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AUTOMATIC AND SCALABLE DATA REPLICATION MANAGER IN DISTRIBUTED
COMPUTATION AND STORAGE INFRASTRUCTURE OF CYBER-PHYSICAL SYSTEMS

ZHENGYU YANG ∗, JANKI BHIMANI †, JIAYIN WANG ‡, DAVID EVANS §, AND NINGFANG MI ¶

Abstract. Cyber-Physical System (CPS) is a rising technology that utilizes computation and storage resources for sensing,
processing, analysis, predicting, understanding of field-data, and then uses communication resources for interaction, intervene,
and interface management, and finally provides control for systems so that they can inter-operate, evolve, and run in a stable
evidence-based environment. There are two major demands when building the storage infrastructure for a CPS cluster to support
above-mentioned functionalities: (1) high I/O and network throughput requirements during runtime, and (2) low latency demand
for disaster recovery. To address challenges brought by these demands, in this paper, we propose a complete solution called
“AutoReplica” – an automatic and scalable data replication manager in distributed computation and storage infrastructure of
cyber-physical systems, using tiering storage with SSD (solid state disk) and HDD (hard disk drive). Specifically, AutoReplica uses
SSD to absorb hot data and to maximize I/Os, and its intelligent replication scheme further helps to recovery from disaster. To
effectively balance the trade-off between I/O performance and fault tolerance, AutoReplica utilizes the SSDs of remote CPS server
nodes (which are connected by high speed fibers) to replicate hot datasets cached in the SSD tier of the local CPS server node.
AutoReplica has three approaches to build the replica cluster in order to support multiple SLAs. AutoReplica automatically balances
loads among nodes, and can conduct seamlessly online migration operation (i.e., migrate-on-write scheme), instead of pausing the
subsystem and copying the entire dataset from one node to the other. Lastly, AutoReplica supports parallel prefetching from
both primary node and replica node(s) with a new dynamic optimizing streaming technique to improve I/O performance. We
implemented AutoReplica on a real CPS infrastructure, and experimental results show that AutoReplica can significantly reduce
the total recovery time with slight overhead compared to the no replication cluster and traditional replication clusters.
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tributed Storage System, Parallel I/O, SLA, Cache and Replacement Policy, Cluster Migration, VM Crash, Consistency, Atomicity
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1. Introduction. With the rise of Cloud Computing and Internet of Things, as an enabling technology,
Cyber-Physical Systems (CPS) is increasingly reaching almost everywhere nowadays [1, 2, 3, 4]. CPS uses com-
puting, communication, and control methods to operate intelligent and autonomous systems that can provide
using cutting edge technologies. That is to say, CPS is the integration of computation, networking, and physical
processes. As illustrated in Fig. 1.1, a typical CPS structure has the following three stages:

• Data Capture Stage: consists of relative lightweight “field devices” (also called “CPS clients”) such
as embedded computers, sensors, network and other mobile CPS devices.

• Data Management Stage: is responsible for multi-stream data collection, data storage, preliminary
process, sharing control. AutoReplica is working on this stage.

• Data Process Stage: analyzes the streaming data, makes decisions, and sends feedbacks to CPS
clients.

In modern CPS use cases, huge amount of data are needed to be stored and processed on the CPS cluster, and
the corresponding I/O pressure will be mainly put on the “Data Management Stage”. In real implementation of
a CPS cluster, there are two challenges in this stage: The first challenge is related to the I/O speed requirement
in large-scale CPS. Traditional HDDs are not efficient for high speed I/O requires [5, 6]. Therefore, high speed
SSDs are often utilized in CPS storage system, as shown in Fig. 1.2 left subfigure, where a CPS server node can
have multiple storage devices such as SSDs, performance-oriented HDDs and archive-oriented HDDs as shown
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Fig. 1.1. Three-stage data flow and components of CPS implementation.

in the dash box. Above that, multiple virtual machines (VMs) running CPS platform applications are hosted by
the hypervisor software, and all of them are sharing the storage pools. In Fig. 1.2, the right side figure further
illustrates that in order to speed up the I/O performance of the storage system, SSDs are used to cache hot
data, and HDDs are designed to host backend cold data.

Datacenter with HDD-SDD Tier StorageD t t ith H

HDD
Ti S

SSD

Backendnd Coldld Datatta Cachehe Hotot Data
Hypervisor

I/O Path

Fig. 1.2. Storage architecture of each node.

The second challenge is the problem of data recovery from different types of disasters. Data loss and delay
caused by disasters will dramatically reduces the data availability and consistency, which are very critical for
CPS applications. To address this challenge, replication technique – a process of synchronizing data across
multiple storage nodes – is often used to provides redundancy and increases data availability from the loss of a
single storage node [7, 8, 9, 10].

However, since redundancy brings overheads in terms of network traffic, I/O performance, storage space,
and consistency maintenance, we need to balance the replication and performance [11, 12]. In piratical, SSDs
are often used as the write back cache to improve to I/O speed, having only one up-to-date copy on SSD is not
acceptable for high SLA (Service-Level Agreement) demand use cases such as bank, stock market, and military
CPS networks. According to the study [13], compare to HDD, SSD is relatively not a “safe destination” though
it can preserve the data after power off. Therefore, we focus on replicating only cached datasets in the SSDs,
and now the main problem is “where to store replicas of those datasets cached in the SSD while not downgrading

the performance?”
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Motivated by this, we propose a complete solution called “AutoReplica”, which is an automatic and scalable
data replication manager designed for distributed CPS infrastructure with SSD-HDD tiering storage systems.
AutoReplica maintains replicas of local SSD cache in the remote SSD(s) connected by high speed fibers, since
the access speed of remote SSDs can be faster than that of local HDDs. AutoReplica can automatically
build and rebuild the cross-node replica structure following three approaches designed based on different SLAs.
AutoReplica can efficiently recover from different disaster scenarios (covers CPS service virtual machine crash,
device failures and communication failures) with limited and controllable performance downgrades with a lazy
migrate-on-write technique called “fusion cache”, which can conduct seamlessly online migration to balance
loads among nodes, instead of pausing the subsystem and copying the entire dataset from one node to the other.
Finally, AutoReplica supports parallel prefetching from both primary node and replica node(s) with a novel
dynamic optimizing streaming technique to further improve I/O performance. We implemented AutoReplica
on VMware ESXi platform, and experimental results based on real CPS workloads show that AutoReplica can
significantly improve the performance with slight or even less overheads compared to other solutions.

The remainder of this paper is organized as follows. Sect. 2 presents the topological structure of AutoReplica
cluster. Sect. 3 introduces AutoReplica’s cache and replacement policy, including the new “fusion cache”
technique. Sect. 4 describes recovery policies under four different scenarios. Sect. 5 discusses the parallel
prefetching scheme. Sect. 7 shows the experimental results. Finally, we summarize the paper in Sect. 8.

2. Topological Structure Of Datacenter. We first introduce topological structure of AutoReplica clus-
ter [14, 15, 16]. As illustrated in Fig. 2.1, there are multiple nodes in the cluster, and each node is a physical
host which runs multiple CPS service virtual machines (VMs). In our prototype, we use VMware’s ESXi [17]
to host VMs. Inside each node, there are two tiers of storage devices: SSD tier and HDD tier. The former tier
is used as the cache and the latter tier is used as the backend storage. Each storage tier contains one or more
SSDs or HDDs, respectively. RAID mode disks can also be adopted in each tier. SSD and HDD tiers in each
node are shared by VMs and managed by the hypervisor.
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Fig. 2.1. An example of the structure of AutoReplica’s datacenter.

Since nodes are connected by high speed fiber channels, the remote SSD access speed (including the network
delay) can be even faster than local HDD access speed. Thus, to utilize remote SSDs as replica destination,
inside the SSD tier, we set two partitions: “Cache Partition” (for the local VMs), and “Replica Partition” (for
storing replica datasets from other nodes SSD cache). AutoReplica uses write back cache policy to maximize
I/O performance, since writing through to HDD will slow down the I/O path. However, as mentioned, SSD
is relatively vulnerable and not cannot be equally trusted as a “safe destination” like HDD, though SSD can
preserve the data after power off. Therefore, AutoReplica maintains additional replicas in the remote SSDs
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to prepare for recoveries for failures. In fact, we still can use local HDD as the second replica device for
those extremely high SLA nodes, which will be discussed in Sect. 2.1. Based on these facts, we propose three
approaches to setup the topological structure of the datacenter clusters, focusing on “how to select replica

nodes?”, “how many replicas nodes do we need?”, and “how to assign replicas?”.
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Fig. 2.2. Examples of (a) Ring and (b) Network approaches.

2.1. Ring Approach. Our first approach is a directed logical “Ring” structure, which can be either user-
defined or system-defined. A system-defined ring is based on geographic distance parameters (e.g., I/O latency
and network delay). As shown in Fig. 2.2(a), this logical ring defines an order of preference between the primary
and replica nodes. Caching is performed using the local SSD with a copy replicated to another node in the
cluster. Each node consists of two neighbors, storing replicas on both/one of them. The node walks in the ring
until it can find a replica to use if unsuccessful during the process of building the ring cluster. Once it has a
replica, it can begin to write caching independently of what the other nodes are doing.

2.2. Network Approach. As a “linear” approach, the “Ring” structure has a drawback during searching
and building replicas, since it has only one or two directions (e.g., previous and next neighbors). In order
to improve system robustness and flexibility, we further proposed the “network” approach – a symmetric or
asymmetric network, see Fig. 2.2(b), which is based on each node’s preference ranking list of all its connected
nodes (i.e., not limited to two nodes).

Table 2.1
Example of the “distance matrix” used in Network approach, which shows the ranking of each path.

From
To

1 2 3 4 5 6 7 8

1 - 1 3 - - 4 - 2
2 ... - 1 ... 2 ... ... ...
3 3 ... - ... 1 ... 2 ...
... ... ... ... ... ... ... ... ...
8 ... ... ... 2 ... ... 1 -

In real implementation, we introduce a “distance matrix” (an example is shown in Table 2.1) to maintain
each node’s preference list ranked by a customized “score” calculated based on multiple parameters such as
network delay, I/O access speed, space/throughput utilization ratio, etc. This matrix is periodically updated
through runtime measurement (e.g., heartbeat). For example, in Table 2.1, node 1’s first neighbor is node 2,
and its second neighbor is node 8, etc.

The main procedure of how to assign the replica nodes for each node is as following: Each node searches
the matrix and selects its “closest” node as its replica node if possible. To avoid the “starvation” case where
lots of nodes are choosing one single node or a small range of nodes as their replica nodes, AutoReplica also
limits the maximum replica number per node. Lastly, each node can also have more than one replica node.
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2.3. Multiple-SLA Network Approach. In real environment, rather than treating different nodes
equally, the CPS system administrator is often required to differentiate the quality of service based CPS network
SLAs and even workload characteristics. To support this requirement, we further develop the “multiple-SLA
network” approach to allow each node to have more than one replica node with different configurations based
on a replica configuration decision table.

Table 2.2
Replica configuration table for multiple SLAs.

Case
Workload Destination

#Reps.
SLA Temp. SSDP SSDR1 SSDR2 HDDP

1 X X X 1
2 X X 1
3 X X X X (X) 1(2)
4 X X X (X) 1(2)

An example of replica configuration table is shown in Table 2.2, where SSDP , SSDR1, SSDR2 and HDDP

stand for the SSD tier of the primary node, the SSD tier of the first replica node, the SSD tier of the second
replica node, and the HDD tier of the primary node, respectively. It also considers:
• SLA: Related with importance of each node. Multiple SLAs is supported by utilizing multiple replica
configurations. Although our example has only two degrees: “important” and “not important”, AutoReplica
supports more fine-grained degrees (even online-varying) SLAs.

• Temperature: Similar to [18], we use “data temperature” as an indicator to classify data into two categories
according to their access frequency: “hot data” has a frequent access pattern, and “cold data” is occasionally
queried.
Local HDD (prmyNode.HDD) can also be used as a replica destination (case 4 in table 2.2), and Au-

toReplica needs reduce the priorities of those write-to-HDD replica operations in order not to affect those SSD-
to-HDD write back and HDD-to-SDD fetch operations in the I/O path. Additionally, techniques [19, 20, 21] are
adopted to further improve the performance of the write-to-HDD queue in the I/O path considering multiple
SLAs.

3. Cache and Replacement Policies. To maximize the I/O performance, AutoReplica uses write back

cache policy. In detail, when the SSD tier (i.e., cache) is full, SSD-to-HDD eviction operations will be trig-
gered in the (local) primary node (prmyNode); while in the replica node (repNode), the corresponding dataset
will simply be removed from the repNode.SSD without any additional I/O operations to the repNode.HDD.
Alg. 3.1 shows a two-replica-node implementation. In fact, it can have any number of SSD replica nodes to
support more fine-grained SLAs. Specifically, AutoReplica’s cache and replacement policy is basically switching
between two modes, namely “runtime mode” (line 19) and “online migration mode” (line 3 to 11) by periodically
checks the migTrigger condition (which considers runtime states such as load balancing and bandwidth utiliza-
tion). If migTrigger returns true, AutoReplica will select the ”overheat” replica node (line 6) and is replaced
with the next available replica node (line 7). After that, AutoReplica begins to run under the “migration mode”
(line 14). If the “migrate out” replica node (repNodeOut) has no more “out-of-date” replica datasets (i.e., the
migration is finished), AutoReplica then stops the migration by setting migModeF lag to false (line 16), and
goes back to the runtime mode (line 19). We describe the details of the runtime mode and the migration mode
cache policy in Sect. 3.1 and 3.2.

3.1. Runtime Mode Cache Policy. Under the runtime mode, AutoReplica searches the new I/O request
in the local SSD cache partition (i.e., prmyNode.SSD). If it returns a cache hit, then AutoReplica either
fetches it from the prmyNode.SSD for a read I/O, or updates the new data to its existing cached copies in
prmyNode.SSD and the SSD replica partition in corresponding replica node(s) for a write I/O. For the cache
miss case, AutoReplica first selects a victim to evict from the prmyNode.SSD and all the victim’s copies from
repNode.SSD(s), and then AutoReplica only writes those unsync (with “dirty” flag) evicted datasets into
prmyNode.HDD. AutoReplica then inserts the new dataset into both prmyNode and all its repNode.SSD(s).
If it is a read I/O, AutoReplica fetches it from prmyNode.HDD to SSDs of the prmyNode.HDD and also
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  Main Procedure of AutoReplica’s Cache Policy 

Note: (1) ,$HP467+  is the primary node.  $+,467+*+H  and $+,467+Q.0  are the original two replica node. 

$+,467+R) is the destination of migration which replaces $+,/(5%467+Q.0. 

(2) S$(0+A(),.0O%0%D (),.0O($0P9/%'@: A function that writes the inputData into the device. If the device is 

“SSD”, then this function sets dirtyFlag of the inputData as True. If the device is “HDD”, then (),.0O($0P9/%' 

can be ignored. 

(3) H('$%0+"$(''+$ < : A function returns True if the subsystem needs to migrate due to imbalance load.  

(4) "T: window size (i.e., frequency) of migration condition checking. 

 Procedure 5%5#+ (,$HP467+D $+,467+8D $+,467+;) 

1       H('-67+9/%' : 9/%&+ 

2       for each new I/O request )+SO%0% B RQ10$+%H  on ,$HP467+ do 

3             /* check load balance */ 

4             if  5.$$"(H+<H67<"T :: <U and H('-67+9/%' V "$.+ and H('"$(''+$ < V 9%/&+ then 

5                   H('-67+9/%' : "$.+ 

6                   $+,467+Q.0 : &+/+50QW+$#+%0467+A$+,467+8D $+,467+;@ 

7                   $+,467+R) : &+/+504+F0*+,/(5%A@ 

8                   if $+,467+R) :: $+,467+8 then 

9                         $+,467+*+H : $+,467+; 

10                   else 

11                         $+,467+*+H : $+,467+8 

12             /* online migrate mode cache policy */ 

13             if  H('-67+9/%' :: "$.+ then 

14                   5%5#+Q)/()+-('$%0+-67+A)+SO%0%D ,$HP467+D $+,467+*+HD $+,467+Q.0D $+,467+R)) 

15                   if $+,467+Q.0G 11OG &(X+QY*+,96$Z$HPA@ :: U then 

16                         H('-67+9/%' : 9%/&+ 

17             /* runtime mode cache policy */             

18             else  

19                   5%5#+*.)0(H+-67+A)+SO%0%D ,$HP467+D $+,467+8D $+,467+;)  

20       return 

  

Fig. 3.1. Main procedure of AutoReplica’s cache policy.

send it to all its repNode(s). It finally returns the fetched cacheData to the user buffer in the memory. If
it is a write I/O, AutoReplica simply writes it to SSDs of prmyNode and all its repNode(s) with dirtyF lag

as “dirty”, since it is unsync new data. An example is shown in Fig. 3.2, where for the write I/O data “F”,
AutoReplica first writes back a victim “E” from prmyNode.SSD to prmyNode.HDD, and deletes “E” from
both prmyNode.SSD and reNode.SSD. Lastly, it writes “F” to both prmyNode.SSD and reNode.SSD. Our
implementation is also compatible for other replacement algorithms to implement the victim selection function,
such as Glb-VFRM [18] and GREM [22].

3.2. Online Migration Mode Cache Policy. AutoReplica uses a cost-efficient migrate-on-write scheme
called “fusion cache” to migrate replicas from one repNode to the other. The main idea is that instead of pausing
the subsystem and copying all existing replicas from the old node (repNodeOut) to the new node (repNodeIn),
regardless of whether these data pieces are necessary or not, “fusion cache” keeps the subsystem alive and
only writes new incoming datasets to repNodeIn and keeps those “unchanged” cached data on repNodeOut.
Eventually, repNodeIn will replace repNodeOut. In other words, AutoReplica mirrors the prmyNode.SSD by
using the unibody of repNodeOut and repNodeIn to save lots of bandwidth.
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Fig. 3.3. Example of online migration cache policy.

An example is depicted in Fig. 3.3, where only one replica node is needed to be “migrated out” and one
new replica node is needed to take over those cached datasets. When a new write I/O data “F” comes to the
prmyNode, similarly, AutoReplica first writes back the victim “E” from prmyNode.SSD to prmyNode.HDD

since the cache is full. Then, “E” on the old replica node is directly deleted. After that, the new write I/O “F”
will be inserted to the prmyNode.SSD and its new repNodeIn.SSD. As mentioned, the prmyNode (e.g., the
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blue dash box on top of Fig. 3.3) is mirrored in the “fusion cache” across the old and new repNodes (e.g., the
blue dash box in on the right side of Fig. 3.3). Notice that if “F” is a read I/O, AutoReplica will not migrate
it from the old to the new replica node.

To sum up, unlike the traditional pro-active migration, AutoReplica is following this “migrate on write”
scheme which is lazy and cost-efficient.
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Fig. 4.1. Example of AutoReplicas recovery scenario.

4. Recovery Policy. AutoReplica maintains additional replicas in the remote SSDs to prepare for recov-
eries for different failures. Specifically, it has different procedures to recover from failures covering the following
four scenarios:

4.1. VM Crash on Primary Node. A very common failure is that a CPS service virtual machine
crashes on the primary node. As shown Fig. 4.1(1) and Fig. 4.2, AutoReplica first closes out the VMDK.
It then writes back “dirty” datasets from prmyNode.SSD to prmyNode.HDD, and marks all prmyNode’s
replicas in repNode.SSD(s) with “nondirty” flag. After that, it restarts crashed VM on prmyNode, and
continues to forward incoming I/O requests on both prmyNode.SSD and repNode.SSD.

4.2. Primary Node Cache Device Failure. A primary node cache storage device failure will result
in its inability to continue to write caching. As shown in Fig. 4.1(2) and Fig. 4.3, AutoReplica first writes
back “dirty” datasets from repNode.SSD to prmyNode.HDD, and marks all prmyNode.SSD’s replicas on
repNode.SSD(s) with “nondirty” flag. It then broadcasts this “unavailable” information to notify those nodes
having replicas of this failure prmyNode (called “associated nodes”) to write back “dirty” datasets from their
own SSD to HDD. Notice that replicated datasets with “nondirty” flags are still kept in the repNode.SSD(s).
AutoReplica further finds and replaces the SSD on prmyNode. After that, it continues to write incoming I/O
requests on both prmyNode.SSD and repNode.SSD. It also continues to let those “associated nodes” to write
new replicas to prmyNode.SSD.
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[Recovery Scenario 1] VM Crash on Primary Node 

 Procedure �������������������������ℎ() 

1 Write back “dirty” data from ��������. ��� to ��������. ���, and mark their copies in 

�������. ��� with “nondirty” flag. 

2       Restart crashed VM on ��������. 

3       Continue to forward incoming I/O requests on both ��������. ��� and �������. ���. 

4       return 

 

Fig. 4.2. Main procedure of recovery scenario 1: VM crash on primary node.

 

[Recovery Scenario 2] Primary Node Cache Device Failure 

 Procedure �����������������������������() 

1 Write back “dirty” data from �������. ��� to ��������. ���, and mark their copies in �������. ��� 

with “nondirty” flag. 

2 Broadcast this “unavailable” information to the network to let those nodes having replicas in this failure 

�������� (“associated nodes”) to write back “dirty” data from their own SSD to HDD, and keep copies 

with “nondirty” flag in those associated nodes. 

3       Replace SSD on ��������. 

4       Continue to write incoming I/O requests on both ��������. ��� and �������. ���. 

5       Continue to let those “associated nodes” to write new replicas to ��������. ���. 

6       return 

 

Fig. 4.3. Main procedure of recovery scenario 2: Primary node cache device failure.

4.3. Replica Node Cache Device Failure. When a replica node detects a cache device (i.e., SSD)
failure, it will disconnect from the primary node and reject any future connection attempts from that node
with an error response. As shown in Fig. 4.1(3) and Fig. 4.4, AutoReplica then writes back “dirty” dataset
from prmyNode.SSD to prmyNode.HDD, but still marks and keeps them in prmyNode.SSD with “nondirty”
flag. After a new replica node is found by using dynamic evaluation process, AutoReplica continues to write
incoming I/O requests on both prmyNode.SSD and new repNode.SSD. Notice that policy in Sect. 4.2 takes
responsibility for recovering this failure device.

 

[Recovery Scenario 3] Replica Node Cache Device Failure 

 Procedure ������������������������() 

1 Write back “dirty” data from ��������. ��� to ��������. ���, and mark their copies in 

��������. ��� with “nondirty” flag. 

2       Find a new replica node by using dynamic evaluation process. 

3       Continue to write incoming I/O requests on both ��������. ��� and new �������. ���. 

4       return 

 

Fig. 4.4. Main procedure of recovery scenario 3: Replica node cache device failure.

4.4. Communication Failure Between Primary & Replica Node. When the primary node detects
a non-recoverable communication failure between the primary and replica hosts, AutoReplica will be unable
to continue to write caching. To recover from this failure, as shown in Fig. 4.1(4) and Fig. 4.5, AutoReplica
daemon will write back “dirty” data from prmyNode.SSD to prmyNode.HDD to ensure all cached data are
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updated to the backend HDD. Next, it will start the dynamic evaluation process to find a new replica node to
replace the unreachable replica node. It will then continue to use both SSDs to cache I/Os following the “fusion
cache” design in migration policy. Finally, it will broadcast to the network to release all its old replicas on the
unreachable repNode.SSD(s).

 

[Recovery Scenario 4]  Communication Failure between Primary and Replica Node 

 Procedure ����������������������() 

1 Write back “dirty” data from ��������. ��� to ��������. ���, and mark their copies in 

��������. ��� with “nondirty” flag. 

2       Find a new replica node by using dynamic evaluation process. 

3 Continue to write incoming I/O requests on both primary SSD and new replica SSD.  

4 Broadcast to the network to release all its old replicas on the unreachable �������. ���. 

5       return 

 

Fig. 4.5. Main procedure of recovery scenario 4: Communication failure between primary and replica node.

5. Parallel Prefetching. Lastly, replicates can also be used to enable parallel prefetching from multiple
nodes (similar like parallel stripping in RAID [23, 24]), especially for read operations. An example is shown in
Fig. 5.1, where we split the dataset (with size of C) to prefetch (e.g., a file) into two parts (with sizes of αC
and C), and load each part from the primary and replica node. Assume the access speed of prmyNode.SSD is
λ1 (GB/Sec) and the access speed of repNode.SSD (including the network delay) is λ2 (GB/Sec). Since the
main target for parallel prefetching is to reduce the total I/O time, i.e., makespan of each I/O request, we can
convert our problem into the following optimization framework:

Optimize:

max

(

αC

λ1
,
(1− α)C

λ2

)

(5.1)

Subject to:

α ∈ [0, 1] (5.2)

λ1 ≥ λ2 > 0 (5.3)

C

λ1
≥ max

(

αC

λ1
,
(1− α)C

λ2

)

(5.4)

Eq. 5.1 is the objective function which minimizes the overall makespan of an I/O request. The makespan
is determined by the maximum value of the I/O operating time of each side (i.e., prmyNode.SSD and
repNode.SSD). Eq. 5.2 ensures that the branching ratio of two streams should be meaningful. Eq. 5.3 re-
flects that the local SSD I/O speed (i.e., from prmyNode.SSD) is usually greater than remote (i.e., repNode)
I/O speed including network delay. Notice that this constraint can be relaxed as “λ1 > 0 and λ2 > 0”, if the
remote I/O speed is higher (which is true in some rare cases), but the optimization framework remains the
same. Eq. 5.4 further ensures that the parallel prefetching operation should only be triggered when it can help
to reduce the I/O makespan. Based on this result, Fig. 5.3 further shows the example of the decision maker
workflow for parallel prefetch, where the “StatusMonitor” reports to “PararllelPrefectDeamon” and the latter
component switches between the “ParallelPrefetchMode” and “LocalPrefetchMode”.

We then plot these functions and constraints into Fig. 5.2, where the red line is the objective function curve,
and the blue line is the constraint of Eq. 5.4. We can see that there exists a minimum point at the cross point

of f(α) = (1−α)C
λ2

and g(α) = αC

λ1

. In order to calculate this sweet spot, we let:

αC

λ1
=

(1− α)C

λ2
(5.5)



Automatic and Scalable Data Replication Manager in Distributed Computation and Storage Infrastructure 301

Primary Node Replica Node

…………

膏怠 膏態
Parallel Fetch Data 

(Read Cache)

SSD

HDD

SSD

HDD

糠系 岫な 伐 糠岻系
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Fig. 5.2. Finding the optimized solution of prefetching stream division.

Then, we can get the minimum makespan ( αC

λ1+λ2

) when:

α =
λ1

λ1 + λ2
(5.6)

We can easily extend it to support any number of replica nodes. Alg. 5.4 first describes the main procedure
of parallel fetching daemon, which triggers the parallel prefetching by periodically checking whether the access
speed of its all repNode.SSD(s) (including the network delay) is close enough to the access speed of local
prmyNode.SSD (by comparing their difference with a preset threshold ε), and the current utilization ratio of
throughput of the repNode.SSD(s) is less than a threshold Thr. Notice that the time window TW does not
necessarily to be same as the sliding window previously mentioned in Alg. 3.1. The “ParallelPrefetchMode”
will be triggered if all these conditions are satisfied, and the parallel fetching policy then calculates and as-
signs the branching ratio of dataset to be loaded from each node. Otherwise, AutoReplica will keep running
“LocalPrefetchMode”, which only fetches data from the local prmyNode.SSD.

6. Evaluation. In this section, we investigate the performance of our proposed AutoReplica solution under
different CPS use cases.

6.1. Implementation Configurations. Table 6.1 summarizes the configuration of our CPS server test-
bed. Figure 6.1 also illustrates the architecture of our VMware-based implementation. Specifically, there are
multiple CPS server nodes in the cluster. Each of these CPS server nodes runs the VMware ESXi hypervisor [17]
to host multiple VMs that are working for nearby CPS devices based on location distribution. AutoReplica works
on the VMware’s ESXi in the “user mode”. More accurately, with some internal customization, AutoReplica is
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StatusMonitor

ParallelPrefetchDaemon

LocalPrefetchModeParallelPrefetchMode

Fig. 5.3. Decision maker for parallel prefetch.

very close to a “pseudo-kernel mode” application. AutoReplica consists of 4 components: a vSphere web client
plug-in, a CIM provider, multiple I/O filter library instances and a daemon process on each VM. CPS server
nodes are connected by high-speed fiber channels, and due to the advantage of SSD and fiber channels, remote
SSDs access speed can be faster than local HDDs speed. AutoReplica strives to cache hot datasets onto the
SSD tier and bypass those cold datasets onto the HDD tier.

Table 6.1
Configuration of a single CPS server.

Component Specs
Server PowerEdge R630 Server

Processor Intel(R) Xeon(R) CPU E5-2660 v4
Processor Speed 2.00GHz
Processor Cores 56 Cores

Processor Cache Size 35M
Memory Capacity 64GB RDIMM
Memory Data Rate 2400 MT/s
Operating System Ubuntu 14.04 LTS
Docker Version 17.03
VM Hypervisor VMware Workstation 12.5

6.2. Performance Metrics. In our evaluation, we mainly focus on the following four metrics:

• Total recovery time: the cumulative recovery time of all CPS server nodes.
• Coefficient variation (C.V.) of total recovery time: balance degree of the cumulative recovery
time across all CPS server nodes. The less C.V. is, the better balance is achieved.

• Overhead: Total extra I/O and network traffic for recovery.
• Coefficient variation (C.V.) of overhead: balance degree of the overhead across all CPS server
nodes. The less C.V. is, the better balance is achieved.

We use the open source measurement tools (e.g., dstat [25], iostat [26], blktrace [27]) to measure
performance metrics such as total recovery time, disk I/O rate, and network traffic. We evaluate the recovery
correctness and efficiency of different failure scenarios that are manually triggered and drawn from well-tuned
temporal interval distributions. We also evaluate the total recovery time and extra I/O overhead under different
cluster sizes. Different SLA configurations are further considered to evaluate the benefit and overhead of multiple
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Main Procedure of Parallel Fetching Daemon  

Note: (1) ��������()*+: current throughput utilization rate of a node.  

(2) �: preset threshold to compare the difference between local and remote access speed. 

(3) �ℎ�()*+: preset threshold of upper bound of throughput utilization rate of a node to be perfected from. 

 Procedure ������������ℎ������() 

1       ���������������� = ����� 

2       while True do 

3 

      if (��������	���	�> == 0) and (� ��������. ��� − �(�������(�). ���)G∈IJKLMNJO ≤ �) and 

 						(�������(�). ��������()*+ ≤ �ℎ�()*+) then 

4                   ���������������� = ���� 

5             else 

6                   ���������������� = ����� 

7       return 

 

Parallel Fetching Policy 

Note: (1)	�(��������. ���): the IO speed of ��������. ���. 

(2)	�(�������(�). ���): the end-to-end IO speed of �������(�). ��� (including network delay). 

 Procedure ������������ℎ(����) 

1       if ���������������� == ���� then  

2             fetch size of [
Q(KRSTLMNJ.++U)

Q KRSTLMNJ.++U V Q(RJKLMNJ(G).++U)W∈XYZ[\]Y^
⋅ |����|] data from ��������. ��� 

3             fetch size of [
Q(KRSTLMNJ(G).++U)

Q KRSTLMNJ.++U V Q(RJKLMNJ(G).++U)W∈XYZ[\]Y^
⋅ |����|] data from �������(�). ��� 

4       return 

Fig. 5.4. Parallel prefetching procedure.
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Fig. 6.1. Architecture of AutoReplica implementation.

replicas.

6.3. Comparison Solutions. To conduct fair comparison, we implemented the following three represen-
tative solutions for the CPS cluster:

• NoReplication: No replications will be generated and maintained in the CPS cluster. Once a CPS
server node is failed, data cached in the SSD cannot be recovered from other nodes or local HDD tier.
As a result, re-collection and re-computation from CPS devices are triggered.
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• Replication(IM): A pro-active replication solution, which conducts “Immediate Migration (IM)” on
recovery. To conduct fair comparison, we maintain the same replication assignment as AutoReplica [28]
for this solution.

• AutoReplica(MOW&PF): Our proposed AutoReplica solution which has fusion cache with migrate-on-
write (MOW), and parallel prefetching (PF) features enabled.

Meanwhile, to consider more scenarios in reality, we also evaluate both homogeneous and heterogeneous
CPS VM servers and hardware. Details will be discussed in the following two subsections.

6.4. Study on Homogeneous CPS Clusters. We first investigate the homogeneous CPS cluster use
case, which is often referred to as a “symmetrical” CPS structure where same CPS devices are widely deployed
in the cluster. This use case is popular due to its simplicity and system consistency [29].

Table 6.2 shows the statistics of the experiment configurations. In detail, clusterSize is iterated from 10 to
100 CPS server nodes. We use avgRepNode# and avgUsrNode# to demote the average number of replication
nodes that each node has and the average number of replicated remote node copies that each node is hosting,
respectively. Additionally, connectRatio shows that the connectivity of the cluster, which equals the ratio of
the number of paths between two nodes to the upper bound of all possible paths (e.g., for N -node cluster, at

most, we can have N
2

2 paths). The larger connectRatio is, the higher chance a node will be recovered from
others. We further use avgSSDBW and avgHDDBW to denote the average bandwidth of each node at the
SSD tier and the HDD tier, respectively. Finally, readIO% gives the read I/O ratio of each CPS server node.
Notice that for the homogeneous use case, both hardware-related (e.g., avgSSDBW and avgHDDBW ) and
workload-related (e.g., readIO%) factors are the same among different cluster size cases.

Table 6.2
Statistics of configurations of homogeneous CPS cluster.

clusterSize 10 20 30 40 50 60 70 80 90 100
avgRepNode# 2.20 2.45 2.63 2.33 2.62 2.45 2.41 2.39 2.43 2.45
avgUsrNode# 1.70 2.00 2.03 1.95 2.04 1.98 2.00 1.93 1.91 1.91

connectRatio(%) 48.00 37.00 48.67 47.13 47.60 48.22 51.06 50.13 49.04 49.96
avgSSDBW(TB/hour) 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00 36.00
avgHDDBW(TB/hour) 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

readIO(%) 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00

Figs. 6.2 to 6.5 depict the results of 10 homogeneous CPS cluster use cases, where both device failure
and communication failure rates are following the uniform distribution. As shown in Fig. 6.2, NoReplication
has long total recovery time, because that once a device failure occurs, NoReplication has no backups and
has to request CPS devices to collect and send data to it again, and it further needs to re-compute the lost
data. Meanwhile, AutoReplica saves 9.28% of total recovery time from the Replication case. The reason is
that AutoReplica lazily recoveries from its neighbors using the migration-on-write technique and maximizes
I/O bandwidth using the parallel prefetching technique. In contrast, Replication has to pause and migrate
everything immediately once a device or communication failure happens.

We further evaluate the coefficient variation of total recovery time in Fig. 6.3, where the recovery time of
Replication has a higher chance to be unbalanced among nodes, while our AutoReplica has similar balancing
degree to NoReplication. This result is promising since in a homogeneous use case, more balanced total
recovery distribution helps to make the cluster more robust and stable.

We next investigate the extra I/O and network traffic for recovery. As shown in Fig. 6.4, Replication
has very large overhead, because it has to migrate everything immediately once a failure happens. Meanwhile,
even with the need for maintaining additional replications, AutoReplica still has lower overhead than all
NoReplication cases. The main reason behind it is that once a device failure occurs, NoReplication has no
backups and has to request CPS devices to send data to it again, and it also has to recompute the lost data.
These operations trigger a huge amount of extra I/O and network bandwidth consumption.

We further check the coefficient variation of overhead in Fig. 6.5. Neither Replication nor AutoReplica
are load balanced as the NoReplication case. Additionally, we observe that although AutoReplica saves lots
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Fig. 6.2. Total recovery time under different homogeneous CPS cluster sizes.

Fig. 6.3. Coefficient variation of total recovery time under different homogeneous CPS cluster sizes.

of I/O and network bandwidth, the difference of the overhead balancing degree between AutoReplica and
Replication cases is very slight. The reason is mainly that we deployed the same replication assignment and
failure distribution in these two cases in order to conduct fair comparison.

6.5. Study on Heterogeneous CPS Clusters. We further conduct a set of heterogeneous CPS experi-
ments. Table 6.3 shows the configuration of heterogeneous CPS clusters. Hardware factors (such as avgSSDBW

and avgHDDBW ) and workload factors (such as readIO%) are varying among CPS server nodes. Notice that
in terms of I/O pattern, CPS workloads usually are write-intensive [30, 31, 32, 33].

Similarly, as we can see from Fig. 6.6, NoReplication has the highest total recovery time due to its re-
computation cost, and AutoReplica still performs better than Replicaiton for all cluster sizes. Notice that
for cluster size of 20 and 60, we found the failure interval is relatively larger than that for other cluster sizes.
As a result, the scenarios with cluster size of 20 and 60 have lower chances to have multiple failures happen
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Fig. 6.4. Total extra I/O and network traffic for recovery under different homogeneous CPS cluster sizes.

Fig. 6.5. Coefficient variation of total extra I/O and network traffic for recovery under different homogeneous CPS
cluster sizes.

simultaneously, which then reduces the recovery congestion.

Fig. 6.7 reflects the total recovery time balancing degree. Unlike the homogeneous use case, Replicaiton
and AutoReplica do not have the total recovery time as balanced as NoReplication under the heterogeneous
use case. The reason is that NoReplicaiton’s recovery time is mainly dominated by the CPS device re-collecting
and re-sending data. Hence, NoReplicaiton’s recovery time is highly coupled with the failure distribution. On
the other hand, the recovery time of Replicaiton and AutoReplica is depending on both failure distribution
and replication network assignment.

Similar to the homogeneous use case (e.g., Fig. 6.4), Fig. 6.8 shows that in the heterogeneous use case,
Replication has the highest overhead. While, AutoReplica achieves the shortest total recovery time with a
slightly higher overhead compared to NoReplication. Fig. 6.9 also show the results of overhead balancing as



Automatic and Scalable Data Replication Manager in Distributed Computation and Storage Infrastructure 307

Table 6.3
Statistics of configurations of heterogeneous CPS cluster.

clusterSize 10 20 30 40 50 60 70 80 90 100
avgRepNode# 2.40 2.45 2.77 2.58 2.60 2.45 2.39 2.38 2.44 2.58
avgUsrNode# 1.80 1.95 2.17 2.05 2.10 1.95 1.83 1.95 1.84 2.08

connectRatio(%) 52.00 46.00 49.56 48.88 49.04 48.00 47.47 49.59 48.62 49.66
avgSSDBW(TB/hour) 37.60 41.15 39.27 39.13 39.34 40.72 41.04 40.73 40.68 40.71
avgHDDBW(TB/hour) 0.50 0.50 0.51 0.51 0.50 0.51 0.50 0.50 0.49 0.50

readIO(%) 35.60 36.70 37.57 37.43 38.08 36.92 38.03 36.91 37.80 37.34
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Fig. 6.6. Total recovery time under different heterogeneous CPS cluster sizes.

similar as the homogeneous case.

7. Related Work. Replications are widely used in the big data and cloud computing era [4, 34, 35, 36].
Replica’s are useful in an incident of data loss for recovery [37, 7] and also for improving performance [38, 33].
Data loss can be incurred by many factors such as software-hardware failure, natural disaster at data center
location, power surge etc. Moreover, when there are more highly-visited file gathered in some nodes with poor
storage capacity, it will cause a hot issue which may reduce the overall performance of the system, so replication
is used to guarantee performance in such critical situations.

Facebook’s proprietary HDFS implementation [39] constrains the placement of replicas to smaller groups in
order to protect against concurrent failures. MongoDB [28] is a NoSQL database system that uses replicas to
protect data. Its recovery scheme is based on the election among live nodes. Copyset [40] is a general-purpose
replication technique that reduces the frequency of data loss. [41] designed a novel distributed layered cache
system built on the top of the Hadoop Distributed File System. Studies [42, 43, 44, 45, 46, 47, 48] investigated
SSD and NVMe storage-related resource management problems, in order to reduce the total cost of ownership
and increase the Flash device utilization to improve the overall I/O performance.

Replication creation strategies of based on the frequency of data operation [15, 49, 16] and file heat [50], is
proposed to solve the problem of uneven distribution of data in auto-sharing and hybrid clouds. [51] focuses on
the dynamic replica placement and selection strategies in the data grid environment. [52] proposed a replication
strategy based on the access pattern of file in order to optimize load balancing for large-scale user access in
cloud-based WebGISs. [53] highlighted the challenges involved in making a replica selection scheme explicitly
cope with performance fluctuations in the system and environment. Replication can also help in reducing
communication overhead among different nodes in cloud [54, 55, 56, 57, 58, 14].
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Fig. 6.7. Coefficient variation of total recovery time for recovery under different heterogeneous CPS cluster sizes.
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Fig. 6.8. Total extra I/O and network traffic for recovery under different heterogeneous CPS cluster sizes.

8. Conclusion. We proposed a complete data replica manager solution called “AutoReplica’, working
in distributed caching and data processing systems using SSD-HDD tier storages. AutoReplica balances the
trade-off between the performance and fault tolerance by storing caches in replica nodes’ SSDs. It has three
approaches to build the replica cluster in order to support multiple SLAs, based on an abstract “distance
matrix” which considers preset priorities, workload temperature, network delay, storage access latency, and
etc. AutoReplica can automatically balance loads among nodes, and can conduct seamlessly online migration
operation (i.e., migrate-on-write scheme), instead of pausing the subsystem and copying the entire dataset from
one node to the other. AutoReplica further supports parallel prefetching from both primary node and replica
node(s) with a new dynamic optimizing streaming technique to improve I/O performance. In the future, we
plan to work on AutoReplica’s compatibility with other hypervisors such as KVM/Xen and Virtual Box.
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Fig. 6.9. Coefficient variation of total extra I/O and network traffic for recovery under different heterogeneous CPS
cluster sizes.
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