
Scalable Computing: Practice and Experience
Volume 10, Number 1, pp. 61–74. http://www.scpe.org

ISSN 1895-1767
c© 2009 SCPE

PERFORMANCE ANALYSIS AND OPTIMIZATION OF PARALLEL SCIENTIFIC
APPLICATIONS ON CMP CLUSTERS

XINGFU WU, VALERIE TAYLOR, CHARLES LIVELY AND SAMEH SHARKAWI∗

Abstract. Chip multiprocessors (CMP) are widely used for high performance computing. Further, these CMPs are being
configured in a hierarchical manner to compose a node in a cluster system. A major challenge to be addressed is efficient use of
such cluster systems for large-scale scientific applications. In this paper, we quantify the performance gap resulting from using
different number of processors per node; this information is used to provide a baseline for the amount of optimization needed
when using all processors per node on CMP clusters. We conduct detailed performance analysis to identify how applications can
be modified to efficiently utilize all processors per node using three scientific applications: a 3D particle-in-cell, magnetic fusion
application Gyrokinetic Toroidal Code (GTC), a Lattice Boltzmann Method for simulating fluid dynamics (LBM), and an advanced
Eulerian gyrokinetic-Maxwell equation solver for simulating microturbulent transport in plasma (GYRO). In terms of refinements,
we use conventional techniques such as loop blocking, loop unrolling and loop fusion, and develop hybrid methods for optimizing
MPI Allreduce and MPI Reduce. Using these optimizations, the application performance for utilizing all processors per node was
improved by up to 18.97% for GTC, 15.77% for LBM and 12.29% for GYRO on up to 2048 total processors on the CMP clusters.

Key words: performance analysis, performance optimization, chip multiprocessors (CMP), clusters, parallel scientific appli-
cations

1. Introduction. The current trend in high performance computing systems has been shifting towards
cluster systems with CMPs (chip multiprocessors). Further, the CMPs are usually configured hierarchically (e.g.,
multiple CMPs compose a multi-chip module and multiple multi-chip modules compose a node) to compose a
node of a CMP cluster. For example, each node of DataStar P690 at the San Diego Supercomputing Center
(SDSC) consists of four multi-chip modules for which each module consists of four CMPs, and each CMP
consists of two cores [13]. SDSC DataStar p655 has one multi-chip module per node. When using these clusters
to execute a given application, one issue to be addressed is how to efficiently utilize all processors per node
given the significant sharing of node resources (e.g., caches, networks) among the processors within the node.
In this paper, we quantify the performance gap resulting from using different number of processors per node for
application executions. Further, we use the detailed performance results to identify performance optimizations
that can be made to these applications for efficient execution using all processors per node.

Other work in this area has focused on using all processors per node. Phillips et al. [10] presented the
performance results for 4 processors per node and 3 processors per node on Lemieux Alpha cluster at Pittsburgh
Supercomputing Center that has a maximum of 4 processors per node, and noted that leaving idle one processor
per node reduces performance variability. Petrini et al. [9] found that application execution times may vary
significantly between 3 processors per node and 4 processors per node on a large scale supercomputer, ASCI Q.
They concluded that system noise within the nodes was the source of the performance variability, and used a
discrete-event simulator to evaluate the contribution of each component of the noise to the overall application
behavior. In our previous work [20], we quantified the performance gap resulting from using different number
of processors per node for the NAS parallel benchmarks on SMP clusters. In this paper, however, we identify
optimizations that result in efficient use of all processors per node on the CMP clusters for large-scale scientific
applications.

The three large-scale, scientific applications used for our experimental analysis are as follows: a 3D particle-
in-cell application Gyrokinetic Toroidal Code (GTC) in magnetic fusion [2], a Lattice-Boltzmann Method
for simulating fluid dynamics (LBM) [19], and an advanced Eulerian gyrokinetic-Maxwell equation solver for
simulating microturbulent transport in core plasma (GYRO) [3]. The Prophesy system [17, 16] is used to
collect all application performance data. The programming environments and problem sizes used in the three
applications are shown in Table 1.1. The test case studied for GTC is 100 particles per cell and 100 time steps.
The problem size for LBM is a 3D mesh computational domain. B1-std and B2-cy are two benchmark datasets
for GYRO.

The experiments conducted in this work utilize systems with different number of processors per node.
DataStar P655 has 8 processors per node and P690 has 32 processors per node. Bassi has 8 processors per node
and Seaborg has 16 processors per node at the DOE National Energy Research Scientific Computing Center

∗Department of Computer Science, Texas A&M University, College Station, TX 77843, USA ({wuxf, taylor}@cs.tamu.edu)

61

62 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Table 1.1
Programming environments and problem sizes of GTC, LBM and GYRO

Application Discipline Problem Sizes Programming Environments
GTC Magnetic Fusion 100 particles per cell Fortran90, MPI, OpenMP
LBM Fluid Dynamics 128x128x128 C, MPI

512x512x512
GYRO Plasma Physics B1-std: 6x140x4x4x8x6 Fortran90, MPI

B2-cy: 6x128x4x4x8x6

(NERSC) [8]. BlueGene/L at the Renaissance Computing Institute has 2 processors per node [11]. Further,
each system has a different node memory hierarchy. The experimental results indicate that large performance
gaps can exist. For example, the performance gap for LBM using 32 processors corresponds to an increase of
23.53% when using 32 processors per node versus using 8 processors per node (resulting from resource conflicts)
for a problem size of 128x128x128 on the P690.

Much of the computation involved in parallel scientific applications occurs within nested loops. Therefore,
loop optimization is fundamentally important for these applications. In this paper, we use loop blocking, loop
unrolling and loop fusion to optimize three scientific applications. We also develop hybrid methods to optimize
MPI Allreduce and MPI Reduce, which are very common communication subroutines. For a given optimization
of GTC, the application performance was improved by up to 18.97% on up to 2048 processors. For a given
optimization of LBM, the application performance was improved by up to 15.77% when utilizing all processors
per node. For a given optimization of GYRO, the application performance was improved by up to 12.29% when
utilizing all processors per node. This is important because with CMP clusters, the only way to access a large
number of processors is to use all processors per node.

The remainder of this paper is organized as follows. Section 2 discusses the architecture and memory
hierarchy of the five supercomputers used in our experiments, and presents their MPI performance when utilizing
different configurations of the node hierarchy. Section 3 discusses application optimization methods used to refine
the applications. Section 4 investigates performance characteristics of GTC, and presents our optimization
results. Section 5 discusses performance characteristics and optimization results of LBM. Section 6 explores
performance characteristics and optimization results of GYRO. Section 7 concludes this paper. In the remainder
of this paper, we describe a processor partitioning scheme as MxN whereby M denotes the number nodes
with N processors per node (PPN). The job scheduler for each supercomputer always dispatches one process
to one processor. All experiments were executed multiple times to insure consistency of the performance data.

2. Execution Platforms and Corresponding MPI Performance. Details about the five supercom-
puters used for our experiments are given in Table 2.1. These systems differ in the following main features:
number of processors per node, configurations of node memory hierarchy, CPU speed, multi-core processors,
and communication networks.

DataStar P655 [13] has 176 (8-way) compute nodes with 1.5GHz POWER4 and 16GB memory, and 96
(8-way) compute nodes with 1.7GHz POWER4 and 32GB memory. Each node of P655 has one MCM (Multiple-
Chip Module) with 4 chips per MCM. DataStar P690 has 7 (32-way) compute nodes. Each node of P690 has
four MCMs with 4 chips per MCM. The use of 8-way nodes for P655 is exclusive. The use of 32-way nodes on
P690 is shared among users, and the access to P690 is limited to at most five nodes.

UNC RENCI BlueGene/L [11] is a system-on-chip supercomputer, and is designed to achieve high perfor-
mance for low cost and with low power consumption. The BlueGene/L has 1024 dual 700 MHz PowerPC 440
nodes with 1GB memory per node. Note that L2 cache is a prefetch buffer that holds 16 128-byte lines.

Seabog [8] is a distributed memory computer with 6,080 processors available to run scientific applications.
The processors are distributed among 380 compute nodes with 16 PPN and a shared memory pool of size
16-64GB (312 nodes have 16GB; 64 nodes have 32GB; 4 nodes have 64GB) per node. The use of 16-way nodes
is exclusive. Bassi [8] is a distributed shared memory computer with 888 processors available to run scientific
applications. The processors are distributed among 111 compute nodes with 8 PPN and a shared memory pool
of 32GB per node. The use of 8-way single-core POWER5 nodes is also exclusive. Only Bassi is configured to
use 20GB large page on each node. The large page uses hardware prefetch mechanisms to eliminate costly TLB
misses at the expense of an increase in process start-up time.

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 63

Table 2.1
Specifications of five supercomputer architectures

Configurations P655 BlueGene/L P690 Seaborg Bassi
Number of Nodes 272 1024 7 380 111

MCMs/Node 1 NA 4 NA NA
chips/MCM 4 NA 4 NA NA
Cores/chip 2 2 2 1 1
CPUs/Node 8 2 32 16 8
CPU type 1.5,1.7GHz 700 MHz 1.7GHz 375MHz 1.9GHz

POWER4 PowerPC POWER4 POWER3 POWER5
Memory/Node 16,32GB 1GB 128GB 16-64GB 32GB
L1 Cache/CPU 64/32 KB 32KB 64/32 KB 32/64 KB 64/32 KB
L2 Cache/chip 1.41MB 128-byte lines 1.41MB 8MB 1.92MB
L3 Cache/chip 32MB 4MB 32MB NA 36MB

Network Federation 3D Torus Federation Colony Federation

2.1. Multi-Chip Module and Processor Affinity. In this section, we address processor affinity (i. e.,
how processes are dispatched to processors) and its policy in the following CMP clusters: P655, P690, and
BlueGene/L. Although Bassi is POWER5 system, it is configured with only one active core per POWER5 chip.
Seaborg is a POWER3 system with one processor per chip.

Fig. 2.1. A logical view of a MCM [1]

Fig. 2.1 shows the logical view of a POWER4 MCM. The MCM is used as an eight-way basic building
block. Each MCM has four POWER4 chips; the two processors on the same chip share L2 and L3 caches. The
logical interconnection of four POWER4 chips is point-to-point with uni-directional buses connecting each pair
of chips to form an 8-way SMP with an all-to-all interconnection topology. P655 has one MCM per node. With
the single MCM configuration, each chip always sends requests, commands and data on its own bus, but snoops
all buses for requests or commands from other MCMs. Multiple MCMs can be interconnected to form larger
SMPs, such as P690 with four MCMs, by extending each bus from each module to its neighboring module in
one direction.

The processor affinity policy for POWER4 and POWER5 is discussed in [4]. When a virtual processor is
dispatched, it is first dispatched onto the same physical processor that it last ran on. Otherwise, it will be
dispatched onto the first available processor in the following order: on the same chip, then to another chip on
the same MCM, then to a chip on the same node.

Fig. 2.2 presents the bi-directional MPI bandwidth comparison on P690 using processor binding (e.g., we
use IBM AIX command bindprocessor to implement processor binding and use Intel’s IMB benchmark Sendrecv
to measure bi-directional bandwidth). We use the term PPM to denote processors per MCM and PPC to
denote processors per chip. We measure the MPI bandwidth at the following levels: within a chip (Same),
across two chips on one MCM (Chips), across two MCMs (MCMs) or across two nodes (Nodes) on P690.
The results indicate that using two processors within a chip results in much better bandwidth than using one
processor per chip (on the same MCM) or using one processor per MCM or per node for small or medium
message sizes in the range of 1 byte to 256KB messages. It is interesting to note that the bandwidth for the
message size of 256KB or larger on P690 is very similar for using two processors in the same chip or using two
processors across different chips (but on the same MCM) or using two processors on the different MCMs of the
same node; using two nodes still resulted in poor bandwidth for large message sizes.

64 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Fig. 2.2. Bi-directional bandwidth comparison on P690 using processor binding

3. Application Optimization Methods.

3.1. Loop Optimizations. Much of the computation involved in scientific applications such as LBM,
GTC and GYRO occurs within nested loops. Therefore, loop optimization is fundamentally important for such
applications. In this section, we discuss loop blocking, loop unrolling and loop fusion to optimize the scientific
applications.

Loop blocking is a well-known loop optimization technique to aid in taking advantage of memory hierarchy;
its main purpose is to eliminate as many cache misses as possible. This technique transforms the memory
domain of an application into smaller chunks, such that computations are executed on the chucks that easily fit
into cache to maximize data reuse. The optimal loop block size varies with different applications on different
systems. In this paper, we apply the following loop block sizes: 2x2, 4x4, 8x8 and 16x16 to the three scientific
applications to measure which loop block size is optimal. Our experimental results indicate that the optimal
loop block size is 2x2 on BlueGene/L and 4x4 on P655 for GTC, and 16x16 on BlueGene/L and 4x4 on P655
for LBM and GYRO.

Loop unrolling is a well-known code transformation technique that replicates the original loop body multiple
times, adjusts the loop termination code and eliminates redundant branch instructions. Outer loop unrolling
can increase computational intensity and minimize load/stores, while inner loop unrolling can reduce data
dependency and eliminate intermediate loads and stores. We combine inner and outer loop unrolling to optimize
the scientific applications. For examples, we unroll the inner loops four times for four major double nested loops
in GTC code so that we reconfigure the double nested loops into the single loops, then use compiler directives
for further loop unrolling.

The performance for the hand-tuned scientific codes using loop blocking and unrolling can be further
improved by using compiler directives, which are hardware-specific. The IBM XL Fortran compiler provides
some hardware-specific directives for performance optimization, such as –qdirective=UNROLL AND FUSE [4].
The UNROLL AND FUSE directive instructs the compiler to allow loop unrolling and fusion where applicable.
Loop fusion is also a code transformation technique. It minimizes the required number of loop iterations, and
improves data locality by increasing data reuse in registers and cache. For each execution environment used in
this study, we utilize the appropriate compiler directives to further optimize the code.

3.2. Hybrid Methods for MPI Allreduce and MPI Reduce. In this section, we present our hybrid
methods to optimize MPI Allreduce and MPI Re-duce, which are common in GTC and GYRO. In scientific
applications, especially GTC and GYRO, MPI Allreduce dominates the most communication time. In order to
optimize MPI Allreduce, we incorporate the following hybrid method that we implemented:

• Use Intel’s MPI benchmarks to measure the performance of the original MPI Allreduce with different
message sizes on each cluster,

• Measure the performance of Rabenseifner’s algorithm for allreduce in [14] with different message sizes
on the same cluster,

• Compare both performance to decide message size ranges for the best performance,
• Implement a hybrid method for MPI Allreduce based on the message size ranges (basically using the

original algorithm at small message sizes and the Rabenseifner’s algorithm otherwise).

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 65

Table 4.1
Datasets with scaling the number of processors for GTC

Processors 2 4 8 16 32 64 128 256 512 1024 2048
micell 100 100 100 100 100 100 200 400 800 1600 3200
mecell 100 100 100 100 100 100 200 400 800 1600 3200

mzetamax 2 4 8 16 32 64 64 64 64 64 64
npartdom 1 1 1 1 1 1 2 4 8 16 32

Rabenseifner’s algorithm performs a reduce-scatter followed by an allgather for MPI Allreduce, and the
algorithm also performs a reduce-scatter followed by a gather for MPI Reduce. The hybrid method takes
different systems and message sizes into account in order to optimize MPI Allreduce. We also use the similar
hybrid method to optimize MPI Reduce. A MPI program is required to be recompiled with our own MPI
library for the two subroutines Allreduce and Reduce.

4. Gyrokinetic Toroidal Code (GTC). The Gyrokinetic Toroidal code (GTC) [2] is a 3D particle-in-cell
application developed at the Princeton Plasma Physics Laboratory to study turbulent transport in magnetic
fusion. GTC is currently the flagship SciDAC fusion microturbulence code written in Frotran90, MPI and
OpenMP. Fig. 4.1 shows a visualization of potential contours of microturbulence for a magnetically confined
plasma using GTC. The finger-like perturbations (streamers) stretch along the weak field side of the poloidal
plane as they follow the magnetic field lines around the torus [12]. Fig. 4.2 presents the basic steps in the GTC
code.

Fig. 4.1. Potential contours of microturbulence for a magnetically confined plasma [12]

Fig. 4.2. Particles in cell (PIC) steps [2]

The test case for GTC studied in this paper is 100 particles per cell and 100 time steps. The problem sizes
for the GTC code are listed in Table 4.1, where micell is the number of ions per grid cell, mecell is the number
of electrons per grid cell, mzetamax is the total number of toroidal grid points, and npartdom is the number of
particle domain partitions per toroidal domain.

4.1. Application Performance Analysis. In this section, we investigate how different number of PPN
impacts the application performance. Runtime (unit: seconds) indicates the total application execution time,
which also includes I/O time. Table 4.2 provides the performance results from P655 for dispatching two processes
to two processors on the same chip, two processors on different chips on the same MCM, and two processors
across two nodes. The percentage given next to runtime corresponds to the increase in runtime comparing

66 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Table 4.2
Performance comparisons of GTC on 2 processors on P655

Across 2 nodes Across 2 chips Within a chip
Metrics 2x1/1PPC 1x2/1PPC 1x2/2PPC

Runtime (% difference) 984.26 (baseline) 990.02 (0.59%) 1114.32 (13.21%)
L1 hit rate 92.356% 92.375% 92.386%

TLB miss rate 0.005% 0.005% 0.005%
L2 bandwidth/processor 4618.906MB/s 4582.185MB/s 4071.585MB/s

% accesses from L2 2.228% 2.214% 2.235%

Table 4.3
Performance comparisons of GTC on 2 processors on P690

Across 2 nodes Across 2 MCMs Across 2 chips Within a chip
Metrics 2x1/1PPM-1PPC 1x2/1PPM-1PPC 1x2/2PPM-1PPC 1x2/2PPM-2PPC
Runtime 980.23 994.58 1001.49 1009.66

(% difference) (baseline) (1.46%) (2.17%) (3.00%)
L1 hit rate 92.515% 92.48% 92.457% 92.475%

TLB miss rate 0.005% 0.005% 0.005% 0.005%
L2 bandwidth 4578.505 MB/s 4499.834 MB/s 4491.888 MB/s 4457.119 MB/s

/processor
% accesses 2.211% 2.181% 2.177% 2.16%
from L2

to the baseline configuration corresponding to using one processor per node (or the least amount of sharing
of node resources). There is 13.21% increase in execution time when using two processors within the same
chip (1x2/2PPC) due to contention resulting from the sharing of resources, such as L2 and L3 caches. For
the case of using one processor per chip with two chips in the same MCM (1x2/1PPC), there is a very small
increase in execution time (only 0.59%). Recall that each node on P655 has one MCM, which consists of four
dual-core POWER4 chips. Table 4.2 also presents the hardware counters’ performance using hpmcount [5]. The
hardware counters indicate large difference (11.85%) in L2 bandwidth per processor for the two cases of using
one processor per node versus using two processors within the same chip. Hence, there is significant contention
for L2 when using two processors within the same chip.

Table 4.3 shows the performance results for dispatching two processes to two processors on the same chip,
on two different chips on the same MCM, or two different chips on two different MCMs on P690 for two
processors, respectively. Each node on P690 has four MCMs with four dual-core POWER4 chips per MCM
shown in Table 2.1. There is only a 3.00% increase in execution time when using two processors within the
same chip (1x2/2PPC) due to contention resulting from the sharing of resources, such as L2 and L3 caches.
Comparing Table 4.3 with Table 4.2, it is clear that L2 bandwidth per processor accounts for the performance
difference when using two processors within one chip (1x2/2PPC) versus using two processors across nodes
(2x1/1PPM-1PPC).

Table 4.4 indicates the performance gaps resulting from using different PPN on a total of 64 processors on
five supercomputers. As expected, the smallest times corresponds to the minimum amount of sharing of node
resources. With increasing number of PPN, the application execution time increases. The performance data in
Table 4.4 utilized default processor affinity described in Section 2.1. For example, with the 16x4 configuration
on P655 (16 nodes with 4 PPN), the 4 processors per node were dispatched such that the only two chips were
used, whereby both cores per chip were used. The time difference between the schemes 64x1 and 8x8 is 8.51%
on P655. The time difference between the schemes 64x1 and 4x16 is 6.44% on Seaborg. The time difference
between the schemes 32x2 and 8x8 is 2.23% on Bassi. The time difference between the schemes 4x16 and 2x32 is
7.18% on P690. Because the GTC code could not be executed on UNC RENCI BlueGene/L with 2 PPN (in VN
mode) except 2048 processors, we could not collect any data for using 2 PPN on the machine. We find that the
subroutines pushi and chargei in GTC take more than 90% of the application execution time on 64 processors,
and are sensitive to different memory access patterns and communication patterns for different PPN.

Table 4.5 illustrates that impact of using processor binding to reduce contention of chip resources. Using 1
processor per chip (1PPC) results in approximately 3% decrease in execution time versus using 2 processors per
chip (2PPC) for both 32x2 and 16x4 configurations. While the difference is small, it is the case that processor
binding can aid task schedulers in maximizing the application performance in dedicated usage of CMP nodes.

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 67

Table 4.4
Execution times (seconds) of GTC for different PPN on 64 processors

System 64x1 32x2 16x4 8x8 4x16 2x32
Seaborg 3545.08 3549.41 3574.92 3617.47 3773.43 NA
P655 1203.32 1253.83 1266.49 1305.74 NA NA

BlueGene/L 3937.46 – NA NA NA NA
Bassi – 875.11 886.54 894.64 NA NA
P690 NA NA NA NA 1210.26 1297.12

Table 4.5
Performance comparisons of GTC on P655 using processor binding

32x2 16x4
2PPC 1PPC % difference 2PPC 1PPC % difference

1253.83 1218.31 2.92 1266.49 1230.47 2.93

4.2. Application Performance Optimization. Much of the computation involved in GTC, especially
the subroutines pushi and chargei, occurs within nested loops. Therefore, we use loop blocking, loop unrolling
and loop fusion to optimize the application. We also use the hybrid method for MPI Allreduce to optimize
MPI Allreduce. Further, MPI Allreduce dominates the most communication time of the code on large number
of processors. Therefore, we use the hybrid method described in Section 3 to optimize the MPI Allreduce.
The range of message sizes are defined on different systems as follows: for P655, the hybrid method uses the
original algorithm for the message sizes of less than 1KB and the Rabenseifner’s algorithm otherwise. For
BlueGene/L, because GTC could only be executed on the number of processors with 1PPN, the hybrid method
uses the Rabenseifner’s algorithm for the message sizes of between 256 bytes and 2KB and the original algorithm
otherwise.

Our experimental results indicate that the optimal loop block size for GTC is 2x2. This block size is used
to optimize outer loops of the triple nested loops in GTC code. We also unroll the inner loops four times for
four major double nested loops in the subroutines pushi and chargei such that the double nested loops are
reconfigured into single loops. Further, we used the compiler options consistent with that given in [2].

The results of applying the aforementioned optimizations are given in Tables 4.6 and 4.7 for BlueGene/L
and P655, respectively. We performed the optimization in series so that we could quantify the results of each
optimization. These results are not given in this paper due to space. The results, however, indicated that
majority of the optimization for GTC resulted from hand-tuned loop unrolling and blocking. We achieve up to
18.97% performance improvement on BlueGene/L. It should be noted that the performance gap for P655 using
64x1 versus 8x8 was 8.51% in Table 4.4. Using the aforementioned optimizations we were able to reduce the
execution time for using all PPN by 4.99%.

5. LBM Application. The Lattice Boltzmann Method (LBM) [19] is widely used for simulating fluid
dynamics; this method has the ability to deal efficiently with complex geometries and topologies. The LBM
application is computation intensive. In our simulations, we use the D3Q19 lattice model (19 velocities in 3D)
with the collision and streaming operations. The LBM application code is divided into six kernels, which are
given below in Fig. 5.1.

Fig. 5.1. Program control flow with kernels for the LBM code

68 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Table 4.6
Execution time (seconds) comparison of GTC between the original and the optimized on BlueGene/L

Processors (MxN) original optimized % improvement
8 (8x1) 3804.03 3082.54 18.97%

16 (16x1) 3834.98 3124.80 18.52%
32 (32x1) 3869.60 3166.56 18.17%
64 (64x1) 3937.46 3221.31 18.19%

128 (128x1) 3919.06 3202.81 18.28%
256 (256x1) 3913.07 3208.95 17.99%
512 (512x1) 3820.28 3120.65 18.31%

1024 (1024x1) 3788.49 3096.36 18.27%
2048 (1024x2) 3808.03 3108.40 18.37%

Table 4.7
Execution time (seconds) comparison of GTC between the original and the optimized on P655

Processors (MxN) original optimized % improvement
8 (1x8) 1207.07 1144.73 5.16%
16 (2x8) 1242.56 1174.80 5.45%
32 (4x8) 1273.75 1203.32 5.53%
64 (8x8) 1305.73 1240.52 4.99%

128 (16x8) 1263.71 1201.99 4.88%
256 (32x8) 1237.22 1177.27 4.85%
512 (64x8) 1228.28 1172.25 4.56%

The description of each kernel is given below:

• Initialization: reads input files and sets up the initial parameter values.
• Collision: computes the effect of the collisions, which occur during the particle movement.
• Communication: is to communicate the needed data among neighboring blocks.
• Streaming: moves particles in motion to new locations along their respective velocities.
• Physical: calculates macroscopic variables such as fluid density, which are used in the collision and

streaming steps.
• Finalization: cleans up the program after everything is done, and outputs the results.

The kernels Collision, Communication, Streaming, and Physical stay in a loop with the number of iterations
of 200. The kernels Initialization and Finalization are executed once. The problem size for the LBM application
is a 3D mesh computational domain. In this paper, we use two problem sizes of 128x128x128 and 512x512x512
for the LBM application in our experiments.

5.1. Application Performance Analysis. Table 5.1 provides the execution times of the LBM application
with problem sizes of 128x128x128 and 512x512x512 for different PPN on a total of 32 processors across the
five supercomputers. The performance data was collected using the default processor affinity described in
Section 2.1. With increasing number of PPN, the application execution time increases significantly on Seaborg,
P655, and P690; there is very little difference in execution times on Bassi. For example, the time difference
between 1 PPN and 16 PPN on Seaborg is 21.3% for the problem size of 512x512x512, and 15.83% for the
problem size of 128x128x128. The time difference between the scheme 1 PPN and 8 PPN on P655 is 20.73% for
the problem size of 512x512x512, and 10.03% for the problem size of 128x128x128. The time difference between
the scheme 8 PPN and 32 PPN on P690 is 17.79% for the problem size of 512x512x512, and 23.53% for the
problem size of 128x128x128.

Table 5.2 indicates the results from using processor such that only one core per chip is used thereby
minimizing resource sharing. The results indicate a 4.71% decrease in execution time for the 16x2 configuration
and a 6.75% reduction in execution time for the 8x4 configuration. This indicates that processor binding can
aid task schedulers in maximizing the application performance in dedicated usage of CMP nodes.

Table 5.3 provides the following details about the performance characteristics for LBM with problem size
of 512x512x512: the L1 hit rate, L2 bandwidth (per processor), and percentage accesses from L2. Because
BlueGene/L does not support hpmcount, we did not collect its hardware level performance. With increasing
PPN, the L1 hit rate varies very little across all systems because of equal workload per processor. On P655,
the L2 bandwidth and percentage accesses from L2 decrease with an increase of PPN; this is especially the case

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 69

Table 5.1
Execution times (seconds) of LBM for different PPN on 32 processors

System Name Problem size 32x1 16x2 8x4 4x8 2x16 1x32

Seaborg
128x128x128 94.21 94.42 95.29 98.72 109.12 NA
512x512x512 6247.87 6307.41 6418.77 6722.31 7578.84 NA

P655
128x128x128 33.09 33.38 34.57 36.41 NA NA
512x512x512 2154.94 2224.76 2361.67 2601.66 NA NA

P690
128x128x128 NA NA NA 29.15 30.35 36.01
512x512x512 NA NA NA 2198.90 2248.62 2590.18

Bassi
128x128x128 21.43 21.92 21.14 21.78 NA NA
512x512x512 1379.63 1382.30 1380.32 1384.84 NA NA

BlueGene/L
128x128x128 33.40 33.42 NA NA NA NA
512x512x512 2252.99 2253.27 NA NA NA NA

Table 5.2
Performance comparisons of LBM on P655 using processor binding

16x2 8x4
2PPC 1PPC % difference 2PPC 1PPC % difference

2224.76 2124.66 4.71 2361.67 2212.28 6.75

for the L2 bandwidth. For example, the L2 bandwidth for the 32x1 scheme is more than 11% larger than that
for the 4x8 scheme. On Bassi, there is very small difference in percentage accesses from L2 across different
PPN due to 20GB large page size, which uses hardware prefetch mechanisms to eliminate costly TLB misses.
Further, Bassi has the highest memory bandwidth and MPI bandwidth, which result in very little change in
communication rate for the different configurations. Hence, the execution time is flat for the different PPN
on Bassi. It is interesting that Bassi has the lowest L1 hit rate and correspondingly, the highest percentage
accesses from L2.

5.2. Application Performance Characteristics and Optimization. In this section, we use the LBM
application with the problem sizes of 128x128x128 and 512x512x512 to utilize the information learned from the
previous section to determine how to optimize the application.

Fig. 5.2. Execution times of LBM for different PPN on 32 processors on P655

Figs. 5.2, 5.3 and 5.4 indicate the similar performance trend for LBM with the problem size of 128x128x128
using different PPN on 32 processors on P655, Seaborg, and P690, that is, the total application execution time
increases as the number of PPN increases, and the performance of the kernel Streaming follows the pattern
of the total application execution time on P655, Seaborg, and P690. It means that the kernel Streaming is
the main cause of the increase in the total execution time. One major reason for this increase is the memory
bottleneck, which results in that large number of processors on each node have to compete for a shared memory
while the application requires enough memory for the dataset. It is interesting to see that the performance for
the kernel Communication does not change much with increasing the number of PPN, and the performance for
the dominated kernel Collision remains flat. The similar performance trend also occurs for the problem size of
512x512x512.

70 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Table 5.3
Memory performance for LBM with the size of 512x512x512

System Metrics 32x1 16x2 8x4 4x8 2x16

P655

L1 hit rate 98.13% 98.15% 97.99% 97.69%

NA
L2 bandwidth (MB/s) 1127.01 1098.07 1082.61 1015.14
% accesses from L2 0.618% 0.602% 0.593% 0.541%

Bassi

L1 hit rate 94.93% 92.82% 95.33% 95.85%

NA
L2 bandwidth (MB/s) 3.035 4.788 2.523 2.145
% accesses from L2 5.069% 7.177% 4.669% 4.147%

Seaborg

L1 hit rate 99.14% 99.00% 98.93% 98.88% 99.14%
L2 bandwidth (MB/s) 0.069 0.066 0.064 0.060 0.050
% accesses from L2 0.332% 0.380% 0.409% 0.420% 0.340%

Fig. 5.3. Execution times of LBM for different PPN on 32 processors on P690

Figs. 5.2, 5.3 and 5.4 also indicate how the LBM code and its kernels are sensitive to different memory
access patterns and communication patterns on the CMP clusters. This kind of performance characteristics
of the LBM code could not be found in most application performance analysis just based on a single run on
a given number of processors. The kernel collision dominates most of the application execution time, but the
performance trend for the kernel Streaming is similar to that for the total runtime on P655. Optimizing the
kernel collision does not eliminate the performance impact using different number of PPN. Hence, we focus
on optimizing Streaming, which entails moving particles in motion to new locations along their respective 19
velocities [19]. This kernel requires a significant number of memory copy operations, which causes memory
congestion when large numbers of PPN are used. In particular, Streaming consists of five triple-nested loops.
We focus on using loop blocking to optimize the outer two loops of each triple-nested loop. For the sake of
simplicity, we just present results for the large problem size of 512x512x512.

Table 5.4
Execution time (seconds) comparison of LBM between the original and the optimized on P655

Processors (MxN) original optimized % improvement Optimal block size
32 (4x8) 2601.66 2191.28 15.77% 4x4
64 (8x8) 1306.55 1110.71 14.99% 4x4

128 (16x8) 653.31 561.56 14.04% 4x4
256 (32x8) 319.71 287.71 10.01% 4x4
512 (64x8) 163.44 157.53 3.62% 16x16

1024 (128x8) 83.9 79.37 5.40% 16x16
2048 (256x8) 48.56 45.3 6.71% 16x16

Table 5.4 provides the performance comparison between the original code and the optimized for the problem
size of 512x512x512 on P655 using all PPN. The optimized code with the block size of 4x4 achieved the best
performance on 32, 64, 128 and 256 processors, but the optimized code with the block size of 16x16 obtained the
best performance on 512, 1024, and 2048 processors. For only optimizing the kernel Streaming in the original
application code, the percentage of performance improvement is up to 15.77%. Compare to the results for
different PPN on P655 in Table 5.1, where there is 20.73% time difference between the scheme 32x1 and the

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 71

Fig. 5.4. Execution times of LBM for different PPN on 32 processors on Seaborg

4x8, our optimization reduces execution time by 15.77%. This is a big improvement. Note that the performance
improvement percentage trend decreases with increasing the number of total processors for the optimal block
size of 4x4 because of the decrease of workload per processor and the increase of the communication percentage
with increasing the number of processors. For the problem size of 512x512x512, the LBM application can only
be executed on 32 processors or more because of the large sufficient memory requirement.

Table 5.5
Execution time (seconds) comparison of LBM between the original and the optimized on BlueGene/L

Processors(MxN) original optimized % improvement Optimal Block size
32 (16x2) 2253.27 1954.95 13.24% 16x16
64 (32x2) 1280.72 1092.11 14.73% 16x16
128 (64x2) 699.71 606.83 13.27% 16x16
256 (128x2) 356.09 311.35 12.56% 16x16
512 (256x2) 153.95 150.73 2.09% 2x2

Table 5.5 provides the performance comparison between the original code and the optimized for the problem
size of 512x512x512 on RENCI BlueGene/L using all PPN. The optimized code with the block size of 16x16
achieved the best performance on 32, 64, 128 and 256 processors, but the optimized code with the block size of
2x2 obtained the best performance on 512 processors. For only optimizing the kernel Streaming in the original
application code, the percentage of performance improvement is up to 14.73%. Compare to the results for
different PPN on BlueGene/L in Table 5.1, this is a big improvement.

Hence, for the same problem size and same total number of processors, the loop blocking optimization
resulted in much larger performance improvement of the LBM application when using all the processors per
node versus one processor per node.

6. GYRO Application. GYRO [3] is an advanced Eulerian gyrokinetic-Maxwell equation solver that is
capable of facilitating a better understanding of plasma microinstabilities and turbulence flow in the tokamak
geometry. GYRO is used widely in simulating microturbulent transport in core plasma. In this section, we use
GYRO with two benchmark datasets: the Waltz Standard benchmark, B1-std, consisting of grids of size 6 x
140 x 4 x 4 x 8 x 6, and the Cyclone Base Benchmark, B2-cy, consisting of grids of size 6 x 128 x 4x 4 x 8 x 6.

6.1. Application Performance Analysis. Table 6.1 provides the execution times of the GYRO appli-
cation with B1-std and B2-cy for different PPN on a total of 32 processors. The performance data was collected
using the default processor affinity described in Section 2.1. With increasing number of PPN, the application
execution time increases significantly on Seaborg, P655, P690, and Bassi. For example, for the problem size of
B1-std, there is a 55.79% increase in the execution time with increasing the PPN from 8 to 32 on P690, 42%
increase in the execution time with increasing the PPN from 1 to 8 on P655, 9.15% increase with increasing the
PPN from 1 to 8 on Bassi, and 4.86% increase with increasing the PPN from 1 to 16 on Seaborg.

In GYRO, the subroutine get RHS, which calculates the periodic and non-periodic boundary conditions,
requires extensive global communication through the use of MPI Alltoall and MPI Allreduce operations. The

72 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

Table 6.1
Execution times (seconds) of GYRO for schemes on 32 processors

System Problem 32x1 16x2 8x4 4x8 2x16 1x32
Name size

Seaborg
B1-std 9177.38 9208.42 9280.395 9322.49 9623.39 NA
B2-cy 21108.59 21132.95 21245.59 21441.89 21849.849 NA

P655
B1-std 390.14 449.75 484.13 554.24 NA NA
B2-cy 910.09 972.17 1046.47 1158.01 NA NA

BlueGene/L
B1-std 1378.41 1379.20 NA NA NA NA
B2-cy 2983.37 2988.42 NA NA NA NA

Bassi
B1-std 310.62 318.04 325.67 341.917 NA NA
B2-cy 697.79 714.17 724.49 765.25 NA NA

P690
B1-std NA NA NA 443.64 501.01 691.15
B2-cy NA NA NA 987.61 1146.11 1489.69

MPI Alltoall and MPI Allreduce subroutines account for more than 95% of the total communication across all
platforms. It is noted that the performance of these routines are highly inefficient for using all PPN on P655,
and the communication rate increases from 8.52% to 11.33% with increasing the PPN. We find that kernel 3

which computes the RHS of the electron and ion GKEs for both periodic and nonperiodic boundary conditions,
and kernel 5 which computes the newly needed RHS in GYRO, dominate the application execution time, and
are sensitive to memory access patterns and communication patterns for different processors per node.

Table 6.2
Performance comparisons of GYRO on P655 using processor binding

16x2 8x4
2PPC 1PPC % difference 2PPC 1PPC % difference
449.75 423.36 5.89 484.13 449.48 7.16

Table 6.2 indicates that using processor binding can achieve the better results for the 16x2 and 8x4 schemes.
Using one processor per chips results in a 5.89% decrease in execution time for the 16x2 configuration and a
7.16% decrease in execution for the 8x4 configuration. This indicates that processor binding can aid task
schedulers in maximizing the application performance in dedicated usage of CMP nodes.

6.2. Application Performance Optimization. In this section, we use the GYRO application with the
problem size of B1-std to utilize the information learned from the previous performance analysis to determine
how to optimize the application. It is noted that similar results occur for the problem size of B2-std.

Given the results of the application characterization and the kernel performance, we focus on optimizing
the MPI Allreduce implementation to take advantage of the CMP clusters. In particular, we consider the
communication architectures and message sizes to develop an adaptive communication pattern to optimize
the MPI Allreduce. Such improvements impact kernels 3 and 5. The results shown in Table 6.3 illustrate
the improvements that have been achieved utilizing a hybrid implementation of the MPI Allreduce routine
for different message size ranges. The message size ranges for MPI Allreduce are defined on P655 as follows:
the hybrid method uses the original algorithm for the message sizes of less than 1KB and the Rabenseifner’s
algorithm otherwise. This optimization also consists of loop blocking the outer nested loops of the get RHS

subroutine used in kernel 3 and kernel 5 with the optimal block size of 4x4. The compiler optimization utilizing
the UNROLL AND FUSE option is applied to the entire code.

It is noted that the performance improvements in Table 6.3 are representative of an optimization on a
small segment of the GYRO code, with respect to the get RHS subroutine. The results indicate performance
improvement up to 9.33% on P655 and up to 12.29% on BlueGene/L. It is noted that, however, from Table 6.1
a performance difference of 42% on B1-std when increasing the PPN from 1 to 8 on P655 using a total of 32
processors. In Table 6.3, however, the performance improvement is 7.81%. The performance improvement is
very good when we consider that only part of the GYRO code, kernels 3 and 5, were optimized. Further, only
about one third of each of these two kernels was optimized. The improvement illustrates proof of concept. To
achieve close to the 42% performance gap, we need to optimize the entire GYRO code.

Performance improvements on BlueGene/L are a result of using a hybrid MPI All-reduce scheme, loop
blocking (with the optimal block size of 16x16) to kernel 3 and kernel 5, and a compiler optimization using

Performance Analysis and Optimization of Parallel Scientific Applications on CMP Clusters 73

the UNROLL AND FUSE option shown in Table 6.4. Note that the MPI Alltoall routine did not significantly
impact the performance on the BlueGene/L system. The message size ranges for MPI Allreduce are defined on
BlueGene/L: the hybrid method uses the original algorithm for the message sizes of less than 256 bytes and the
Rabenseifner’s algorithm otherwise.

Note that the performance improvement percentage trend decreases with increasing the number of processors
in Tables 6.3 and 6.4 because of the decrease of workload per processor and the increase of the communication
percentage with increasing the number of processors and the fixed problem size.

Table 6.3
Execution time (seconds) comparison of GYRO between the original and the optimized on P655

Processors (MxN) original optimized % improvement
16 (2x8) 1130.2923 1024.7543 9.33%
32 (4x8) 554.24 510.93 7.81%
64 (8x8) 276.78 260.58 6.21%

128 (16x8) 146.91 136.79 6.88%
256 (32x8) 84.81 81.05 4.43%
512 (64x8) 61.46 58.939 4.10%

Table 6.4
Execution time (seconds) comparison of GYRO between the original and the optimized on BlueGene/L

Processors (MxN) original optimized % improvement
16 (8x2) 2746.85 2409.21 12.29%
32 (16x2) 1379.20 1210.66 12.22%
64 (32x2) 761.45 697.09 8.45%
128 (64x2) 410.70 372.69 9.25%
256 (128x2) 235.09 214.00 8.97%
512 (256x2) 161.02 150.01 6.83%
1024 (512x2) 121.38 114.37 5.77%

7. Conclusions. This paper used three large-scale, scientific applications, GTC, LBM and GYRO , to an-
alyze the performance impact of the sharing of node resources on five supercomputers, P655, P690, BlueGene/L,
Seaborg and Bassi. The experimental results indicated that there can be a significant difference in execution
time when using different numbers of processors per node and using different numbers of cores per chip, chips
per MCM, and different numbers of MCMs. Memory bandwidth contention, especially L2 cache, is the primary
source of performance degradation. Using the loop optimization techniques which aids in taking advantage of
advanced memory hierarchy and the hybrid communication optimization methods, the performance can be im-
proved by up to 18.97% for GTC, up to 15.77% for LBM, and up to 12.29% for GYRO on up to 2048 processors
when utilizing all processors per node. Hence, understanding the application and system characteristics can
lead to optimization that aids in the efficient use of all processors per node. Future work is focused on further
optimizing the entire GYRO code by considering how its kernels interact with each other using kernel coupling
techniques [15, 18].

Acknowledgements. The authors would like to acknowledge the SDSC for the use of DataStar p655 and
p690, the DOE NERSC for the use of the Seaborg and Bassi, and Renaissance Computing Institute for the use
of BlueGene/L. We would also like to thank Stephane Ethier from Princeton Plasma Physics Laboratory and
Shirley Moore from University of Tennessee for providing the GTC code and datasets, Patrick Worley from Oak
Ridge National Laboratory for providing the GYRO code, and Dazhi Yu and Jacques Richard from Department
of Aerospace Engineering at Texas A&M University for providing the LBM code.

REFERENCES

[1] S. Behling, R. Bell, et al., The POWER4 Processor Introduction and Tuning Guide, IBM Redbooks, Nov. 2001.
[2] S. Ethier, First Experience on BlueGene/L, BlueGene Applications Workshop, ANL, April 27-28, 2005. http://www.bgl.

mcs.anl.gov/Papers/GTC{_}BGL{_}20050520.pdf

[3] M. Fahey, and J. Candy, GYRO: A 5-d gyrokinetic-maxwell solver, SC04, 2004.

74 X. Wu, V. Taylor, C. Lively, and S. Sharkawi

[4] B. Gibbs, B. Atyam, et al., Advanced POWER Virtualization on IBM@server p5 Servers: Architecture and Performance
Considerations, IBM Redbooks, Nov. 2005.

[5] hpmcount, http://www.nersc.gov/nusers/resources/software/ibm/hpmcount/
[6] Intel MPI Benchmarks, Users Guide and Methodolgy Description (Version 2.3), http://www.intel.com/cd/software/

products/asmo-na/eng/cluster/mpi/219848.htm

[7] ipm, http://www.nersc.gov/nusers/resources/software/tools/ipm.php
[8] NERSC Seaborg and Bassi, http://www.nersc.gov/nusers/resources/
[9] F. Petrini, D. J. Kerbyson, and S. Pakin, The Case of the Missing Supercomputer Performance: Achieving Optimal

Performance on the 8,192 Processors of ASCI Q, SC03, 2003.
[10] J. Phillips, G. Zheng, S. Kumar, and L. Kale, NAMD: Biomolecular Simulation on Thousands of Processors, SC02, 2002.
[11] UNC RENCI BlueGene/L, http://www.renci.org/about/computing.php
[12] Scientific Discovery, A progress report on the US DOE SciDAC program, 2006.
[13] SDSC DataStar, http://www.sdsc.edu/user_services/datastar/
[14] R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of Collective Communication Operations in MPICH, The

International Journal of High Performance Computing Applications, Vol. 19, No. 1 (2005).
[15] Valerie Taylor, Xingfu Wu, Jonathan Geisler, and Rick Stevens, Using Kernel Couplings to Predict Parallel Applica-

tion Performance, the 11th IEEE International Symposium on High Performance Distributed Computing (HPDC2002),
July, 2002.

[16] Valerie Taylor, Xingfu Wu, and Rick Stevens, Prophesy: An Infrastructure for Performance Analysis and Modeling
System of Parallel and Grid Applications, ACM SIGMETRICS Performance Evaluation Review, Volume 30, Issue 4,
March 2003.

[17] Xingfu Wu, Valerie Taylor and Rick Stevens, Design and Implementation of Prophesy Automatic Instrumentation and
Data Entry System, the 13th International Conference on Parallel and Distributed Computing and Systems (PDCS2001),
August, 2001.

[18] Xingfu Wu, Valerie Taylor, Jonathan Geisler, and Rick Stevens, Isocoupling: Reusing Coupling Values to Predict
Parallel Application Performance, the 18th International Parallel and Distributed Processing Symposium (IPDPS2004),
April, 2004.

[19] Xingfu Wu, Valerie Taylor, Shane Garrick, Dazhi Yu, and Jacques Richard, Performance Analysis, Modeling and
Prediction of a Parallel Multiblock Lattice Boltzmann Application Using Prophesy System, IEEE International Confer-
ence on Cluster Computing, Sep. 2006.

[20] Xingfu Wu and Valerie Taylor, Processor Partitioning: An Experimental Performance Analysis of Parallel Applica-
tions on SMP Cluster Systems, the 19th International Conference on Parallel and Distributed Computing and Systems
(PDCS2007), Nov. 2007.

Edited by: Fatos Xhafa, Leonard Barolli
Received: September 30, 2008
Accepted: December 15, 2008

