2 Scalable Computing: Practice and Experience ISSN 1895-1767
.. Volume 11, Number 2, pp. 189{204.http://www.scpe.org c 2010 SCPE
VIESLAF FRAMEWORK: FACILITATING NEGOTIATIONS IN CLOUDS BY APPLYING

SERVICE MEDIATION AND NEGOTIATION BOOTSTRAPPING

IVONA BRANDIC , DEJAN MUSIC , AND SCHAHRAM DUSTDAR

Abstract. Cloud computing represents a novel and promising computing paradigm where computing resources have to be
allocated to software for their execution. Self-manageabl e Cloud infrastructures are required in order to achieve tha t level of
exibility on one hand, and to comply to users' requirements speci ed by means of Service Level Agreements (SLAs) on the o ther.
However, many assumptions in Cloud markets are old fashione d assuming same market conditions as for example in computat ional
Grids. One such assumptions is that service provider and con sumer have matching SLA templates and common understanding of
the negotiated terms or that they provide public templates, which can be downloaded and utilized by the end users. Moreov er,
current Cloud negotiation systems have based themselves on common protocols and languages that are known to the partici pants
beforehand. Matching SLA templates and a-priori knowledge about the negotiation terms and protocols between partners are
unrealistic assumption in Cloud markets where participant s meet on demand and on a case by case basis. In this paper we present
VieSLAF, a novel framework for the speci cation and managem ent of SLA mappings and meta-negotiations facilitating ser vice
mediation and negotiation bootstrapping in Clouds. Using V ieSLAF users may specify, manage, and apply SLA mappings bri dging
the gap between non-matching SLA templates without a-prior i knowledge about negotiation protocols, required securit y standards
or negotiated terms. We exemplify two case studies where Vie SLAF represents an important contribution towards the deve lopment
of open and liquid Cloud markets.

Key words: grid services, cloud computing, autonomic computing, serv ice negotiation

1. Introduction. Service-oriented Architectures (SOA) represent a promising appach for implementing
ICT systems [9, 24, 30] by packaging the software to services thhaan be accessed independently of the used
programming languages, protocols, and platforms. Despite rem&able adoption of SOA as the key concept for
the implementation of ICT systems, the full potential of SOA (e.g., dynamism, adaptivity) is still not exploited
[28]. SOA approach and Web service technologies represent largeate abstractions and a candidate concept
for the implementation Cloud Computing systems, where massively slable computing is made available to
end users as a service [9, 24]. The key bene ts of providing computinpower as a service are (a) avoidance of
expensive computer systems con gured to cope with peak perfonance, (b) pay-per-use solutions for computing
cycles requested on-demand, and (c) avoidance of idle computingsources [16].

Non-functional requirements of a service execution are termedsQuality of Service (QoS), and are expressed
and negotiated by means ofService Level Agreements (SLAs)SLA templates represent empty SLA documents
with all required elements like parties, SLA parameters, metrics andobjectives, but without QoS values [12].
However, most existing Cloud frameworks assume that the communation partner know about the negotiation
protocols, required security standards and negotiated terms biere entering the negotiation and that they
have matching SLA templates. These assumptions rely on related thnologies (like computational Grids) and
cannot be transferred to computational Cloud markets. In caseof computational Clouds a priori knowledge
about negotiation protocols and strategies as well as matching SLAemplates represent unrealistic assumption
since services are discovered dynamically and on demand.

In this paper we approach the gap between existing QoS methods anCloud services by proposing a
Vienna Service Level Agreement Framework (VieSLAF)architecture for Cloud service management with com-
ponents for service mediation and negotiation bootstrapping [7, 8]. Thereby, we introduce so-calledmeta-
negotiations to allow two parties to reach an agreement on what speci ¢ negotiaion protocols, security stan-
dards, and documents to use before starting the actual negotiton. Moreover, we discuss the concept of
SLA-mappings to bridge the gap between inconsistent SLA templats. The concept of SLA mappings can
be exemplied in di erences in terminology for a common attribute such as price, which may be de ned as
usage priceon one side andservice price on the other, leading to inconsistencies during the negotiation pro-
cess. VieSLAF framework has been successfully applied to (i) devgddCloud infrastructures for the SLA-based
resource virtualization [20] by utilizing our meta negotiation approach and (i) to facilitate liquidity manage-
ment in Clouds by using our SLA mapping approach [29]. Besides perfonance evaluation of the VieSLAF
we discuss successful case studies for the application of VieSLAP testablish open and liquid Cloud mar-
kets.

Distributed Systems Group, Institute of Information Syste ms, Vienna University of Technology, Vienna, Austria, Emai Is:
fivona, dejan, dustdar g@infosys.tuwien.ac.at

189

190 I. Brandic, D. Music, S. Dustdar

The main contributions of this paper are (1) description of the scemrios for the de nition of SLA mapping
documents; (ii) development of the architecture for the meta-negotiations in Cloud systems; (iii) description
of the meta-negotiation document (iv) de nition of the VieSLAF architecture used for the semi-automatic
management of SLA mappings and meta-negotiations and (iv) demonstration of the usability of the VieSLAF
framework for real-world Cloud negotiations.

The rest of this paper is organized as follows: Section 2 presentsétrelated work. Section 3 gives an overview
about the goals of the adaptable, versatile, and dynamic servicedn particular goals considering negotiation
bootstrapping and service mediation. In Section 4 we discuss the ntg-negotiation approach, whereas in Section
5 we present the SLA mapping approach. Section 6 presents théieSLAF architecture. In Section 7 we evaluate
SLA mapping and meta negotiation approach and report successfi/ieSLAF case studies. Section 8 concludes
this paper and describes the future work.

2. Related Work. Currently, a large body of work exists in the area of service negotiton and SLA-based
QoS. Most of the related work can be classi ed into the following fourcategories: (1) adaptive SLA mechanisms
based on OWL, DAML-S and other semantic technologies [13, 26, 38)2) SLA based QoS systems, which
consider varying service requirements but do not consider non mahing SLA templates [1, 34]; (3) systems
relying on the principles of autonomic computing [3, 21, 22]; and systms addressing versatile negotiation in
Grids/SOAs [25, 27, 18]. Since there is very little work on service medigon and negotiation bootstrapping in
Clouds we look in particular into related systems like Grids and SOAs [4].

Work presented in [27] discusses incorporation of SLA-based regice brokering into existing Grid systems.
Oldham et al. describe a framework for semantic matching of SLAs bsed on WSDL-S and OWL [26]. Dobson
at al. present a uni ed quality of service (QoS) ontology applicable tothe main scenarios identi ed such as QoS-
based Web services selection, QoS monitoring and QoS adaptation [[LZhou et al. survey the current research
on QoS and service discovery, including ontologies such as OWL-S ardAML-S. Thereafter, an ontology is
proposed, DAML-QoS, which provides detailed QoS information in a DAML format [38]. Hung et al. propose
an independent declarative XML language called WS-Negotiation for Véb services providers and requestors.
WS-Negotiation contains three parts: negotiation message, whicldescribes the format for messages exchanged
among negotiation parties, negotiation protocol, which describes ie mechanism and rules that negotiation
parties should follow, and negotiation decision making, which is an intemal and private decision process based
on a cost-bene t model or other strategies [17]. Work presenteéh [1] extends the service abstraction in the Open
Grid Services Architecture (OGSA) for QoS properties focusing orthe application layer. Thereby, a given service
may indicate the QoS properties it can o er or it may search for othe services based on speci ed QoS properties.

Quan et al. discuss the process of mapping a light communication workw within an SLA context with
di erent kinds of sub-jobs and resources [25]. Dan et al. present &ramework for providing customers of Web
services di erentiated levels of service through the use of autontad management and SLAs [12]. Ardagana et
al. present an autonomic grid architectures with mechanisms to dyamically re-con gure service center infras-
tructures, which is basically exploited to ful Il varying QoS requirements [3]. Koller et al. discuss autonomous
QoS management using a proxy-like approach. The implementation is #sed on WS-Agreement [36]. Thereby,
SLAs can be exploited to de ne certain QoS parameters that a serce has to maintain during its interaction
with a speci ¢ customer [21]. Kenig at al. investigate the trust issue in electronic negotiations, dealing with
trust to a potential transaction partner and selection of such patners based on their past behavior [22].

Quan et al. and Ouelhadj et al. discuss incorporation of SLA-basedesource brokering into existing Grid
systems [25, 27]. Li et al. discusses Rudder framework, which faciites automatic Grid service compaosition
based on semantic service discovery and space based computing][23ill et al. discusses an architecture
that allows changes to the Grid con guration to be automated in response to operator input or sensors placed
throughout the Grid based on principles of autonomic computing [18]. Similarly to Hill et al. work discussed
in Vambenepe et al. addresses global service management based mninciples of autonomic computing [33].
Vu et al. present an extensible and customizable framework for theautonomous discovery of semantic Web
services based on their QoS properties [35]. Condor's ClassAds mectism is used to represent jobs, resources,
submitters and other Condor daemons [31].

However, to the best of our knowledge none of the discussed apgaches deals with user-driven and semi-
automatic de nition of SLA mappings enabling negotiations between inconsistent SLA templates. Also, none of
the presented approaches addresseta-negotiations (MN) where participating parties may agree on a specic
negotiation protocol, security standards or other negotiation pre-requisites.

Vienna Service Level Agreement Framework - VieSLAF 191

FoSll Infrastructure

Planning] [Execution } Actuator
= y
L P, ViesLAF %
N
3

Service 1

Knowledge
1}

Analysis

Infrastructure Resources

Monitoring -\‘\
SLA (_Run-time Je" '

Manager(s)

LoM2HiS
framework

Servicen |

\
2

Job M t Interf:
............... R — @ !obManagement Interface
R, + Output Actuator Values B Scif-management Interface
= Control Loop A \cgotiation Interface

< === Knowledge Access

Fig. 3.1 . FoSll infrastructure

3. Adaptable, Versatile, and Dynamic services. In this section we discuss how service mediation and
negotiation bootstrapping can be realized using the concepts of danomic computing [19]. First, we introduce
the Foundations of Self-governing ICT Infrastructures (FoSll) project (Section 3.1). Thereafter we discuss how
the VieSLAF architecture contributes to the implementation of FoSIl goals (Section 3.2).

3.1. FoSllinfrastructure. To facilitate dynamic, versatile, and adaptive IT infrastructures, SOA systems
should react to environmental changes, software failures, andtber events which may in uence the systems'
behavior. Therefore, adaptive systems exploiting self-* properies (self-healing, self-controlling, self-managing,
etc.) are needed, where human intervention with the system is minimied. In Foundations of Self-governing
ICT Infrastructures (FoSll) project we propose models and concepts for adaptive servicedilizing autonomic
computing concepts [3, 19]. As shown in Figure 3.1 thé=oSlII infrastructure is used to manage the whole
Monitoring, Analysis, Planning and Execution (MAPE) lifecycle of self-adaptable Cloud services [5]. Each
FoSllI service implements three interfaces: (i) negotiation interfae necessary for the establishment of SLA
agreements, (ii) job-management interface necessary to stathe job, upload data, and similar job management
actions, and (iii) the self-management interface necessary to dése actions in order to prevent SLA violations.

The self-management interface shown in Figure 3.1 is implemented byaeh Cloud service and speci es
operations for sensing changes of the desired state and for reang to those changes. The host monitor sensors
continuously monitor the infrastructure resource metrics (input sensor values arrova in Figure 3.1) and provide
the autonomic manager with the current resource status. The run-time monitor sensors sense future SLA
violation threats (input sensor values arrowb in Figure 3.1) based on resource usage experiences and prede ned
threat thresholds. The treat thresholds should be retrieved by he knowledge management systems as described
later on in the paper. The mapping between the sensed host valuesnd the values of the SLA parameters is
described next.

As shown in Figure 3.1 we distinguish betweerhost monitor and runtime monitor. Resources are monitored
by host monitor using arbitrary monitoring tools (e.g. Ganglia). Thus, resources mérics include e.g., down-time,
up-time, available in and out bandwidth. Based on the prede ned mapping rules stored in a database monitored
metrics are periodically mapped to the SLA parameters. An example BA parameter is service availability Av,
which is calculated using the resource metricelowntime and uptime and the according mapping rule looks like
the following one:

Av =1 downtime=uptime (3.2)

The mapping rules are de ned by the provider using appropriate Domain Speci ¢ Languages (DSL). These
rules are used to compose, aggregate, or convert the low-leveletnics to form the high-level SLA parameter
including mappings at di erent complexity levels e.g., 1 : n or n : m. Thus, calculated SLA values are
compared with the prede ned threat threshold in order to react before SLA violations happen. The concept
of detecting future SLA violation threats is designed by de ning a more restrictive threshold than the SLA
violation threshold known as threat threshold. Generation of thethreat threshold is far from trivial and should
be de ned and mananaged by the FoSlII's knowledge management stem.

192

I. Brandic, D. Music, S. Dustdar

Prerequisites

Negotiation
Bootstrapping

Definition and
publication of
Meta-negotiation
documents

Service Mediation

Execution of a Meta-
negotiation

Detections of
SLA
inconsistencies

1
i
i
1
i
i
/s \ i
i 1
ELZL?QIW o Evaluation of I
ot i
bootstrapping :‘;?;TEQELA i
1 strategies P, |
1 — i
i i il 1
Knowledge ! Application of o !
I i existing and Agpl{catlondof i
ning I definition of new jélﬁs:i?ig: Zf new i
1 bootstrapping) i
] i
| strategies SLA mappings i
~— 7 l
Applicaiton of i
. SLA mappings to I
Boctstrapping fulfil successful | !
SLA contracting 0
i

__

Fig. 3.2 . Negotiation Bootstrapping and Service Mediation as Part of the Autonomic Process

As described in [11] we implemented a highly scalable framework for maging of Low-level Resource Metrics
to High Level SLA parameters LOM2HiS framework facilitating exchange of large numbers of messages. We
designed and implemented a communication model based on the Javae@dsaging Service (JMS) API, which is
a Java Message Oriented Middleware (MOM) API for sending messagebetween two or more clients. We use
Apache ActiveMQ as a JMS provider that manages the sessions andugues.

As shown in Figure 3.1VieSLAF framework represents an actuator mediating between inconsisté SLA
templates and bootstrapping between di erent protocols. In the following we discuss how theVieSLAF con-
tributes to the implementation of the MAPE cycle in self-adaptable Cloud services considering service negotia-
tion phase.

3.2. Negotiation Bootstrapping and Service Mediation. Figure 3.2 depicts how the principles of
autonomic computing can be applied to negotiation bootstrapping am service mediation. As a prerequisite of
the negotiation bootstrapping users have to specify meta-negd@tion document describing the requirements of
a negotiation, as for example required negotiation protocols, requed security infrastructure, provided docu-
ment speci cation languages, etc. During the monitorig phase all candidate services are detected which need
negotiation bootstrapping, e.g. which do not have matching negotigion protocol with the potential consumer.
During the analysis phaseexisting knowledge base is queried and potential bootstrapping sttegies are found.
In case of missing bootstrapping strategies users can de ne in a sg-automatic way new strategies flanning
phasg. Finally, during the execution phasethe negotiation is started by utilizing appropriate bootstrapping
strategies.

The same procedure can be applied to service mediation. During theesvice negotiation inconsistencies
in SLA templates may be discovered fnonitoring phase). During the analysis phaseexisting SLA mappings
are analyzed. During the planning phasenew SLA mappings can be de ned, if existing mappings cannot be
applied. Finally, during the execution phasethe newly de ned SLA mappings can be applied.

As indicated with bold borders in Figure 3.2, in this paper we present stutions for the de nition and
accomplishment of meta-negotiations (Section 5) and for the spécation and applications of SLA mappings
(Section 4) as described next.

4. Service Mediation with SLA Mappings. In the presented approach each SLA template has to be
published into a registry where negotiation partners i. e., provider aad consumer, can nd each other. The
management of SLA mappings and published services is presented ir@&ion 4.1. The transformations between
remote and local SLA templates are discussed in Section 4.2. Finally,raexample SLA mapping document is
presented in Section 4.3.

Vienna Service Level Agreement Framework - VieSLAF 193

Service Registry
\\\\
LN
N
|

Template a:

XSL-
Transfor-
mations

- Service 1
- Service 2
- Service 3

local
WSLA
template

local to
remote

Service n

5. <<template adaptation>>

4. <<assign mappings>>
2. <<assign mappings>>

3. <<search services>>

Transfor-
mations

1. <<assign services to category>>

Service Service
Consumer Provider

—

@ (b)

Fig. 4.1 . (a) Management of SLA-Mappings (b) QoS basic scenario

4.1. Management of SLA Mappings. Figure 4.1(a) depicts the architecture for the management of
SLA mappings and participating parties. The registry comprises di erent SLA templates whereby each of them
represents a speci c application domain e.g., SLA templates for the radical, telco or life science domain. Thus,
each service provider may assign his/her service to a particular teplate (see step 1 in Figure 4.1(a)) and
afterwards assign SLA mappings, if necessary (see step 2). Eatbmplate a may have n services assigned.
Available templates can be browsed using an appropriate GUI.

Service consumers may search for the services using meta-datadasearch terms (step 3). After nding
appropriate services each service consumer may de ne mappings the associated template (step 4). Thereafter,
the negotiation between service consumer and service provider matart as described in the next section. SLA
mappings should be de ned in a dynamic way. Thus, SLA templates canbe updated frequently to re ect
the actual SLAs used by service provides and consumers based prede ned adaptation rules (step 5). The
adaptability functionality facilitates the generation of user driven p ublic SLA templates.

4.2. SLA-Mappings Transformations. Figure 4.1(b) depicts a scenario for de ning XSL transforma-
tions. Asthe SLA speci cation language we use Web Service Level Agements (WSLAS) [37]. We also developed
rst bootstrapping strategies for communication across di erent SLA speci cation languages [6].

Templates are publicly available and published in a searchable registry.Each participant may download
already published templates and compare it in a semi-automated or aomated way with the local template. If
there are any inconsistencies discovered, the service consumeaynwrite rules (XSL transformation) from his/her
local SLA template to the remote template. The rules can also be writen by using appropriate visualization
tools, for example using a GUI as depicted in Figure 6.1. Thereafterthe rules are stored in the database and can
be applied during the runtime to the remote template. Since during the negotiation process transformations are
done in two directions, the transformations from the remote SLA template to the local template are necessary
as well.

As depicted in Figure 4.1(b), a service consumer is generating an SLAThe locally generated SLA plus the
rules de ning transformations from local SLA to remote SLA deliver an SLA which is complaint to the remote
SLA. In the second case the remote template has to be translatethto the local one. In that case the remote
SLA plus the rules de ning transformations from the remote to local SLA deliver an SLA which is compliant to
the local SLA. Thus, the negotiation may be done between non-mathing SLAs in both directions: from service
consumer to service provider and vice versa.

The service provider can de ne rules for XSL transformations in the same way as depicted in Figure 4.1(b)
from the publicly published SLA templates to the local templates. Thus, both parties, provider and consumer,
may match on a publicly available SLA template.

4.3. SLA-Mappings Document (SMD). Figure 4.2 shows a sample rule for XSL transformations where
price de ned in Euros is transformed to an equivalent price in US Dollass. Please note that for the case of
simplicity we use a relatively simple example. Using XSLT more complicatedmappings can also be de ned.
Explanation of this is out of scope of this paper.

As shown in Figure 4.2, the Euro metric is mapped to the Dollar metric. In this example we de ne the
mapping rule returning Dollars by using the Times function of WSLA Speci cation (see line 4). TheTimes

194 I. Brandic, D. Music, S. Dustdar

1.~\dots

2. <xslitemplate \dots >

3. <xsl:element name="Function" \dots >

4. <xslattribute name="type"> <xsl:itext>Times</xsl:te xt> </xsl:attribute>

5. <xslattribute name="resultType"> <xsl:text>double< Ixsl:text> </xsl:attribute>
6. <xsl:element name="Operand" \dots >

7 <xsl:copy> <xsl:copy-of select="@*|node()"/> </xsl:c opy>

8. </xsl:element>

. <xsl:element name="Operand" \dots >

10. <xslelement name="FloatScalar" \dots > <xsl:text>1. 27559</xsl:text> </xsl:element>
11. </xsl:element>

12. </xsl:element>

13.</xsl:template>

14\dots .

Fig. 4.2 . Example XSL Transformation

service providers service

— consumer
blishin | meta negotiation
'[publshing matching lookup

Fig. 5.1 . Meta-negotiation phases

function multiplies two operands: the rst operand is the Dollar amount as selested in line 7, the second operand
is the Dollar/Euro quote (1.27559) as specied in line 10. The dollar/euro quote can be retrieved by a Web
service and is usually not hard coded.

With similar mapping rules users can map simple syntax values (values afome attributes etc.), but they
can even de ne complex semantic mappings with considerable logic. TUs, even syntactically and semantically
di erent SLA templates can be translated into each other.

5. Negotiation Bootstrapping with Meta-negotiations. In this section, we present an example sce-
nario for the meta-negotiation architecture and describe the doament structure for publishing negotiation
details into the meta-negotiation registry.

5.1. Scenario. As depicted in Figure 5.1, the meta-negotiation infrastructure canbe employed in the
following manner:

Publish. A service provider publishes descriptions and conditions of suppoed negotiation protocols into the
registry (see Section 6).

Lookup. Service consumers perform lookup on the registry database by bmitting their own documents
describing the negotiations that they are looking for.

Match. The registry discovers service providers who support the negotigon processes that a consumer is
interested in and returns the documents published by the service mviders.

Negotiate. Finally, after an appropriate service provider and a negotiation praocol is selected by a consumer
using his/her private selection strategy, negotiations between tem may start according to the conditions
speci ed in the provider's document.

Note that in this scenario, the consumer is looking for an appropriaé service provider. The reverse may
happen as well, wherein a consumer advertises a job or a task to beied out and many providers bid to
complete it. In such cases, the providers would perform the lookup

5.2. Registry Document. The participants publishing into the registry follow a common documert
structure that makes it easy to discover matching documents. Tlis document structure is presented in Figure 5.2
and consists of the following main sections. Each document is encla$evithin the

<meta-negotiation>...</meta-negotiation>

tags. The document contains an<entity> elements de ning contact information, organization and ID of
the participant. The <ID> element de nes the unique identi er given to the meta-negotiation document by
the registry. The publisher can update or delete the document usig the identi er. Each meta-negotiation

Vienna Service Level Agreement Framework - VieSLAF 195

1. <meta-negotiation

2 xmins:xsi="\dots " “xsi:noNamespaceSchemalocation=" \dots ">
3 <entity>

4 <contact name="\dots ** phoneNumber="\dots ™ />

5. <organization name= ‘University of \dots ™

6.~\dots

7 <ID name="1234"/>

8 </entity>

9. <pre-requisite>

10. <role name="consumer"/>

11. <security> <authentication value="GSI location="uri "I> </security>
12. <negotiation-terms>

13. <negotiation-term name="beginTime"/>

14, <negotiation-term name="endTime"/>

15. <negotiation-term name="price"/>

16. </negotiation-terms>

17. </pre-requisite>
18. <negotiation>

19. <document name="WSLA" value="uri" version="1.0" />
20. <document name="WS-Agreements" value="uri" version= "1.0" />
21 <protocol name="alternateOffers" schema="uri" versi on="1.0" location="uri"/>

22. </negotiation>

23. <agreement>

24. <confirmation name="arbitrationService" value="uri ">
25. </agreement>

26. </meta-negotiation>

Fig. 5.2 . Example document for meta-negotiation registry

comprises three distinguishing parts, namelypre-requisites negotiation and agreement as described in the
following paragraphs.

Pre-requisites. The conditions to be satis ed before negotiations are de ned within the <pre-requisite>
element (see Figure 5.2, lines 9{17). Pre-requisites de ne theole a participating party takes in a negotiation,
the security credentials and the negotiation terms. The <role> element de nes whether the speci ¢ party wants
to engage in the negotiation as a provider or as a consumer of resames. The <security> element speci es
the authentication and authorization mechanisms that the party wants to apply before starting the negotiation
process. For example, in Figure 5.2, the consumer requires that #hother party should be authenticated through
the Grid Security Infrastructure (GSI) [15] (line 11). The negotiation terms specify QoS attributes that a party
is willing to negotiate and are speci ed in the <negotiation-term> element. For example, in Figure 5.2, the
negotiation terms of the consumer arebeginTime, endTime, and price (lines 13{15).

Negotiation. Details about the negotiation process are de ned within the
<negotiation> element. In Figure 5.2, the consumer supports two document langages and one negotiation
protocol. Each document language is speci ed within<document>element. In Figure 5.2, WSLA and WS-
Agreements are speci ed as supported document languages. Additional attrilites specify the URI (Uniform
Resource Indicator) to the API or WSDL for the documents and their versions supported by the consumer (lines
18{22). In Figure 5.2, AlternateO ers is speci ed as the supported negotiation protocol. In addition to the
name, version, and schemaattributes, the URI to the WSDL or API of the negotiation protoco Is is speci ed
by the location attribute (line 21).

Agreement. Once the negotiation has concluded and if both parties agree to theerms, then they have
to sign an agreement. This agreement may be veri ed by a third pary organization or may be lodged with
another institution who will also arbitrate in case of a dispute. These modalities are specied within the
<agreement>clause of the meta-negotiation document. For example, in Figure 5.2a third party service, called
arbitrationService, is speci ed for con rming the agreement between the two parties

6. VieSLAF framework. In this section we present the architecture used for the semi-autmatic man-
agement of meta-negotiations and SLA mappings We discuss a sample architectural case study exemplifying
the usage of VieSLAF. Thereafter, we describe eaclieSLAF 's core component in detail.

6.1. VieSLAF architecture. As discussed in Section 3/ieSLAF framework represents the rst proto-
type for the management of self-governing ICT Infrastructures. The VieSLAF framework enables application
developers to e ciently develop adaptable service-oriented applicéions simplifying the handling with numerous
Web service speci cations. The framework facilitates managementdf QoS models as for example management of
meta-negotiations [8] and SLA mappings [7]. Based olieSLAF framework service provider may easily manage

196 I. Brandic, D. Music, S. Dustdar

T TR————. T ——
I |

Data Model Knowledge Base 11 Monitoring
A I

Cloud of measurement services

Thread1_param1

Sevice 1 0 Thread2_param2

,,,,,,,,, 14 Threadn_paramn
----------- i T 1
Meta) 1) . T:reangaram

negotiation ! | Sevice 2 read2_param2

document $ Threadn_paramn

- - e —— —— o —— — —————— — e e - o e o - - —

.
H

| S

__________ | Remote !

- i s1a i

Adaptation | - template |i!

Adaptation
rules for SLA
templates

MN and SLA Mapping
Middleware

formation |!
Rules:
XSLT,
XPath

H Client,
i consumer specific
middleware 1

Sample Service 0
= provider specific |
1 middleware

Sample Consumer

Fig. 6.1 . VieSLAF Architecture

QoS models and SLA templates and frequently check whether selead services satisfy developer's needs e.g.,
speci ed QoS-parameters in SLAs. Furthermore, we discuss basideas about the adaptation of SLA templates.

We describe the VieSLAF components based on Figure 6.1. As shown in step (1) in Figure 6.1 use
may access the registry using a GUI, browse through existing temptes and meta-negotiation documents using
the MN and SLA mapping middleware. In the next step (2), service piovider specify MN documents and
SLA mappings using the MN and SLA mapping middleware and submit it to the registry. Thereafter, in step
(3), service consumer may query existing meta-negotiation docuents, de ne own SLA mappings to remote
templates. MN and SLA mapping middleware on both sides (provider's ad consumer's) facilitate management
of MNs and SLA mappings. Submitted MN documents and SLA mappingsare parsed and mapped to a
prede ned data model (step 4). After meta-negotiation and preselection of services, service negotiation may
start using the negotiation protocols, document languages, and exurity standards as specied in the MN
document (step 5). During the negotiation SLA mappings and XSLT transformations are applied (step 6).
After the negotiation, invocation of the service methods may stat (step 7). SLA parameters are monitored
using the monitoring service (step 8). Based on the submitted SLA mapping publicly available SLA templates
are adapted re ecting the majority of local SLA templates (step 9).

6.1.1. Knowledge Base. As shown in Figure 6.1 knowledge bases responsible for storing SLA tem-
plates, SLA mappings and meta-negotiation documents. For storig of SLA templates and MN documents
we implemented registries, representing searchable repositorieCurrently, we implemented a MS-SQL 2008
database with a Web service front end that provides the interfacefor the management of SLA mappings and a
PostgreSQL for the management of meta-negotiations. Thus, foscalability issues we rather intent to host the
registries using a cloud of databases hosted on a service providerch as Google App Engine [14] or Amazon S3
[2]. The database is manipulated based on the role-model. The registrmethods are implemented as Windows
Communication Foundation (WCF) services and can be accessed onlyith the appropriate access rights. We
de ne three roles: service consumer service provider and registry administrator. Service consumersare able
to search suitable services for the selected service categories.elgy using the method ndServices. Service
consumer may also create SLA mappings using the methodreateAttributeMapping. Service providers may
publish their services and bind it to a speci c template category usingthe method createService Furthermore,
both service consumer and provider may submit and query MN docurants.

6.2. Meta-negotiation Middleware. The meta-negotiation middleware facilitates publishing of the
meta-negotiation documents into the registry and the integration of the meta-negotiation framework into the
existing client and/or service infrastructure, including, for example, negotiation or security clients. Besides

Vienna Service Level Agreement Framework - VieSLAF 197

Fig. 6.2 . Meta-negotiation middleware

acting as a client for publishing and querying meta-negotiation docunents (steps 1 and 2 in Figure 6.1), the
middleware delivers necessary information for the existing negotiabn clients, i. e. information for the estab-
lishment of the negotiation sessions (step 4, Figure 6.1) and informt@n necessary to start a negotiation (step
5 in Figure 6.1). As shown in Figure 6.1 each service consumer may negde with multiple service providers
concurrently. As mentioned in Section 5 even the reverse may hamm as well, wherein a consumer advertises a
job. In such cases, the providers would negotiate with multiple consmers.

After querying the registry and applying a client-based strategy br the selection of the appropriate ser-
vice, the information from the service's meta-negotiation documenis parsed. Thereafter, meta-negotiation
information is incorporated into the existing client software using a dependency injection framework such as
Spring!. This dependency injection follows an Inversion of Control approah wherein the software is con gured
at runtime to invoke services that are discovered dynamically rathe than known and referenced beforehand.
This is suitable for meta-negotiation wherein a participant discoversothers at runtime through the registry
and has to dynamically adapt based on the interfaces provided by higounterpart (usually through a WSDL
document).

Figure 6.2 shows an example of how this would work in practice. On the ansumer side, the middleware
gueries the registry and obtains matching meta-negotiation docurents. The middleware parses the meta-
negotiation document of the selected provider and dynamically injets the interfaces discovered from the WSDLs
in the document for security, negotiation and arbitration servicesinto the existing abstract clients. Currently,
we support semi-automatic integration of existing clients into meta-negotiation middleware wherein the existing
clients are extended with the XML-based con guration les which are then automatically populated with the
discovered interfaces.

6.2.1. SLA Mapping Middleware. As already mentioned in Section 6.1.1 SLA mapping middleware is
based on di erent WCF services. For the sake of brevity, in the follaving we discuss just a few of them. The
RegistryAdministrationService provides methods for the manipulation of the database where admiistrator rights
are required e.g., creation of template categories. Another exame representsWSLAMappingService which is
used for the management of SLA mappings by service consumer argervice provider. WSLAQueryingService
is used to query the SLA mapping database. The database can be gtied based on template categories, SLA
attributes and similar attributes. Other implemented WCF service are for example services for SLA parsing,
XSL transformations, and SLA validation.

Service consumers may search for appropriate services throudWSLAQueryingService and de ne appro-
priate SLA mappings by using the method createAttributeMapping. Each query request is checked during the
runtime, if the service consumer has also speci ed any SLA mapping®r SLAElements and SLAAttributes spec-

i ed in the category's SLA template. Before the requests of servie consumers can be completely checked, SLA
transformations are applied. The rules necessary for the transimations of attributes and elements can be found
in the database and can be applied using the consumer's SLA templateThereafter, we have the consumer's
template completely translated into category's SLA template. Transformations are done byWSLATransforma-

Lhttp:/www.springframework.org/

198 I. Brandic, D. Music, S. Dustdar

tor implemented with the .NET 3.5 technology and using LINQ?. In the following we explain monitoring and
adaptation service in more detail.

Monitoring Service. As depicted in Figure 6.1, we implemented a lightweight concept for moitoring of SLA
parameters for all services published in a speci ¢ template categgr The aim of the monitoring service is to
frequently check the status of the SLA parameters of an SLA aggement and deliver information to the service
consumer and/or provider. Monitoring starts after publishing a service in a category and is provided through
the whole lifetime of the service. Monitoring service is implemented as ra internal registry service, similar to
other services for parsing, transformation, and validation, that we have already explained in previous sections.
Resources are monitored byhost monitor using arbitrary monitoring tools (e.g. Ganglia). Resources metrics
include e.g., down-time, up-time, available storage. Based on the pde ned mappings stored in a database,
monitored metrics are periodically mapped to the SLA parameters aglescribed in [11].

After publishing service and SLA mappings, SLAs are parsed and it is idnti ed which SLA parameters have
to be monitored and how. We distinguish between periodically measur SLA parameters and the parameters
which are measured on request. The values of the periodically meased parameters are stored in the so-called
parameter-pool The monitoring service provides two methods: a knock-in method dr starting the monitoring
and a method for receiving the measured SLA parameters from theneasurement pool. Whenever a user requests
monitoring information of the particular SLA (i) SLAs parameters ar e requested from theparameter-pool in
case of periodically measured parameters or (ii) SLA parameters arimmediately measured as de ned in the
parsed and validated SLAs in case of on-request parameters.

Adaptation Service. Remote SLA templates should not be de ned in a static way, they shald re ect
provider's and consumer's needs. We implemented a rst prototypeof an internal registry's adaptation service.
Thereby, mappings supplied by the consumers or the providers arevaluated. Based on the evaluation outcome
a new version of the particular SLA template can be automatically de ned.

Each SLA mapping can be de ned as @ParameterWish (add/delete) and stored as an XML chunk. Registry
administrators have to con gure a learning capability property for each template category. Regression models
represent one of the promising learning functions. Whenever a neWarameterWish is accepted a new revision
category of an SLA template is generated. All services and consuens who voted for that specic wish are
automatically re-published to the new revision. Also all SLA mappings ae automatically assigned to the new
template revision. Old SLA mappings of the consumers and servicesra deleted and also all old background
threads used for calculation for old SLA template are aborted. Thenewly generated SLA template is thereafter
parsed and new background monitoring threads are created andtarted for each service. Thus, based on the
presented adaptation approach public templates can be derived in aiser driven way re ecting the majority of
local templates. Application of the learning functions is discussed in rore detail in Section 7.3.2.

7. VieSLAF Evaluation and Case Studies. In this section we evaluate theVieSLAF framework. In
Section 7.1 we evaluate SLA mappings. In Section we 7.2 we evaluate taenegotiations. In Section 7.3 we
report some successful VieSLAF case studies.

7.1. Evaluation of SLA mappings. In Section 7.1.1 we measure the overhead produced by SLA map-
pings compared to Web service invocation without mappings. We desibe the experimental testbed and the
setup used. Thereafter, we discuss the experimental results.nlSection 7.1.2 we discuss stress tests with the
varying number of concurrently invoked SLA mappings. In Section 71.3 we present results with the varying
number of SLA mappings per single Web service invocation.

7.1.1. Overhead Test. In order to test the VieSLAF framework we developed a testbed as shown in
Figure 7.1(a). As a client machine we used an Acer Aspire Laptop, Intl Core 2 Duo T5600 1.83 GHz, 2
MB L2 Cache, 1GB RAM. For hosting of 10 sample services, calculatoservices with 5 methods, we used
a single core Xenon 3.2Ghz, L1 cache, 4GB RAM Sun blade machine. Wese@ the same machine to host
VieSLAF s WCF services. The aim of our evaluation is to measure the overheaproduced usingVieSLAF 's
WSLAQueryingService for search and mappings of the appropriate services.

We created 10 services (S1,..., S10) and 10 accounts for servigeoviders. We also created the registry
administrator's role, which manages the creation of template categries with the corresponding SLA templates.
The SLA template represents a remote calculator service with ve nethods: Add, Subtract, Multiply, Divide
and Max. Both, the provider and the consumers de ne ve SLAMappings, which have to be used during the

2Language Integrated Query

Vienna Service Level Agreement Framework - VieSLAF 199

@ (b)
Fig. 7.1 . VieSLAF Testbed (a) for the evaluation of SLA mappings and (b) meta-negotiations

Table 7.1
SLA Mappings Overhead Compared to Simple Web Service Invoca tion (Without SLA Mappings)

Service Search Time Total
SLA-Mapping Remaining Time
Validation | Consumer Map. | Provider Map.
Time in sec 0.046 0.183 0.151 1.009| 1.389
Time [%)] 3.32 13.17 10.87 72.64| 100.00

runtime. We specify three simple, syntactic mappings where we onlyltange the name of an element or attribute.
The other two mappings consider also semantic mappings, where weap between structurally di erent SLA
templates.

Table 7.1 shows the experimental results. The measured values regsent the arithmetic mean of 20 service
invocations. The overhead measured during the experimental rests includes the time needed for validation
of SLA documents (column Validation in Table 7.1), the time necessary to perform mappings from the local
consumers to the remote SLA templates (columnConsumer Mapping) and the time necessary to transform
the remote SLA templates to the local providers (columnProvider Mapping). Furthermore, we measured the
remaining time necessary to perform a search. The remaining time includes the ra trip time for a search
including data transfer between the client and the service and vise ersa. As shown in Table 7.1 the time
necessary to handle SLA mappings Y alidation + ConsumerMapping + ProviderMapping) represents 038
seconds or 2736% of the overall search time.

Please note that the intention of the presented experimental reglts is the proof of concept of the SLA
mapping approach. We did not test the scalability issues, since we inted to employ computing Clouds like
Google App Engine [14] or Amazon S3 [2] in order to cope with the scaldlity issues.

7.1.2. Stress Tests. In this section we describe tests on how theVieSLAF middleware copes with the
multiple SLA mappings executed concurrently with di ering complexity . Evaluation is done on an Acer Aspire
Laptop, Intel Core 2 Duo T5600 1.83 GHz, 2 MB L2 Cache, 1GB RAM. For the evaluation we have used two
di erent SLA mappings:

Simple: Invocation of the simple SLA mappings, an example is translatia of one attribute to another
attribute e.g., usage priceto price.

Complex: Represents the invocation of the complex SLA mappings,afor example semantic mappings
considering two structurally di erent SLA templates.

We tested VieSLAF with di erent versions of XSLT transformers, namely with XSLTCompiledTransform,
.Net version 3.0 and with the obsoleteXSLTTransform Class from .Net 1.1. Figure 7.2(a) shows the measure-
ments with the XSLTCompiledTransform Transformer and with the XSLTTransform Class. Thex axis depicts
the number of SLA mappings performed concurrently i. e., number 6runs. The y axis depicts the measured
time for the execution of SLA mappings in seconds.

Considering the measurement results we can observe that th&SLTTransform Class is faster than the
XSLTCompiledTransform Transformer from the newer .Net version. Complex mappings exeded with the
XSLTTransform Class almost overlap with the simple mappings executed with theXSLTCompiledTransform.

200 I. Brandic, D. Music, S. Dustdar

(@) (b)

Fig. 7.2 . (a)Stress Tests with XSLTCompiledTransform Transformer and XSLTTransform Class (b) Measurements with
varying nhumber of SLA mappings per Web Service Invocation

We can observe that in both cases, simple and complex mapping, thegpformance starts to signi cantly decrease
with the number of SLA mappings > 100. If the number of mappings< 100, the execution time is about or
less than 1 second.

7.1.3. Multiple SLA Mapping Tests. In this section we discuss performance results measured during
a Web service call with varying numbers of SLA mappings per service We measured 5, 10, 15 and 20 SLA
mappings per Web service call. In order to create a realistic testbedve used SLA mappings which depend on
each other: e.g., attribute A is transformed to attribute B, B is transformed to C, C to D, and so on. Thus, we
simulate the worst case, where SLA mappings can not be performedoncurrently, they have to be performed
sequentially.

Evaluation is done on an Acer Aspire Laptop, Intel Core 2 Duo T56001.83 GHz, 2 MB L2 Cache, 1GB RAM.
Figure 7.2(b) shows measured results. The axis depicts the number of SLA mappings performed concurrently
or sequentially considering attribute dependencies. They axis depicts the measured time for the execution of
SLA mappings in milliseconds. We executed SLA mappings between theemote template and the provider's
template (i. e., provider mappings as described in Table 7.1) before th runtime, because these mappings
are known before consumer requests. Thus, only mappings betee the consumer's template and the remote
template are done during the runtime as indicated with the SLA Mapping line. The line SLA Mapping + Client
invocation comprises the time for the invocation of a Web service method includig SLA mapping time. The
SLA Mapping + Client invocation line does not comprise round-trip time, it comprises only the requestime.

We can conclude that even with the increasing number of SLA mapping and considering the worst case
scenario with sequentially performed mappings the SLA mapping time epresents about 20% of the overall
execution time.

7.2. Evaluation of the Meta-Negotiation Approach. In this section we evaluate the meta-negotiation
approach as shown in Figure 7.1(b). We have used the Gridbus brokg32] as an example service consumer and
an enterprise Grid constructed using Aneka [10] as a service provéd. The aim of this evaluation was to test
the overhead of the meta-negotiation infrastructure on the oveall negotiation process.

7.2.1. Testbed. As shown in Figure 7.1, we deployed the registry in a machine running Widows Server
2003. The registry was accessible through a Web service interfa@nd used a PostgreSQL database on its
backend. Since the aim of these experiments was only to test the rtenegotiation framework, we isolated
the Negotiation Service from the resource management system. é#ce, it would reject any proposal for node
reservation as it would not be able to determine node availability. We deloyed 20 such services|(S1,...S10)
on machines in a student lab in the Department of Computer Science rBd Software Engineering, University
of Melbourne, Australia and (S11,...S20) on machines in the Department of Communication Computer and
System Sciences, University of Genova, Italy. Negotiations with srices located in Melbourne would terminate
in single rounds (a proposal followed by a rejection). Services locatl in Italy would terminate after 2 retries. We
published a meta-negotiation document for each service into the gistry with di erent negotiation terms and
document languages. The Gridbus broker was started on a machinim the Department of Computer Science,
University of Melbourne and queried the registry in order to select a appropriate service provider. It would
then open a negotiation process with the selected Aneka Negotiatio Service.

Vienna Service Level Agreement Framework - VieSLAF 201

Table 7.2
Experimental results of the meta negotiation approach
Overall Negotiation Total
Meta-Negotiation Negotiation
Querying | Parsing
Time in sec 2.91 0.02 15.10| 18.03
Time [%] 16.16 0.01 83.73| 100.00

(@) (b)

Fig. 7.3 . (a) Architecture for the SLA-based Resource Virtualizatio n [20] (b) Lifecycle of the SLA Template as used in [29]

7.2.2. Experimental Results. The results of our evaluation are shown in Table 7.2. As shown in Ta-
ble 7.2 the time necessary to query the registry represents:21 seconds or 186% of the overall negotiation
time. Query time is calculated as the time necessary to get the list oftie IDs, i. e. invocation of the method
guery(XMLdocument), plus the time necessary to fetch each document, i. e. multiple invaations of the method
getDocument(ID). The time necessary to fetch each document represents about@sec. Thus, in our experi-
ments we fetched about 15 XML documents in average, since:21=0:2 15. Please note, that all times used
in Table 7.1 are average times measured over 10 rounds. Time necapsto parse the selected meta-negotiation
document and to inject the WSDL information into the client is 0 :02 seconds or 1% of the overall negotiation
time. Thus, time for the completion of the meta-negotiation is 293 seconds or 18.7% of the overall negotiation
time. The time for the meta-negotiation is calculated as the the sum 6 the time necessary to query the registry
(2:91 seconds) and the time necessary to parse the selected metacdment (0:02 seconds).

The time necessary to negotiate with anAneka service represents 180 seconds or 833% of the overall
negotiation time. We observed that the negotiation time with services located in Italy represents about 15
seconds (due to 2 retries), since the time necessary to negotiatth services located in Melbourne represents
about 5 seconds. Thus, in our experiments we have obviously negated only with services located in Italy. We
started an alternate o ers negotiation with only one round. Thus, the overall negotiation time is 1803 seconds.
Overall negotiation time is calculated as the sum of the time necess&rto complete the meta-negotiation and
time necessary to complete the negotiation.

Considering the fact that the time necessary to complete a meta-egotiation represents only 1617% of the
overall negotiation time, and considering the fact that we have usd negotiations with only one round, we can
show that the overhead of the meta-negotiations do not signi canly in uence the overall negotiation time.

With the presented experiments we demonstrated the applicability d our approach to the proposed archi-
tecture. Since we plan to use computational clouds in the future, he intention of the presented experiments
was not to test the scalability of our approach.

7.3. Case Studies. Besides FoSll project, which was the primary reason for the devyepment of the
VieSLAF framework, VieSLAF has been successfully applied to additinal case studies. In Section 7.3.1 we
discuss SLA-based resource virtualization approach for on-denmal service provision. In Section 7.3.2 we discuss
the application of VieSLAF framework for the liquidity management in C loud markets.

7.3.1. An SLA-based Resource Virtualization Approach For O n-demand Service Provision.
As discussed in [20] VieSLAF's meta-negotiation concept has been scessfully utilized for the realization of the

202 I. Brandic, D. Music, S. Dustdar

SLA based resource virtualization environment. Thereby, an integative infrastructure has been provided for
on demand service provision based on SLAs. As depicted in Figure 78 users describe the requirements for
an SLA negotiation on a high level using the concept of meta-negotitons (MN). During the meta-negotiation
only those services are selected, which understand specic SLA dament language and negotiation strategy
or provide a speci ¢ security infrastructure. After the meta-negotiation process, a meta-broker (MB) selects
a broker that is capable of deploying a service with the speci ed userequirements. Thereafter, the selected
broker negotiates with virtual or physical resources (R) using the requested SLA document language and using
the speci ed negotiation strategy. Once the SLA negotiation is coreluded, service (S) can be deployed on the
selected resource using the Automatic Service Dployer (ASD).

7.3.2. Liquidity Management in Cloud Markets. As discussed in [29] we demonstrated the problems
caused in computational Cloud markets by a large number of resowe de nitions, namely low liquidity for each
available resource type. To counteract this problem, we applied SLAnappings, which ensures su cient liquidity
in the market. SLA mapping techniques not only simplify the search fa similar o ers but also allow us to derive
public SLA templates from all existing o erings (i. e. consumer-de ned service level contracts or unsigned service
level agreements). Figure 7.3(b) depicts the lifecycle of a public teplate. As indicated through step (1), we
assume that for speci c domains, specic SLA templates are genated, e.g. medicine, telecommunication.
These generated SLA templates are then published in the public redisy (step (2)). At the same time, learning
functions for the adaptation of these public SLA templates are dened. Thereafter, SLA mappings are de ned
manually by users (step (3)). During the lifetime of an SLA template adaptation of SLA mappings are done
automatically as described in Section 6 (step (4)). Based on the leaing function and based on the submitted
SLA mappings, a new version of the SLA template can be de ned and pblished in the registry (step (5)).

8. Conclusion and Future Work. In this paper we presented the goals of the Foundations of Self-
Governing ICT Infrastructures (FoSll) project and how these goals can be achieved using the principles of
autonomic computing. We discussed novel meta-negotiation and SA mapping solutions for Cloud services
bridging the gap between current QoS models and Cloud middleware ahrepresenting important prerequisites
for the establishment of autonomic Cloud services. We discussed ¢happroaches for meta-negotiation and
SLA mapping representing implementation of negotiation bootstraping and service mediation approaches.
Furthermore, we presented theVieSLAF framework used for the management of meta-negotiations and SA
mappings. We discussed how SLA templates can be adapted based ¢ime submitted SLA mappings. We
presented performance evaluation of theVieSLAF representing rst proof of concepts. Moreover, we brie y
introduced two case studies, namely the SLA-based resource viralization approach for on-demand service
provision and the approach for the liquidity management in Cloud markets. Both case studies showed the
impact of the VieSLAF framework beyond the aforementioned FoSIlI project.

In the future we will improve learning function and facilitate di erent knowledge management methods as
for example case based reasoning.

Acknowledgments. The work described in this paper was partially supported by the Vienra Science and
Technology Fund (WWTF) under grant agreement ICT08-018 Foundations of Self-governing ICT Infrastructures
(FoSll). The authors want to thank Vincent C. Emeakaroha for carefully proofreading the paper.

REFERENCES

[1] R.J.Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and S. Sohail . G-qosm: Grid service discovery using qos properties . Computing
and Informatics, 21:363{382, 2002.

[2] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/

[3] D. Ardagna, G. Giunta, N. Ingra a, R. Mirandola, and B. Pe rnici. QoS-Driven Web Services Selection in Autonomic Grid
Environments . Grid Computing, High Performance and Distributed Applica tions (GADA) 2006 Internat. Conference,
Montpellier, France, Oct 29 - Nov 3, 2006.

[4] D.Bein, A. K. Datta, S. Yellenki.A Link-Cluster Route Di scovery Protocol For ad hoc Networks. Scalable Computing: P ractice
and Experience Volume 9, Number 1, pp. 21{28, 2008.

[5] I. Brandic. Towards Self-manageable Cloud Services. RTSOAA 2009, in conjunction with the 33rd Annual IEEE Intern ational
Computer Software and Applications Conference, Seattle, U SA, July 2009.

[6] I. Brandic, D. Music, S. Dustdar. Service Mediation and Negotiation Bootstrapping as First A chievements Towards Self-
adaptable Grid and Cloud Services . Grids meet Autonomic Computing Workshop 2009 - GMACO09. In ¢ onjunction with
the 6th International Conference on Autonomic Computing an d Communications Barcelona, Spain, June 15{19, 2009.

(7]

(8]

(9

[20]

[11]

[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]
[24]
[25]
[26]

[27]

[28]

[29]

(30]

(31]
[32]

(33]

(34]

[35]

Vienna Service Level Agreement Framework - VieSLAF 203

I. Brandic, D. Music, Ph. Leitner, S. Dustdar. VieSLAF Fr amework: Enabling Adaptive and Versatile SLA-Management.
The 6th International Workshop on Grid Economics and Busine ss Models 2009 (Gecon09). In conjunction with Euro-Par
2009, 25{28 August 2009, Delft, The Netherlands

I. Brandic, S. Venugopal, Michael Mattess, and Raykumar Buyya. Towards a Meta-Negotiation Architecture for SLA-Aware
Grid Services. Workshop on Service-Oriented Engineering and Optimizati ons 2008. In conjunction with International
Conference on High Performance Computing 2008 (HiPC 2008), Bangalore, India, December 17{20, 2008.

R. Buyya, Ch. S. Yeo, S. Venugopal, J. Broberg, and I. Bran dic. Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the 5th Utility . Future Generation Computer Systems, 25(6):599-616, June 2009.

X. Chu, K. Nadiminti, Ch. Jin, S. Venugopal, and R. Buyya Aneka: Next-Generation Enterprise Grid Platform for e-Sci ence
and e-Business Applications . Proceedings of the 3rd IEEE International Conference on e- Science and Grid Computing
(e-Science 2007), Dec. 10-13, 2007, Bangalore, India.

V. C. Emeakaroha, I.Brandic, M. Maurer, S. Dustdar. Low Level Metrics to High Level SLAs-LOM2HiS framework: Bri ~ dging
the gap between monitored metrics and SLA parameters in Clou d environments. The 2010 High Performance Computing
and Simulation Conference (HPCS 2010) June 28|July 2, 2010, Caen, France. to appear.

A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebl er, H. Ludwig, M. Polan, M. Spreitzer, and A. Youssef. = Web
services on demand: WSLA-driven automated management . IBM Systems Journal, 43(1), 2004.

G. Dobson, A. Sanchez-Macian. Towards Unied QoS/SLA Ontologies . Proceedings of the 2006 IEEE Services Computing
Workshops (SCW 2006), Chicago, lllinois, USA, 18-22 Septem ber 2006.

Google App Engine, http://code.google.com/appengine

|. Foster, and C. Kesselman, and G. Tsudik, and S. Tuecke . A Security Architecture for Computational Grids , Proc. 5th
ACM Conference on Computer and Communications Security Con ference, San Francisco, CA, USA, ACM Press, New
York, USA, 1998.

Foundations of Self-Governing ICT Infrastructures (F 0Sll) Project, http://www.wwitf.at/projects/research_projects/
details/index.php?PKEY=972_DE_O

P. C. K. Hung, L. Haifei, and J. Jun-Jang. WS-Negotiation: an overview of research issues . Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, Big Is land, Hawaii, 5-8 January 2004.

Z. Hill, J. C. Rowanhill, A. Nguyen-Tuong, G. S. Wasson, J. C. Knight, J. Basney, M. Humphrey. Meeting virtual organization
performance goals through adaptive grid recon guration . 8th IEEE/ACM International Conference on Grid Computing
(Grid 2007), Austin, Texas, USA, September 19-21, 2007.

J. O. Kephart, D.M. Chess, The vision of autonomic computing. Computer, 36:(1) pp. 41-50, Jan 2003.

A. Kertesz, G. Kecskemeti, |. Brandic. An SLA-based Resource Virtualization Approach for On-dema nd Service Provision.
VTDC 2009, In conjunction with the 6th International Confer ence on Autonomic Computing and Communications
Barcelona, Spain, June 15{19, 2009.

B. Koller, L. Schubert. Towards autonomous SLA management using a proxy-like appro ach. Multiagent Grid Syst. 3(3),
2007, 10S Press, Amsterdam, The Netherlands, The Netherlan ds.

S. Kenig, S. Hudert, T. Eymann, and M. Paolucci. Towards Reputation Enhanced Electronic Negotiations for S ervice
Oriented Computing . In Proceedings of the 11th International Workshop on Trust in Agent Societies (TRUST 2008),
Estoril, Portugal, May 12-13, 2008.

Z. Li, M. Parashar: An Infrastructure for Dynamic Compo sition of Grid Services. 7th IEEE/ACM International Confer ence
on Grid Computing (Grid 2006), Barcelona, Spain, September ~ 28-29, 2006.

D. Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S. S oman, L. Youse, D. Zagorodnov. The Eucalyptus Open-source
Cloud-computing System . Proceedings of Cloud Computing and Its Applications 2008, Chicago, lllinois, October 2008.

D. M. Quan, J. Altmann. Resource allocation algorithm for light communication gri d-based work ows within an SLA context
International Journal of Parallel, Emergent and Distribut ed Systems (IJPEDS), 24(1):31-48, 2009.

N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour. Semantic WS-agreement partner selection . Proceedings of the 15th
international conference on World Wide Web, WWW 2006, Edinb urgh, Scotland, UK, May 23-26, 2006.

D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou , and K. Krishnakumar. A multi-agent infrastructure and a service
level agreement negotiation protocol for robust schedulin g in grid computing. in Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), Amsterdam, The Netherlan ds, February, 2005.

M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann. S ervice-Oriented Computing: State of the Art and Research
Challenges, IEEE Computer, 40(11): 64-71, November 2007

Marcel Risch, Ivona Brandic, J8rn Altmann. Using SLA M apping to Increase Market Liquidity. Workshop on Non Functi onal
Properties and Service Level Agreements Management in Serv ice Oriented Computing Workshop (NFPSLAM-
SOC'09).The 7th International Joint Conference on Service Oriented Computing, November 23-27 2009, Stockholm,
Sweden.

B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin , I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cac eres,
M. B.-Y., W. Emmerich, F. Galan. The RESERVOIR Model and Architecture for Open Federated Clo ud Computing. ,
IBM Journal of Research and Development, 53(4) (2009)

D. Thain, T. Tannenbaum, and M. Livny. Distributed Computing in Practice: The Condor Experience . Concurrency and
Computation: Practice and Experience, Vol. 17, No. 2-4, pag es 323-356, February-April, 2005.

S. Venugopal, R. Buyya, and L. Winton, A Grid Service Broker for Scheduling e-Science Application s on Global Data Grids ,
Concurrency and Computation: Practice and Experience, 18(6): 685-699, Wiley Press, New York, USA, May 2006.

W. Vambenepe, C. Thompson, V. Talwar, S. Rafaeli, B. Mur ray, D. S. Milojicic, S. lyer, K. |. Farkas, M. F. Arlitt. Dealing
with Scale and Adaptation of Global Web Services Management . International Journal of Web Services Research, 4(3):
65-84, 2007.

D. W. Walker, L. Huang, O. F. Rana, and Y. Huang. Dynamic service selection in work ows using performance da ta.
Scienti ¢ Programming 15(4):235-247, 2007.

L.-H. Vu, F. Porto, K. Aberer, M. Hauswirth. An Extensible and Personalized Approach to QoS-enabled Ser vice Discovery. ,

204 I. Brandic, D. Music, S. Dustdar

Eleventh International Database Engineering and Applicat ions Symposium (IDEAS 2007), Ban, Alberta, Canada,

September 6-8, 2007.

[36] Web Services Agreement Speci cation (WS-Agreement), http://www.ogf.org/documents/GFD.107.pdf

[37] Web Service Level Agreement (WSLA), http://www.research.ibm.com/wsla/WSLASpecV1-2003012 8.pdf

[38] Ch. Zhou, L. T. Chia, and B. S. Lee. Semantics in service discovery and QoS measurement . IT Professional, 7(2): 29{34,
Mar-Apr 2005.

Edited by: Marcin Paprzycki
Received: March 30, 2010
Accepted: June 09, 2010

