et. al. [24] suggested to estimate the resources to be reserved
based on the sum of the resources needed further.

Authors [26] suggested another way based on the shortest execution time process. The process with
minimum worst case execution time reserved the resources as suggested in [26]. Shubham et.al [36] extended
the technique suggested in [26] to reserve the resources based on the remaining resource need. Botlagunta et.
al. [27] extended the RR techniques to dynamically allocate a budget of resources to each incoming process and
perform resource reservation as per the technique suggested in [25]. These techniques are discussed in detail in
the subsequent section.
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Table 2.1

Deadlock Handling Methods

Deadlock detection and re-
covery (DDR)

Deadlock Prevention (DP) Deadlock Avoidance (DA) Resource Reservation(RR)

Reactive to deadlock, does
nothing to handle it in ad-
vance

Prevent one of the four nec-
essary conditions from occur-
ring

Look forward to avoid any
deadlock in future. Perform
Safety Sequence Test

Reserve some resources for
avoiding the deadlock

Both DA and RR techniques presume that the system resource requirement is known in advance. The DA
techniques perform some kind of test for ensuring that the deadlock will not occur in the future. However, the
RR techniques do not perform any test rather use the knowledge of the resource requirement for estimating the
portion of resources that must be reserved to avoid deadlock. The resource reserved by different RR Techniques
existing so far is not sufficient for completely avoiding the deadlock. The present work extends the idea of the
RR techniques to use the knowledge of the resource requirement by the processes for estimating the reserve
pool strength. The proposed technique ensures that all the processes have the opportunity to complete with
the reserved resources.

3. System Model. The post-disaster management system resource pool is assumed as a finite set of
mresource types represented as R1, R2, R3 . . . Rm, with instances as α1, α2, α3 . . . αm of each. Further, the
post-disaster recovery activities are called processes P1, P2, P3 . . . Pn with attributes arrival and worst-case
execution time represented as (ai, ei). The state of the system resources is represented in the data structures
from Table 3.1.

4. Motivational Example. Motivational examples are presented in this section to analyze the existing
techniques.

Table 3.1

Notations used in System

Notations Meaning
P i ith process
R j jth resource
alphaj number of instances of resource type R j

m Number of resource types
n Number of processes.
Request[i][j]) A process maximum resource requirement is indicated by Max[i][j]. However, a process does

not need all the resources at once but incrementally. The resources requested by the processes
at any time instance is represented as a two-dimensional array of size n by m. Thus, Request[i]
[j]= k, where k= 0, 1,. . . Max[i][j].

Allocation[i][j] It is a two dimensional n by m array containing the resources assigned to each process.
Need[i][j] It is a n×m array, containing the estimated resources further required by processes. Math-

ematically, Need [i] [j] = Max [i] [j] –Allocation [i] [j]
Available[j] A subset of the resource pool consisting of resources that can be allocated to the requesting

process. It is represented by an array of m elements. It is initializes as Available [j] =
αj −Reserve [j] , ∀Rjj = 1, 2, 3 . . .m

Reserve[j] A subset of the resource pool is marked as reserved. It contains the quantity of each resource
type reserved. It is represented as an array with melements. Thus, Reserve[j] equals k where
k indicate that k instance of the resource of type Rj are reserved.

Max[i][j] Maximum resource requirement
Throughput the number of processes completed per unit of time.
Turnaround time(TT) the difference between submission of a process and its completion.
Average turnaround
time(ATT)

The total turnaround time divided by the number of processes.

Safety Sequence (SS) [19] A safety sequence was suggested by Banker’s algorithm is an order in which the processes
can be completed without deadlock.

Safe State and UnSafe
State[19]

A system for which a safety sequence exists ensures that the deadlock will not occur is said
to be in a Safe State otherwise in Unsafe state
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Table 4.1

System initial state at start time t0

Allocation Maximum Request
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 0 0 0 0 1 2 0 0 0 0
P2 0 0 0 0 2 7 5 0 0 2 1 0
P3 0 0 0 0 6 6 5 6 4 3 1 2
P4 0 0 0 0 4 3 5 6 1 0 2 4
P5 0 0 0 0 0 6 5 2 0 2 2 0

Available
R1 R2 R3 R4

8 13 11 10

Table 4.2

System state at time t1 after allocation of resources requested at time t0

Allocation Need Request
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 0 0 0 0 1 2 0 0 0 0
P2 0 2 1 0 2 5 4 0 0 2 1 0
P3 4 3 1 2 2 3 4 4 0 0 0 0
P4 1 0 2 4 3 3 3 2 1 0 0 0
P5 0 2 2 0 0 4 3 2 0 0 0 0

Available
R1 R2 R3 R4

3 6 5 4

Example 1 [9]: Consider a system consisting of resources as {R1, R2, R3, R4} = {8, 13, 11, 10} is to
implement processes P1, P2, P3, P4, P5 with resource requests as illustrated in Table 4.1 for time t0. Table 4.2
indicates the system state as the resources are allocated. Table 4.3 enlists a hypothetical sequence of resource
requests made by the processes subsequently. The existing techniques discretion on these requests is as follows:

1. Deadlock Avoidance Banker’s Algorithm(BA) [19]:
The requests made as per (refer Table 4.3) are considered by BA by estimating the safety sequence.
Thus, request of P2, P4and P3 are granted but the last request ofP2 is not granted.

2. Deadlock Detection and Recovery (DDR) [23]:
This is a reactive technique where no pretesting is done to ensure that a deadlock will not occur. It will
simply grants every possible request if sufficient resources are available as and when they are made. In
the present example,all requests as listed in Table 4.3 are granted. The resulting state of the system
is shown in Table 4.4. The system does not enter into deadlock immediately as the need of process P1

can be satisfied. Once the process P1 completes the state of the system is as shown in Table 4.5. This
state is referred to as Unsafe state (defined in Sect.3), as it leads to a deadlock. Substantial overhead
is incurred in detecting and recovering from it.

3. Worst-Case Execution Time Based Resource Reservation (ETRR) Technique [26]:
This technique is motivated by shortest job first scheduling assigning highest priority to a process with
smallest the worst case execution time. In this example priorities are assigned as 〈P1, P5, P2, P4, P3〉,
indicating that the computation time of process P1 is least. Hence, resources (0, 0, 1, 2) are placed in
the reserve pool. All the requests as an when they arrive (refer Table 4.3) are granted by this technique
also. Finally, at time t4 when process P1 completes, the system state can be seen in Table 4.5. Thus,
this technique also fails to avoid the deadlock subsequently.

4. Threshold based Resource Allocation (TRA) Technique [25]:
The resources are reserved by this technique based on a threshold estimated as Threshold [j] =
⌈⌊Need [i] [j] ∀i = 1, 2 . . . n⌋, 0⌉ . Accordingly, for this example, it reserves (2, 3, 1, 2) resources at
the onset. At time t1, when P2 and P4 request for additional resources, both the requests are granted.
Thereafter, the resources in the reserve pool are (2, 3, 1, 2) while that in the available pool are (0, 1,
3, 2). However, at time t2 when process P3 requests for (2, 0, 0, 2) resources, sufficient resources are



396 Madhavi Devi B, Smriti Agrawal, Rajeshwara Rao

Table 4.3

Sequence of requests

Time at which
request is made

Process requesting
for the resources

Request
(R1, R2, R3, R4)

t1 P2 (0,2, 1, 0)
t1 P4 (1,0, 0, 0)
t2 P3 (2,0, 0, 2)
t3 P2 (0,2, 1, 0)

Table 4.4

Snapshot after allocation to P2, resources (0, 2, 1, 0) at time t3

Allocation Maximum Need
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 0 0 0 0 0 0 1 2 0 0 1 2
P2 0 6 3 0 2 7 5 0 2 1 2 0
P3 6 3 1 4 6 6 5 6 0 3 4 2
P4 2 0 2 4 4 3 5 6 2 3 3 2
P5 0 2 2 0 0 6 5 2 0 4 3 2

Available
R1 R2 R3 R4

0 2 3 2

Table 4.5

Snapshot at time t4 after completion of process P1

Allocation Maximum Need
R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

P1 Execution Complete
P2 0 6 3 0 2 7 5 0 2 1 2 0
P3 6 3 1 4 6 6 5 6 0 3 4 2
P4 2 0 2 4 4 3 5 6 2 3 3 2
P5 0 2 2 0 0 6 5 2 0 4 3 2

Available Reserve
R1 R2 R3 R4 R1 R2 R3 R4

0 2 3 2 0 0 0 0

Table 4.6

System initial state at time t0 for Example 2

ei Allocation Maximum Request Available
R1 R2 R1 R2 R1 R2 R1 R2

P1 10 0 0 2 4 1 2 4 4
P2 2 0 0 4 2 2 1

Table 4.7

System state after request granted to process P2

Allocation Maximum Need Available
R1 R2 R1 R2 R1 R2 R1 R2

P1 1 2 2 4 1 2 1 1
P2 2 1 4 2 2 1

Table 4.8

System state after request granted to P1

Allocation Maximum Need Available Reserve
R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

P1 2 4 2 4 0 0 0 0 2 0
P2 0 0 4 2 4 2
Request of process P1 is granted and P2 is denied.

safety sequence is 〈 P1, P2 〉
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Table 4.9

System state with reserve pool after request granted to process P2

Allocation Maximum Need Available Reserve
R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

P1 0 0 2 4 0 0 0 2 2 1
P2 2 1 4 2 2 1
Request of process P1 is denied and P2 is granted.

Safety sequence is 〈 P2, P1 〉

Table 4.10

a) Process P1 requests (1, 2) resources
Rj Request Need Available Threshold X Y Can grant
R1 1 2 4 2 1 1 1
R2 2 4 4 2 0 1 1

granted
b) Process P2 requests (2, 1) resources
Rj Request Need Available Threshold X Y Can grant
R1 2 4 3 1 0 1 1
R2 1 2 2 2 1 0 1

granted

not available in the pool. Hence, the reserve pool resources are used and (2, 3, 4, 4) are granted. No
deadlock occurs for this example.

5. Total Need Based Resource Reservation (TNRR) Technique:[24]
The total number of resources neededby requesting processes is considered for reserving resources by this

technique. Mathematically, Reserve [j] = ⌈
(Total Need−αj)

n
⌉ where Total Need [j] =

∑n

i=1 Max [i] [j],
αj and Reserve [j] are defined in Sect. 3.

In the motivational example 1, Total Need [j] is estimated as 12, 22, 21, 16 for the resources R1, R2, R3

and R4 respectively. Thus, (2, 3, 2, 2) resources are reserved at the on set. At time t1, when P2 and P4 request
for additional resources, both the requests are granted without using any of the reserved resources. However,
at time t2 when process P3 requests for (2, 0, 0, 2) resources, only (0, 1, 2, 2) resources are in the available
pool which are not sufficient. The resources from the reserve pool are used to satisfy need of the process. No
deadlock occurs for this example.

This example illustrated scenario where the existing priority based techniques failed to reserve sufficient
resources to avoid deadlock. The following example demonstrates the limitation of the other techniques that
survived in this example.

Example 2: Suppose in system processes P1, P2 are have an upper bound of 4 instances of each resources
R1 and R2 illustrated in the Table4.6 request for (1, 2) and (2, 1) resources are made by these processes
respectively. The assessment on these requests of the existing techniques is as follows:

1. Deadlock Avoidance Banker’s Algorithm (BA) [19]:
The Banker’s Algorithm calculates the safety sequence for each request. It then grants P1’s request
but denies P2 ’s request, refer to Table 4.7, to avoid deadlock in future.

2. Deadlock Detection and Recovery (DDR) [23]:
DDR grants every request indiscreetly and does the same in this case too. The resulting state is as in
the Table 4.7, which leads to a Deadlock eventually occurs.

3. Worst-Case Execution Time Based Resource Reservation (ETRR) Technique[26]
The ETRR technique reserves the resources for process P2 , because it is the shortest job(cf.Table 4.6).
The reserve and available pools thus, contain (4, 2) and (0, 2) resources respectively. When the process
P1 requests for the resources (1, 2), it is denied by the system. However, the request by process P2 is
granted, refer Table 4.9. The system is in Safe state.
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Table 4.11

Analysis of the example 1 and 2

Technique Occurrence of dead-
lock in Example

Occurrence of dead-
lock in Example 2

BA Deadlock does not
occur

Deadlock does not
occur

DDR Deadlock occurs Deadlock occurs
ETRR Deadlock occurs Deadlock does not

occur
TRA Deadlock does not

occur
Deadlock occurs

TNRR Deadlock does not
occur

Deadlock occurs

DFRR(proposed
method)

Deadlock does not
occur

Deadlock does not
occurs

4. Threshold based Resource Allocation (TRA) Technique [25]:
At the inception the threshold is (2, 2) based on which the request of process P1 is granted shown
in4.10 a). It is then updated as (1, 2) (refer to table 10 b)) and the request of P2 is also granted. The
system reaches the state in the 4.7 which indicate that the Deadlock will occur .

5. Total Need Based Resource Reservation (TNRR) Technique[24]: The resources to be reserved

are estimated as Reserve [j] = ⌈
(Total Need−αj)

n
⌉ as Reserve [1] = ⌈ (6−4)

2 ⌉ and Reserve [2] = ⌈ (6−4)
2 ⌉ ,

i.e., (1, 1). The available pool will contain the remaining (3, 3) resources, sufficient for the process P1

and P2 request ((1, 2) and (2, 1) respectively). Thus, the requests are granted leading the system into
the unsafe state as shown in 4.7.

Table 4.11 summarizes the effectiveness of the existing techniques in maintaining a deadlock free system for the
motivational examples.The DDR technique performs no testing before granting any resource to a requesting
process and hence, ends up into a deadlock most often. The overhead saved by eliminating the test before
granting of resources to a requesting process is consumed by the periodic testing required for deadlock and
recovery whenever it occurs. On the other hand, the BA algorithm which ensures that deadlock will never
occur is too costly. The sub optimal techniques ( ETRR, TRA and TNRR) are able to prevent the deadlock
in some case (table 4.11) but are not full proof. This paper proposes a resources reservation technique which
is deadlock free (proved in the form of a theorem). It also lowers the overhead incurred by the BA.

The following section presents the proposed technique for a deadlock free system using resource reservation
strategy.

5. Proposed Deadlock Free Resource Reservation Techniques (DFRR). The above section an-
alyzed the performance of the prevailing techniques and summarizes them in the table 4.11. The table 4.11
reveals that the Banker’s algorithm calculates the safety sequence before allocating the resources on every re-
quest. The cost of such an estimation is O

(

mn2
)

where m is the different type of resources and n is the number
of processes in the system. This overhead is considerable for even a small system. On the other hand, newer RR
techniques such as ETRR, TRA and TNRR are cost effective but not 100% deadlock free. A closer look at the
motivational example 1, illustrates that ETRR is process oriented, i.e., reserve resources for a process P1 and
guarantee that it will complete successfully and it does. However, process P1reserves only (0,0, 1, 2) resources,
i.e., it reserves only one and two instances of resource type R3 and R4 respectively. While all the instances of
resources R1 and R2are unreserved. The remaining resources are claimed by the rest of the processes leading
the system into an Unsafe state. The resources released by the process P1on its completion are not sufficient
for any other process and the deadlock will eventually occur. In other words, ETRR although reserve resources
for one of the process but they do not restrict the remaining processes from entering into Unsafe state.

The TRA and TNRR techniques are resource oriented, where reservation of resources is done such that
there is at least one process requiring that resource. However, a process may require other resources as well
that may not be available in sufficient quantity for its successful completion. The example 2, Sect.4, illustrates
that sufficient instances of R1 are available for processes P1, while for process P2 ample instances of resource
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Fig. 5.1. Proposed System Model.

R2 are available. However, enter into a circular wait as they wait for the other to release the resources they are
holding.

This paper proposes a deadlock free resource reservation (DFRR) technique which ensures that deadlock
will never occur. The system model for this DFRR can be seen in the Fig.5.1. It suggests to reserve some
resources in the reservation pool as per the theorem 5.2. The remaining resources are made available in the
available pool. Whenever a process requests for a set of resources, available pool resources are granted (as per
theorem 5.2). In case the request cannot be granted only from the available pool then the reservation pool
are also used such that the maximum resources this process can ever want are granted to give this process the
chance to complete.

The theorem 5.1,claims that if a process is allocated all the resources it will ever need then the system will
be deadlock free again if it was deadlock free before this allocation. Theorem 5.2, proves the deadlock free of
the proposed technique.

Theorem 5.1 is stated as follows.

Theorem 5.1. A system consisting of set of resource types as R1, R2, R3 . . . Rm with α1, α2, α3 . . . αm

instances of each type, when scheduling a set of independent processes P1, P2, P3 . . . Pn , if is in a safe state
will remain in safe state even after allocating all the resources ever needed by a requesting process Preq from
the set.

Proof. Suppose at any time t the system is in safe state, then the safety sequence can be estimated as

〈Pb, Preq, Pa〉(5.1)

where Pb = Pb1, Pb2 . . . Pbx and Pa = Pa1, Pa2 . . . Pay are the set of processes in the safety sequence before and
after the requesting process Preq .

Let, the resources available at this time t be

ω (t) = Available [j] +Reserve [j] ∀j = 1 . . .m(5.2)

Processes are in the safety sequence, this implies:

Need [b1] [j] ≤ ω (t) ; ∀j = 1 . . .m(5.3)
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It will complete and release all it’s resources. Similarly, the remaining processes will complete. Reconsider if
at this time t a process Preq needs

Need [req] [j] = Max [req] [j]−Allocation [req] [j](5.4)

resources to complete.
In worst case, initially, no resources are allocated to this requesting process Preq, i.e.,

Allocation [req] [j] = 0 ∀j = 1 . . .m(5.5)

Therefore, substituting (Eq.5.5) in (Eq.5.4)
Need [req] [j] = Max [req] [j] ∀j = 1 . . .m

Need [req] [j] ≤ ω (t) ∀j = 1 . . .m(5.6)

If Eq.5.6 holds, then all the needed resources can be granted to this requesting Preq process. In worst case
(Eq.5.6 will be)

Need [req] [j] = ω (t) ∀j = 1 . . .m(5.7)

indicates system has just sufficient resources needed by the process to complete. These resources are thus
allocated to the requesting process Preq; mathematically,

Allocation [req] [j] = Allocation [req] [j] +Need [req] [j]

Substituting (Eq.5.5) and (Eq.5.7)

⇒ Allocation [req] [j] = ω (t) ∀j = 1 . . .m(5.8)

implying that all needed resources are allocated, thus, the need can be updated as

Need [req] [j] = 0, ∀j = 1 . . .m.

The process Preq can thus, complete at time t1. It then releases

Allocation [req] [j] = ω (t) , ∀j = 1 . . .m

all the resources allocated to it as per equation (Eq.5.8).
Therefore, the resources in the system will again be restored to be ω (t) . These are sufficient for process

Pb1 (Eq.5.1) as suggested by equation (Eq.5.3).
The new safety sequence is 〈Preq, Pb, Pa〉.

Thus, system remains in the safe state. Hence proved.

The theorem 5.1, ensures that if a process Pi is granted all the resources it may further need to complete,
i.e. Need [i] [j] = Max [i] [j] –Allocation [i] [j] , then the system will remain/return to safe state after it’s com-
pletion. Now, the question is:does the system has the Need[i][j] number or resources? The theorem 5.2, ensures
that every process in the system can acquire the needed resources, and ensure the system is deadlock free. The
theorem 5.2 can be stated as follows.

Theorem 5.2. A set of independent processes P1, P2, P3 . . . Pn when scheduled on a system consisting
of set of resource types as R1, R2, R3 . . . Rm with α1, α2, α3 . . . αm instances of each type, with Max[i][j]
as the maximum number of resources of type Rj demanded by the ith process Pi during its execution time can
be done without deadlock if the following conditions hold:
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1. ∀Rj system reserves

Reserve[j] =











0 ηj ≤ 1
0

∑n

i=1 Max[i][j] ≤ αj
⌈

(
∑

n

i=1
Max[i][j])−αj

ηj−1

⌉

∑n

i=1 Max[i][j] ≥ αj

instance of its type forming a reserve pool, where ηj = count (Max [i] [j] 6= 0, ∀i = 1, 2 . . . n) is the
number of processes requesting for the resource Rj .Leaving the resources in the available pool as
Available [j] = αj −Reserve [j]

2. ∀Pi, Max [i] [j]−Reserve [j] ≥ 0
3. A process Pi can acquire either

(a) Max [i] [j]−Reserve [j] resources from the available pool,
(b) Max [i] [j] ∀Rj from available and reserve pool put together such that the available pool is consumed

first. That is a process must acquire all the resource it might need.
4. A process Pi on completion relinquishes all the resources, Max [i] [j] ∀Rj, that are returned to the

reserve and available pools as per condition 1.
Proof. A process Pi can acquire resources either partially as per condition 3.a. or completely as per condition

3.b. Thus, some processes may acquire partial resources (Allocation [i] [j] = Max [i] [j]−Reserve [j]) and some
complete set (Allocation [i] [j] =Max [i] [j]) .

Processes that acquire resources as per condition 3.b.

(Allocation [i] [j] = Max [i] [j] ; Need [i] [j] = Max [i] [j]−Allocation [i] [j] = 0)

have all the requisite resources and will complete and relinquish the resources as per condition 4. The system
remains in safe state as per theorem 5.1.

In worst case all the processes acquire resources partially as per the condition 3. a. and none of the process
can complete. Mathematically,

Allocation [i] [j] = Max [i] [j]−Reserve [j] ∀Pi(5.9)

Applying summation to equation (cf.Eq.5.9); the total number of instances of type Rj , allocated to any process
is thus,

∑n

i=1 Allocation [i] [j] =
∑n

i=1 (Max [i] [j]−Reserve [j]) where Max [i] [j]− Reserve [j] is the number
of resource type Rj allocated to process Pi .

Since, Reserve [j] is independent of the process, the total number of instance already allocated are

n
∑

i=1

Allocation [i] [j] =

(

n
∑

i=1

Max [i] [j]

)

− n ∗Reserve [j](5.10)

Consider Reserve [j] = ⌈
(
∑

n

i=1
Max[i][j])−αj

ηj−1 ⌉ as per condition 1., here, ηj = n in worst case, indicating a resource

is demanded by all the processes in the system, leading to higher conflicts. Therefore, (n− 1) ∗ Reserve [j] =
(
∑n

i=1 Max [i] [j])− αj implies

n ∗Reserve [j] =

(

n
∑

i=1

Max [i] [j]

)

− αj +Reserve [j](5.11)

Substituting, Available [j] = αj −Reserve [j] , as per condition 1., in equation (Eq.5.11) implies

n ∗Reserve [j] =

(

n
∑

i=1

Max [i] [j]

)

−Available [j](5.12)
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Substituting (Eq.5.12) in (Eq.5.10), the number of instance allocated to all the processes put together is
∑n

i=1 Allocation [i] [j] = (
∑n

i=1 Max [i] [j])− (
∑n

i=1 Max [i] [j])−Available [j], implying:

n
∑

i=1

Allocation [i] [j] = Available [j] , ∀Rj

That is the number of instance allocated to all the processes put together are equal to Available [j] , ∀Rj . In
other words, at most available pool is emptied by the processes, however, reserve pool resources are still unused.
Since, every process has acquired, as per equation (Eq.5.9), Allocation [i] [j] = Max [i] [j]−Reserve [j], hence,

Need [i] [j] = Max [i] [j]−Allocation [i] [j]

⇒ Need [i] [j] = Max [i] [j]− (Max [i] [j]−Reserve [j])

⇒ Need [i] [j] = Reserve [j] , ∀Rj

Therefore, every process needs only Reserve [j] , ∀Rj more resources to complete which are available in the
reserve pool. Thus, every process has equal opportunity to complete.Once any process completes it will release
any resources it was holding (at least Reserve [j] ∀Rj ), which are sufficient for the subsequent processes to
complete (Theorem 5.1). Hence, there is no deadlock or starvation. Hence proved.

The theorem 5.2 guarantees that the deadlock will never occur if the system follows it. The deadlock free
resource reservation (DFRR) technique is proposed based on these theorems it is stated in the form of the
DFRR algorithm in cf.Alg.1. The time complexity for resource management to decide on the resource alloca-
tion as per the request of the proposed algorithm is O (m). The resource manager only refers the available pool
for the requested resources incurring O (m) overhead. In case the sufficient resources are not available in the
Available pool the same are granted from the Reserve pool. This resource management policy is optimal and
is proved in the form of lemma 5.3.

Lemma 5.3. No resource management policy can assign resources to a requesting process from a set
of independent processes P1, P2, P3 . . . Pn when scheduled on a system consisting of set of resource types as
R1, R2, R3 . . . Rm with α1, α2, α3 . . . αm instances of each type, with an overhead lower that O (m).

Proof. Each Process can request any resource R1, R2, R3 . . . Rm its request vector is thus of length ‘m’.
Hence, any resource management technique will check for the request and availability of all the ‘m’ resources
at least once for a process. Hence, the overhead will not be less than O (m) .

The motivational examples in Sect. 2 are revisited to show the effectiveness of the proposed technique. The
resources reserved for the motivational example 1 (Table 4.1) are (2, 3, 3, 2). Requests in Table 4.1 are granted
followed by the request made by the processes P2 and P4 as at time t1 as stated in table using resources from
the available pool. However, the request of process P3 and P2 at time t2 and t3 cannot be granted as per the
condition 3.a theorem 5.2. The system remains in the safe state.

Deadlock Free Resource Reservation Technique, reserves (2, 2) resources, for the motivational example 2,
cf. Table 4.6. Hence, either process P1 acquires the necessary resources and completes as per Table 4.8 or as
per Table 4.9, P2 completes and relinquishes the resources. Hence, no deadlock.

The following section presents the results obtained on implementation of the proposed technique.

6. Simulations Results. Simulations were performed on process sets to analyze the behavior of the
proposed DFRR technique as compared to the existing techniques. The average time of the each process
spends in the system from its submission to its completion also known asAverage Turnaround time is the key
parameter of the system.
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Algorithm 1: DFRR Algorithm

input: Process Priority Queue
1 begin
2 for j=1 to m do

3 Reserve[j]=

[

(
∑

n

i=1
Max[i][j])−αj

ηj−1

]

4 Available[j]=αj-Reserve[j]

5 end
6 while No new Request do
7 Execute a ready process;
8 end
9 A process Pi request for Request[i][j] resources do

10 if (Allocate[i][j]+Request[i][j])≤(Max[i][j]-Reserve[j])∀j=1,2. . .m) then
11 Allocate[i][j] = Allocate[i][j] + Request[i][j];
12 Available[j ]= Available[j] - Request[i][j];
13 Need[i][j]=Need[i][j]-Request[i][j];

14 end
15 else if Need[i][j]≤(Available[j]+ Reserve[j])∀j=1,2. . .m then
16 Allocate[i][j]=Allocate[i][j]+ Need[i][j];
17 if Need[i][j]Available[j] then
18 Available[j]= Available[j]-Need[i][j];
19 end
20 else
21 Reserve[j]=Reserve[j]+ Available[j]-Need[i][j];
22 Available[j]=0;

23 end
24 Need[i][j]=0;

25 end

26 end
27 If a process Pi completes then return the resources and goto to step 5.

28 end

All simulations are performed on a 2.0 GHz Processor. With a Resource pool of 10 resources with instances
as { 11, 14, 7, 2, 16, 8, 15, 17, 13, 5}. 100 process sets for each point in the graph were generated with each
process randomly selects a execution time between 0 to 50.

Fig.5.1, illustrate the effect on average turnaround time as the process load increases. As process load
increases the chances for the resource conflict also increases and hence, the average turnaround time. The
analysis of the proposed DFRR reveals that the turnaround time of the processes is relatively better than the
existing for all process loads. The improvement in the performance is even more profound for the higher loads.
This is because as the load increases so does the resource demand by the processes, leading to frequent resource
requests. The Banker’s algorithm has a high overhead for serving each request and hence the turnaround
time increases as the load increases for it. On the other hand, the existing RR and DDR technique face more
frequent deadlocks and spend time in recovering from the deadlock, which in turns increases the turn around
time. The proposed DFRR technique has lower overhead for resource management and is deadlock free. The
average turnaround time is approximately 18 % lower for the proposed DFRR over Banker’s algorithm.

A process can request all the resources it could need at a time or incrementally as its execution processed.
Fig.6.1 illustrates the effect of the number of incremental resource requests (Steps) made by the process set in
its execution on the average turnaround time of the processes. The process load is fixed to be 0.8 for this figure.
The Steps ranges from 1 to 10, where Steps =1 indicates that the processes requests all the resources at the
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Fig. 6.1. Process load vs. average turnaround time.

Fig. 6.2. Steps vs average turnaround time.

inception while 2, 3. . . .10 indicate that the processes made 2 or 3 . . . 10 incremental resource requests. BA has
high overhead for resource management. Thus, as the processes make multiple incremental requests the BA
spends more and more time in deciding on the resource grant. Moreover, the process whose request is denied
by the BA enter into pending state which increases their wait time and hence, the average turnaround time
of the set increases. The other TRA, TNRR and ETRR techniques though have lower overhead for resource
management are not 100 % deadlock free. As the Steps increases the number of deadlocks encountered by
them also increases incurring deadlock resolution overhead. The proposed DFRR technique has low overhead
for resource management as well as it is deadlock free, hence the average turnaround time for this technique
remains fairly constant.

7. Conclusion. This paper presented an IoT based post-disaster recovery technique for managing the
limited resources available such that the system is deadlock free. A new class of deadlock handling technique
which handle deadlock by reserving a portion of the resources was proposed. This class eliminates the excessive
overhead incurred by the Deadlock Prevention and Avoidance techniques as well as the uncertainty of deadlock
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occurrence in the deadlock detection and recovery techniques. The proposed Deadlock Free Resource Reserva-
tion (DFRR) technique ensures that deadlock will never occur. The correctness of the proposed technique is
proved in the form of the theorems. Its effectiveness is shown through motivational examples. The simulation
analysis of the proposed DFRR indicate that it has approximately 18 % lower turnaround time than the existing
Banker’s algorithm. Thus, the proposed technique is a deadlock free technique with optimal overhead.
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