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Abstract. Efficient thread mapping relies upon matching the behaviour of the application with system characteristics. The
main aim of this paper is to evaluate the influence of the OpenMP thread mapping on the computation performance of the matrix
factorisations on Intel Xeon Phi coprocessor and hybrid CPU-MIC platforms. The authors consider parallel LU factorisations with
and without pivoting as well as parallel QR and Cholesky factorizations — all from MKL (Math Kernel Library) library. The
results show that the choice of thread affinity, the number of threads and the execution mode have a measurable impact on the
performance and the scalability of the factorisations.
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1. Introduction. Modern computing platforms are getting more and more efficient, but it comes with a
price — computer architectures are getting more and more complicated. There are a lot of low-level details
of machine architecture which have to be considered by HPC programmers and scientists to benefit from the
promised performance. Thus, the efficient HPC software development is getting harder despite more and more
capable hardware. Therefore, we have to identify and know well the existing software tools and their weak
and strong points on hybrid platforms — as the one used in this paper, namely Intel Xeon CPU coupled with
Intel Xeon Phi (called here a hybrid CPU-MIC platform). Such hybrid architectures add another layer of the
complexity and thus, an effective level of parallelism is difficult to achieve in heterogeneous architectures —
especially, when both such different units are to perform computing-intensive parts of the algorithm. This
causes more and more difficulties in the optimisation of the code. One of the techniques for optimising the code
in order to effectively exploit the potential of the coprocessors and the hybrid CPU-MIC platform is the thread
mapping.

However, the hybrid nature of the hardware hinders the efficient use of the thread mapping in practice.
There is a similar problem with the proper choice of number of threads and the prospective use of various
modes (native and automatic offload). Our goal is to experimentally answer these questions. The objects of
our study are some well-known and widely used algorithms, namely the LU (without and with pivoting), QR
and Cholesky factorisations. We investigate the practical use of the thread mapping for different modes and
the number of threads.

Operating systems on Intel Xeon Phi and on the hybrid CPU-MIC platform run numerous software threads
and these threads share a complex hierarchical memory. Since the architecture consists of many processing
units, these software threads have to be assigned to appropriate processing units (that is, hardware threads).
Such an assignment is called thread mapping [5]. This assignment should be used to efficiently exploit the
potential of modern multiprocessors. Efficient parallel numerical algorithms and their implementations on
different contemporary parallel machines are crucial for engineering applications and computational science.

Determining the efficiency of the thread mapping depends on the machine and the application. There is
not a single thread mapping strategy that suits all the applications. We studied the OpenMP thread mapping
strategies for matrix decompositions on multicore architectures in our work [3]. The results showed that the
choice of thread affinity has the measurable impact on the executed time of the matrix factorisations. Here, we
extend this investigation by an experimental evaluation of the OpenMP thread mapping for the LU (without
and with pivoting), QR and Cholesky factorisations from MKL library (Math Kernel Library) [15] on the Intel
Xeon Phi coprocessor and on the hybrid CPU-MIC platform. While the determining of the OpenMP thread
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mapping on Intel Xeon Phi is not very difficult, the same task on a hybrid CPU-MIC platform remains a
challenging issue. The contribution of this paper to areas of the scalable algorithms on coprocessors and hybrid
platform is an experimental evaluation of the LU factorisations, QR and Cholesky factorizations from MKL
library in two modes, namely native on coprocessor and automatic offload on the hybrid CPU-MIC platform.
This assessment takes into account the performance for the different settings of the OpenMP thread mapping
and for the different number of threads on coprocessor and the different matrix size.

The rest of this paper is organised as follows. Section 2 describes related works regarding the thread mapping
and the LU factorisation. Section 3 reviews the matrix decomposition, namely the block LU factorisation with
and without pivoting, QR and Cholesky factorisations. Section 4 contains the overview of Intel Xeon Phi and
an introduction to the programming model on Intel Xeon Phi and the hybrid CPU-MIC platform. Section 5
presents different thread mapping strategies on Intel Xeon Phi and the hybrid CPU-MIC platform. Section 6
shows the results of numerical experiments carried out on Intel Xeon Phi and on the hybrid CPU-MIC platform
for the LU factorisation with and without pivoting, QR and Cholesky factorisations and Section 7 contains some
considerations about the impact of various factors on the algorithms’ performance. Finally, Section 8 concludes
our research and presents the future plans.

2. Related work.

2.1. Thread Affinity. In the last years, the issue of the thread mapping control in OpenMP on different
parallel architectures for different applications has been researched. The authors of [14] investigated the possi-
bilities to improve thread mapping in OpenMP programs for several simple applications (for example, SpMV
— sparse matrix-vector multiplication — and Jacobi solver) and presented the ways to apply this knowledge to
larger application codes on ccNUMA and multicore architecture. In the work [10], a solution to control thread
mapping in OpenMP programs was presented and shown to be compatible with MPI in hybrid use cases. The
authors of [12] discussed effective thread mapping strategies through comparing the computing performance
and analysing the performance differences between various mapping methods using the k-means application
program to fully exploit the computing potential of the MIC (Many Integrated Core) coprocessor, as well as the
hybrid system consisting of MIC and a traditional multicore CPU. Results of these papers showed that there is
no single thread mapping strategy adapted for all the applications.

2.2. Factorisation. Recently, several groups have been working on the efficient parallel linear algebra
libraries, particularly the Gaussian elimination. The Gaussian elimination on multicore and manycore archi-
tectures was studied, among others, in works [9], [2], [6] and [8]. In the work [9] the authors investigated the
parallelization of sub-cubic Gaussian elimination. They focused on the parallelization of three subroutines,
namely, the matrix multiplication, the triangular equation solver and the LU factorisation with pivoting. In [2],
a class of parallel tiled linear algebra algorithms for multicore architectures is presented, the LU factorisation
with pivoting, Cholesky among others. The article [6] describes recent developments in parallel implementa-
tions of Gaussian elimination for shared memory architecture. Four different approaches to pivot in the LU
factorisation are investigated — partial pivoting among others, and all approaches were compared with the
implementation of the LU without pivoting. The comparison given in that article gives a good insight into
the performance properties of the different LU factorisation algorithms using relatively large shared memory
systems. In the work [8] the design and implementation of several fundamental dense linear algebra (DLA)
algorithms for multicore with Intel Xeon Phi coprocessors were presented. In particular, algorithms for solving
linear systems were considered, namely the LU factorisation with pivoting. The research by Intel [11] shows a
great performance of LINPACK benchmark. In this work, we research the LU factorisation, QR and Cholesky
factorisations implementation from a vendor library, namely MKL.

3. Factorisations. The LU decomposition with pivoting factorises a matrix into matrices, namely a lower
triangular matrix L, an upper triangular matrix U and a permutation matrix P. It has the following form:

PA = LU

For improving computing performance on the contemporary computer architecture, a block version of the LU
decomposition is applied. The block LU decomposition is a matrix decomposition of a block matrix into a lower
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block triangular matrix L, an upper block triangular matrix U and block permutation matrix P. The block
version of the LU decomposition is implemented in LAPACK [1]. That implementation is based on BLAS. The
parallelism of that block version of the LU factorisation arises from the use of a multithreaded BLAS. The MKL
library provides exactly this kind of implementation of BLAS and exactly this kind of parallel version of the
block LU decomposition. The block LU algorithm is described in detail in [4]. The LAPACK LU algorithm is
described in the following steps:

• A panel of b columns is factorised along with creation of a pivoting pattern (DGETF2 routine).
• Panel factorisation gives elementary transformations which are performed as block operations in the
rest of the matrix — some rows are swapped correspondingly to the pivoting pattern (DLASWP) and
top b rows are treated with the triangular solver (DTRSM).

• A matrix factorisation is performed (DGEMM) — the square remainder of the matrix is updated with
the product of the panel (without top b rows) and the top b rows without the panel items.

The LU decomposition without pivoting factorises a matrix into two matrices, namely a lower triangular
matrix L and an upper triangular matrix U. It has the following form:

A = LU

The implementation of LU without pivoting can be carried out very rarely in practice without risking serious
numerical consequences. The LU without pivoting exists if the matrix A has a strict dominant diagonal.
Giving up the pivoting improves performance — because we get rid of the rows swapping and because the panel
operations can be easily parallelized now.

The total number of floating point operations (add, multiply, divide) for the LU factorisations without and
with pivoting are the same and equal approximately 2

3
n
3. The number of the floating point comparisons for the

LU factorisation with pivoting equals approximately 1

2
n
2 and for the LU factorisation without pivoting equals

zero. Flops measurement gives only an approximated performance — because of the differences in kernels and
dynamic of the parallelism. Section 6 shows the experiments which give a better comparison.

In this work, we investigate the LAPACK implementation of the LU factorisation from MKL library, namely
dgetrf (LU with pivoting) and dgetrfnpi (LU without pivoting) routines.

The QR factorisation is a decomposition of a form A = QR, where R is a usual upper triangular matrix,
and Q is an orthogonal matrix (that is, QTQ = QQT = I). It is used to solve least square problems and
eigenvalues problems. The number of floating-point operations in the QR factorisation is 4

3
n
3 + o(n2) for a

given matrix A of the size n×n. Here, we use and study the LAPACK implementation of the QR factorisation
from MKL library (dgeqrf).

The Cholesky factorisation is a decomposition of a form A = LLT , where L is a lower triangular matrix —
and it is defined only for A being Hermitian and positive-definite. The number of floating-point operations in
the Cholesky factorisation is 1

3
n
3 + o(n2) for a given matrix A of the size n × n. Here, we use and study the

LAPACK implementation of the Cholesky factorisation from MKL library (dpotrf).

4. Intel Xeon Phi and its programming models. Intel Xeon Phi coprocessors [13] are multicore
coprocessors designed on the basis of Intel MIC (Many Integrated Cores) architecture, where more than 50
redesigned Intel CPU cores are connected. The cores allow running up to 4 hardware threads per each core.
The cores ensure hardware support for the FMA (Fused Multiply-Add) instruction and also have their own
vector processing unit (VPU). Additionally, the cores are enriched with 64-bit service instructions and a cache
memory. In this work, we address the first generation of Intel Xeon Phi devices known as Knight Corner (KNC).
KNC is connected to CPU through the PCIe bus. Contrary, the second generation call Knight Landing (KNL)
is a separate processor.

MIC provides a general-purpose programming environment similar to that provided for CPUs. It supports
the source-code portability between coprocessor and CPU allowing running the same code using CPU or MIC.
The Intel company offers a set of programming tools assisting programming process — such as compilers,
debuggers, libraries that allow creating parallel applications (e.g. OpenMP, Intel TBB) and different kinds of
mathematical libraries (e.g. Intel MKL) similarly to conventional multicore CPUs.

The MKL library on MIC can be used in two ways: native and offload. The native mode does not require
changing the multithreaded code, but only adding the -mmic option during compilation. In the native mode,
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Table 5.1

Number of Intel Xeon Phi cores used for various affinity settings

number cores used in the affinity setting

of threads compact balanced scatter

60 15 (4 thr./core) 60 (1 thr./core) 60 (1 thr./core)
120 30 (4 thr./core) 60 (2 thr./core) 60 (2 thr./core)
180 45 (4 thr./core) 60 (3 thr./core) 60 (3 thr./core)
240 60 (4 thr./core) 60 (4 thr./core) 60 (4 thr./core)

the MKL routines are called from the program which runs directly on the coprocessor, treated as a separate
processor.

In the offload mode, the indicated parts are executed on the coprocessor and the rest on CPU and thus, this
platform is treated as a hybrid CPU-MIC computing platform. Typically, the CPU controls the code execution
and the data transfer between the CPU and MIC. The programmer can indicate by himself which part of the
program will be executed on the coprocessor with the use of suitable pragmas or using the automatic offload
version of the MKL library (which is studied in this work). Only some computationally intensive level 3 BLAS
routines (GEMM, TRSM) and LAPACK functions (for example dgetrf and dgetrfnpi routine) can be called in
the automatic offload mode.

To obtain the good performance for these routines we need to use square matrices of the huge size. In the
automatic offload mode, the runtime system is responsible for workload division between the host (CPU) and
coprocessor (MIC). Moreover, it sends data between processing units. The programmer must only make some
alternations in the code. Calls to the mkl mic enable() routines in the code enable switching on the automatic
offload mode of the MKL library and switching off this mode is realised by mkl mic disable(). The programmer
may set the percentage of workload between the host and coprocessor by calling mkl mic set workdivision()

with proper parameters. In our code, we use MKL MIC AUTO WORKDIVISION which indicates that division of
workload between the host and coprocessor will be determined by the runtime system.

5. Thread Mapping. In this section, we briefly describe the thread mapping on MIC and on a hybrid
CPU-MIC platform. The thread mapping (which is included in the Intel runtime library) provides different
ways to bind the OpenMP threads to the hardware threads (we have 2 hardware threads per core on CPU
and 4 hardware threads per core on MIC). On CPU, there are three types, and on MIC, there are four types
of distribution of the OpenMP threads between hardware threads. The first one is compact type: threads
sequentially bound (one after another) to successive hardware threads. A single core is filled by two OpenMP
threads on CPU and four ones on MIC. The second type scatter: threads are bound sequentially to the
successive cores as evenly as possible across the entire system. Scatter is the opposite of compact. The third
type is balanced: threads are bound evenly to the successive hardware threads, which are the neighbouring
threads; this type does not exist on CPU. Using the fourth type, none, we leave out the order in which threads
are bound to the operating system.

In this research, we control the thread affinity using the environment variable KMP AFFINITY on CPU and
PHI KMP AFFINITY on MIC. We studied the OpenMP thread mapping strategies for matrix decompositions on
multicore architectures in our work [3]. The results showed that the choice of scatter has the measurable
impact on the executed time of the matrix factorisations on CPU. Thus, we set scatter for CPUs and change
only the value of the environment variable PHI KMP AFFINITY. To avoid threads migration between cores we set
the value granularity=thread for both the environment variables.

Table 5.1 shows the usage of the system with different affinity settings. We can see that for compact affinity,
the load balance is only ensured for 240 threads. For scatter and balanced settings, the load is always the
same, although the thread arrangement is different. We can also observe that the balanced with 60 threads
should be equivalent to scatter with 60 threads, and the balanced with 240 threads should be equivalent to
compact with 240 threads. It is because the threads in balanced mode are put on cores in sequence (e.g. for
120 threads — first and second on the first core etc.), and in scatter mode they are put in a round robin
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Table 6.1

Hardware and software used in the experiments

CPU MIC
2 × Intel Xeon E5-2670 v.3 Intel Xeon Phi 7120

(Haswell) (Knights Corner)

# cores 24 (12 per socket) 61
# threads 48 (2 per core) 244 (4 per core)
clock 2.30 GHz 1.24 GHz
level 1 instruction cache 32 kB per core 32 kB per core
level 1 data cache 32 kB per core 32 kB per core
level 2 cache 256 kB per core 512 kB per core
level 3 cache 30 MB —
SIMD register size 256 b 512 b
compiler Intel ICC 16.0.0 Intel ICC 16.0.0
BLAS/LAPACK libraries MKL 2016.0.109 MKL 2016.0.109

fashion (first on the first core, second on the second one etc.). Hence, the access to the memory is different.
We can see that some combinations can be eliminated at sight (like compact with 60 threads), because only
a part of the system works. Moreover, we should expect the best results for the full workload, that is for
240 threads. However, the scatter mode is not equivalent to compact and balanced. Thus, we expect it to
behave poorer because scatter is less cache-friendly and the threads in the tested algorithms prefer access to
neighbouring memory areas. On the other hand, the balanced mode reduces the data flow between caches of
different cores what gives a higher throughput and lower latency. So, the balanced mode should give the best
results, regardless of the number of threads.

6. Numerical Experiments. We tested the performance of two matrix factorisations, namely the block
LU factorisation with and without pivoting from the MKL library on Intel Xeon Phi using native mode and on
hybrid CPU-MIC platform using automatic offload mode. We compared four implementations:

• an optimised multithreaded implementation of the dgetrfnpi routine from the MKL library, which
computes the complete LU factorisation of a general matrix without pivoting. In our case, the matrices
are square, diagonally dominant and their size is n×n. In the implementation of the dgetrfnpi routine,
the panel factorisation (factorisation of a block of columns) is used, as well as the level 3 BLAS routines
(DTRSM and DGEMM). We denoted this LU factorisation implementation by LU without piv.

• an optimised multithreaded implementation of the dgetrf routine from the MKL library, which com-
putes the complete LU factorisation of a general matrix with pivoting. We denoted this LU factorisation
implementation by LU with piv.

• an optimised multithreaded implementation of the dgeqrf routine from the MKL library, which com-
putes the QR factorisation of a general matrix with pivoting. We denoted this QR factorisation imple-
mentation by QR.

• an optimised multithreaded implementation of the dpotrf routine from the MKL library, which com-
putes the Cholesky factorisation of a symetric positive-definite matrix. We denoted this Cholesky
factorisation implementation by Cholesky.

Table 6.1 shows details of the specification of the hardware and software used in the numerical experiments.
All the experiments reported below were performed with the use of the double-precision arithmetic. In the
automatic offload mode, we used all available cores on CPU and thus the number of threads was set to 24, and
we changed only the number of threads on the coprocessor.

6.1. LU factorisation without pivoting. Figure 6.1 presents the performance of the LU factorisa-
tion without pivoting in the function of matrix size on Intel Xeon Phi in native mode for the four values of
PHI KMP AFFINITY for a different number of the threads. For the native mode, we achieved the best performance
for the scatter value of this environment variable for 120 threads or the compact value for 240 threads. All the
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Fig. 6.1. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the native mode on
Intel Xeon Phi — for different matrix sizes, number of the threads, and the thread mapping settings.

results are expected from Sect. 5 — besides balance with 240 threads (it should be the same as compact with
240 threads). The algorithm scales well with respect to the matrix size — except at the size of 16384. However,
when we consider scaling with respect to the number of the threads, it is only the case for the compact affinity;
other values give poor scalability with respect to the number of the threads. When we choose the none value
of the affinity settings, the performance is chaotic and the scalability is poor both with respect to the size and
to the threads — it is caused by the fact that the thread affinity is controlled by the operating system which
makes decisions about it not suitable for computing. The last issue demanding an explanation is a sudden drop
in performance at the size of 16384 = 214. It seems to be caused by the cache size — for the matrix size of
16384 the blocks fit in cache ideally and there is no room for other data.

Figure 6.2 presents the performance of the LU factorisation without pivoting in the function of matrix size
on hybrid CPU-MIC platform (with AO — automatic offload). In Fig. 6.2 (as well as in Figs. 6.3, 6.5 and 6.6),
cpu aff/mic aff denotes the affinity settings both for CPU (the first value) and for coprocessor (the second
value). The run-time reports say that the algorithm works exclusively on CPU up to the size of 14336 (the
run-time systems believes that including MIC cannot improve the performance for such small data), so there is
a poor scalability here. For bigger matrices, there is a performance drop, because the MIC gets some work and
it is somewhat slower then sole CPU; however, after that, the performance grows almost up to the earlier level.

Table 6.2 shows the percentage work division between CPU and MIC for the LU decomposition without
pivoting (for 24 threads on CPU and 240 threads on MIC). It is hard to determine the best number of threads
because the computations — even for big matrices — are performed mainly on CPU. Thus, all the sizes except
14336 perform similarly (with the performance of about 600 Gflops) — the matrix size and the Xeon Phi settings
(the number of threads and the affinity) matter little.

Figure 6.3 shows the performance of the LU factorisation in the function of the number of the threads for
the matrix size of 19456 on Intel Xeon Phi in native mode and on the hybrid CPU-MIC platform in automatic
offload mode for KMP AFFINITY=scatter on CPU and the different values for PHI KMP AFFINITY. We can see
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Fig. 6.2. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.

Table 6.2

An exemplary percentage work division between CPU and MIC for the LU decomposition for the automatic offload

matrix DTRSM DGEMM

size CPU MIC CPU MIC

15360 91% 9% 97% 3%
74% 26% 84% 16%

16384 89% 11% 93% 7%
75% 25% 83% 17%

17408 97% 3% 92% 8%
93% 7% 83% 17%

19456 93% 7% 90% 10%
83% 17% 82% 18%

that the performance is better for the AO mode than the native mode. It is caused by the fact that our CPU
is generally faster than the Intel Xeon Phi and even employing both of them (as in AO mode), it is not easy to
boost the efficiency.

6.2. LU factorisation with pivoting. Figure 6.4 presents the performance of the LU factorisation with
pivoting in the function of matrix size on Intel Xeon Phi in native mode for the four values of PHI KMP AFFINITY

for a different number of the threads. For the native mode, we achieved the best performance for the balanced
and compact values of this environment variable (both for 240 threads). These were expected from the analysis
from Sect. 5. For the balanced and compact affinities, the algorithm scales very well with respect to both the
size of the matrix and the number of threads. The scatter affinity gives quite a nice scalability only up to the
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Fig. 6.3. The performance of the LU factorisation without pivoting (MKL library’s implementation) for the matrix size of
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Fig. 6.4. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the native mode on Intel
Xeon Phi — for different matrix sizes, number of the threads, and the thread mapping settings.

size 14336. The none affinity scales poor and is chaotic — just like for the version without pivoting, and for the
same reason. For all affinity settings, we can see a saw shape of the chart — these spikes and drops are results
of the relationship between the cache size and the size of the matrix.

Figure 6.5 presents the performance of the LU factorisation with pivoting in the function of matrix size on
the hybrid CPU-MIC platform (with AO) for KMP AFFINITY=scatter and 24 threads on CPU and the different
values of PHI KMP AFFINITY on MIC. The algorithm scales very well with respect to both the size of the matrix
and the number of threads. It seems that a lot of work is done on CPU (the report for this routine does not
show the percentage work division, although, it shows the time used by both parts of the hybrid system — see
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Fig. 6.5. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.6. The performance of the LU factorisation with pivoting (MKL library’s implementation) for the matrix size of 19456
on Intel Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).

Fig. 6.7; the time on CPU is much bigger).

Figure 6.6 shows the performance of the LU factorisation with pivoting in the function of the number of
the threads for the matrix size of 19456 on Intel Xeon Phi in native mode and on hybrid CPU-MIC platform
in automatic offload mode for KMP AFFINITY=scatter on CPU and different values of PHI KMP AFFINITY. As
we can see, the native mode version achieves the better performance than the automatic offload mode one. It
seems that the former is very well optimised: it scales well with respect to both the number of threads and the
matrix size. The AO version demands some more development, because (potentially) it could achieve even 1000
Gflops — taking into account combined forces of both the processing units.
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[MKL] [MIC --] [AO Function] DGEMM

[MKL] [MIC --] [AO DGEMM Workdivision] 0.91 0.09

[MKL] [MIC 00] [AO DGEMM CPU Time] 0.275540 seconds

[MKL] [MIC 00] [AO DGEMM MIC Time] 0.170474 seconds

[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 33423360 bytes

[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 3932160 bytes

[MKL] [MIC --] [AO Function] DTRSM

[MKL] [MIC --] [AO DTRSM Workdivision] 0.97 0.03

[MKL] [MIC 00] [AO DTRSM CPU Time] 0.277691 seconds

[MKL] [MIC 00] [AO DTRSM MIC Time] 0.041793 seconds

[MKL] [MIC 00] [AO DTRSM CPU->MIC Data] 125829120 bytes

[MKL] [MIC 00] [AO DTRSM MIC->CPU Data] 7864320 bytes

[...9 analogous calls hidden...]

[MKL] [MIC --] [AO Function] DGEMM

[MKL] [MIC --] [AO DGEMM Workdivision] 0.91 0.09

[MKL] [MIC 00] [AO DGEMM CPU Time] 0.066654 seconds

[MKL] [MIC 00] [AO DGEMM MIC Time] 0.044188 seconds

[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 33423360 bytes

[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 3932160 bytes

[MKL] [MIC --] [AO Function] DGETRF

[MKL] [MIC --] [AO DGETRF Workdivision] -1.00 -1.00

[MKL] [MIC 00] [AO DGETRF CPU Time] 4.737727 seconds

[MKL] [MIC 00] [AO DGETRF MIC Time] 3.010779 seconds

[MKL] [MIC 00] [AO DGETRF CPU->MIC Data] 2796011520 bytes

[MKL] [MIC 00] [AO DGETRF MIC->CPU Data] 1242562560 bytes

Fig. 6.7. Automatic offload reports generated by MKL’s LU factorisation routines for the matrix size 15360 — without pivoting
(top; fragments) and with pivoting (bottom; whole). The reports for MKL’s QR and Cholesky factorisations are analogous to the
one for MKL’s LU factorisation with pivoting (bottom).

6.3. Comparison of the pivot and non-pivot version. The peak performance of the AO mode is
about 600 Gflops — the same for LU without pivoting and LU with pivoting. It arises from the fact that much
more computations are performed on CPU (see Fig. 6.7) and both CPU versions seems equally optimised.
However, in the native mode, LU without pivoting performs much worse (about 400 Gflops) than LU with
pivoting (about 650 Gflops) — which is very surprising. Moreover, if we expected any differences, they would
be in favour of the version without pivoting. However, from Fig. 6.7 we can see that the implementations of
both factorisations are substantially different. It seems that they are very various algorithms, the pivot one
being an implementation of the original LAPACK algorithm. Also, [16] says that this algorithm uses Intel
Threaded Building Blocks and nothing like that is said about the non-pivot routine.

6.4. QR and Cholesky factorisations. Figures 6.8 and 6.9 present the performance of the QR and
Cholesky factorisations in the function of matrix size on Intel Xeon Phi in native mode for the four values of
PHI KMP AFFINITY for a different number of the threads.

Figures 6.10 nad 6.11 present the performance of the QR and Cholesky factorizationthe function of matrix
size on the hybrid CPU-MIC platform (with AO) for KMP AFFINITY=scatter and 24 threads on CPU and the
different values of PHI KMP AFFINITY on MIC.

Figures 6.12 and 6.13 show the performance of the QR and Cholesky factorisations in the function of
the number of the threads for the matrix size of 19456 on Intel Xeon Phi in native mode and on hybrid
CPU-MIC platform in automatic offload mode for KMP AFFINITY=scatter on CPU and different values of
PHI KMP AFFINITY.

The performance results of the QR and Cholesky factorisations are consistent with the results of the LU
factorisation with pivoting.
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Fig. 6.8. The performance of the QR factorisation (MKL library’s implementation) in the native mode on Intel Xeon Phi —
for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.9. The performance of the Cholesky factorisation (MKL library’s implementation) in the native mode on Intel Xeon
Phi — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.10. The performance of the QR factorisation with pivoting (MKL library’s implementation) in the automatic offload
mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.11. The performance of the Cholesky factorisation with pivoting (MKL library’s implementation) in the automatic
offload mode — for different matrix sizes, number of the threads, and the thread mapping settings.
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Fig. 6.12. The performance of the QR factorisation (MKL library’s implementation) for the matrix size of 19456 on Intel
Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).
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Fig. 6.13. The performance of the Cholesky factorisation (MKL library’s implementation) for the matrix size of 19456 on
Intel Xeon Phi in the native mode (left) and on hybrid CPU-MIC Platforms in the automatic offload mode (right).

7. Discussion.

7.1. Thread Mapping. It is obvious from the experiments that the proper setting of the thread mapping
improves the performance. Moreover, the performance of the three factorisations is sensitive to the thread
mapping. The best setting is balanced (see also Sect. 5), for all the tested number of threads and modes.
The balanced thread affinity is the best because it uses well the system computing power and the cache at
the same time. The none setting is the worst and largely unpredictable (because all the decisions are passed
to the operating system and the threads can wonder freely between cores) and it should not be used in serious
computational applications. The scatter affinity gives the second worst performance. All the performance
results of the LU factorisation with pivoting, as well as QR and Cholesky facorisations (especially in native
mode) confirm our analysis from Sect. 5.

7.2. Number of threads. All the factorisations effectively utilize a large number of cores in the native
mode. Thus, it is the best to use all the cores with hyperthreading (that gives 240 threads, that is, 4 threads
per core). That way, we use the computing power of the Intel Xeon Phi the most efficiently. On the other hand,
the number of the threads has no impact on the performance in the automatic offload mode at all — the AO
mode is controlled by the library.

7.3. Mode. If we can afford the native mode, we should rather use it — the native mode is better optimised
than the automatic offload for the LU and Cholesky factorisations with pivoting. On the contrary, the AO is
better than the native mode for the QR factorisation. It shows that this factorisation could be more optimised
for the MAC architecture.
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Fig. 7.1. The performance of the LU factorisation without pivoting (MKL library’s implementation) in the native mode on
Intel Xeon Phi — for different matrix sizes, number of the threads, and the balanced thread mapping setting (cache associativity).
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Fig. 7.2. The performance of the LU factorisation with pivoting (MKL library’s implementation) in the native mode (left)
and in the automatic offload mode (right) on Intel Xeon Phi — for different matrix sizes, number of the threads, and the balanced

thread mapping setting (cache associativity).

The LU factorisation with pivoting is the most highly optimised of these three factorizations in native mode.
On the other hand, the LU factorisation without pivoting performs completely differently than three other

factorisations — and it is caused by the fact that it works (and was written) completely differently — which is
proven by Fig. 6.7.

7.4. Cache associativity. To test the influence of the cache associativity on the performance we should
investigate the behaviour of the subject algorithms for the matrix of the size around 8192 × 8192 — because
8192 double-precision floats occupies 32 kB which is the size of the L1 cache. However, for this size, the
algorithms do not utilize all the computing power (they enter the automatic offload mode only for significantly
larger matrices). On the other hand, we got some performance drop around the size 16384× 16384 (and 16384
double-precision floats is twice the size of the L1 cache), and that is why we decided to take a look at sizes
around this number. In this manner we can investigate the cache associativity.

All the tests for cache associativity were performed only for the balanced thread affinity, as it proved the
best for tested algorithms.

7.4.1. LU without pivoting. Figure 7.1 shows the performance of the LU facorisation without pivoting
for the matrix sizes about 16384. We present only the native mode, because — as we see in Figure 6.2 —
in the automatic offload mode, there is no efficiency drop around this size. The figure shows that there is
a performance drop around 16384 (although the number itself is a weak local maximum). The performance
minimum does not have to be precisely at the multiple of cache size, because there are some more auxiliary
variables, but it is clearly visible for all the thread mappings.
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Fig. 7.3. The performance of the QR factorisation (MKL library’s implementation) in the native mode on Intel Xeon Phi
(left) and in the automatic offload mode (right) — for different matrix sizes, number of the threads, and the balanced thread
mapping setting (cache associativity).
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Fig. 7.4. The performance of the Choleski factorisation (MKL library’s implementation) in the native mode on Intel Xeon
Phi (left) and in the automatic offload mode (right) — for different matrix sizes, number of the threads, and the balanced thread
mapping setting (cache associativity).

7.4.2. LU with pivoting. Figure 7.2 shows the performance of the LU facorisation with pivoting for the
matrix sizes about 16384. However, here we present both the native mode and the automatic offload mode. In
the native mode, there is an efficiency drop around 16384, but again, in the 16384 we have a clear although
local maximum. On the other hand, in the automatic offload mode we can see almost a flat line around 16384,
which is lower than the neighbourhood. Again, all the thread mappings behave similarly.

7.4.3. QR and Cholesky. Figures 7.3 and 7.4 show the behaviour of the QR and Cholesky (respectively)
factorisations around the size 16384 in both modes (left: native, right: automatic offload). The plots are quite
similar to the respective plots for the LU factorisation with pivoting, although the local maximum in 16384 in
the native mode is very slight. So, the cache associativity is shown in both modes, independent of the thread
mapping.

8. Conclusion. The paper reports the effect of thread-mapping for the LU (without and with pivoting),
QR and Cholesky factorisations from MKL library on Intel Xeon Phi and the hybrid CPU-MIC platform. Our
results showed that there is one thread mapping strategy adapted for all optimised factorisation on Xeon Phi,
namely balanced. Determining the most efficient OpenMP thread mapping depends highly on the number of
thread and it sets the system load. It is surprised that the performance of MKL’s dgetrf (LU factorisation with
pivoting) is much better than MKL’s dgetrfnpi (LU factorisation without pivoting) on KNC in native mode.
This situation indicates that Intel does not optimise dgetrfnpi for KNC. However, it should be very easy for
them to make optimised dgetrfnpi, by just removing the pivoting code from dgetrf. In the native mode,
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the LU with pivoting, QR and Cholesky factorisations are scalable on Intel Xeon Phi but the LU factorisation
without pivoting is not. The comparison given here gives good insight into the performance properties of
the different factorisation algorithms on Intel Xeon Phi and hybrid CPU-MIC platform. These results can be
generalised as the paper gives the performance analysis of some other similar algorithms (namely, the QR and
Cholesky factorisations). In future works, the authors plan to research the impact of the thread mapping on
the performance and the energy saving for other applications from the domain of the dense linear algebra on
shared memory multicore and manycore architectures and to compare it with the results obtained in this work.
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