
Scalable Computing: Practice and Experience

Volume 19, Number 1, pp. 1–14. http://www.scpe.org

DOI 10.12694/scpe.v19i1.1389
ISSN 1895-1767
c⃝ 2018 SCPE

A SOLUTION TO IMAGE PROCESSING
WITH PARALLEL MPI I/O AND DISTRIBUTED NVRAM CACHE

ARTUR MALINOWSKI AND PAWE L CZARNUL∗

Abstract. The paper presents a new approach to parallel image processing using byte addressable, non-volatile memory
(NVRAM). We show that our custom built MPI I/O implementation of selected functions that use a distributed cache that
incorporates NVRAMs located in cluster nodes can be used for efficient processing of large images. We demonstrate performance
benefits of such a solution compared to a traditional implementation without NVRAM for various sizes of buffers used to read
image parts, process and write back to storage. We also show that our implementation benefits from overlapping reading subsequent
images while processing already loaded ones. We present results obtained in a cluster environment for three parallel implementation
of blur, multipass blur and Sobel filters, for various NVRAM parameters such as latencies and bandwidth values.

Key words: image processing, high performance computing, NVRAM, distributed cache, Sobel, blur filter

AMS subject classifications. 68U10, 68W10

1. Introduction. For many customers the number of recorded megapixels is a key factor when choosing
digital cameras. Assuming that engineers properly matched the size of an image sensor to its resolution, it is
completely justified – each pixel contains additional information that could be used in order to improve quality
of an image. The first affordable, commercially available digital cameras started from the resolution of about
one megapixel, like Kodak DCS or NASA’s Nikon F4 that was used during Space Shuttle missions [26]. The
megapixel race led to about 20 megapixel sensors in modern smartphones and more than 50 megapixel sensors
in DSLR equipment for professional photographers. Some digital cameras take things even a step further, like
the recently announced Hasselblad device with effective resolution of 400 megapixels [11]. The scale grows even
bigger for specialized devices, such as Hawaii telescopes of the project Pan-STARRS that are equipped with
sensors of a resolution more than one gigapixel [13].

Apart from better sensors, the final image resolution could be obtained by combining multiple smaller parts.
The sharpest view of the Andromeda Galaxy, created by NASA/ESA using data from Hubble telescope, contains
1.5 billion pixels [27]. This technique is useful not only in scientific research – in 2016 Bentley Motors created
a 53 gigapixel photo only for demonstration of the companys commitment to technological innovation [38].

Large images are more difficult during processing. The size of a file could exceed the amount of RAM
installed within a single node. Moreover, more demanding algorithms involve complex computations. It is
possible to offload some processing to GPU (compatible with GPGPU technologies, e.g. NVIDIA CUDA,
OpenCL) or computational accelerators (e.g. Intel R⃝ Xeon Phi R⃝), but it may require many round trips between
a host memory and a device due to limited memory on such compute devices.

An alternative solution for high data volume (especially with multiple images) and demanding computations
is changing the processing application from running on a single node to the one distributed among several
nodes. With such an approach, an application designer can include all of the techniques and methods of High
Performance Computing (HPC) in the application. It should be especially convenient for processing used in
scientific applications, where developers are familiar with HPC tools and technologies.

Within this paper we propose a distributed architecture for a large image processing application based on
HPC tools. The solution is created using Message Passing Interface (MPI), image file access is accelerated by
a byte-addressable non-volatile RAM (NVRAM) distributed cache. Initially, the framework consists of three
exemplary image filters, but it can be easily extended further. A set of experiments proved that the architecture
is capable to process large images (single or multiple) in reasonable time.

2. Related work and motivation. Firstly, parallel image processing, as a way to decrease execution
times of image filtering, important in many fields, has been analyzed and used for many years already.

∗Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland, ar-
tur.malinowski@pg.edu.pl, pczarnul@eti.pg.edu.pl

1

2 A. Malinowski, P. Czarnul

2.1. Parallel image processing. Parallel programming with Message Passing Interface (MPI) tradition-
ally allows utilization of clusters but MPI-based programs can be also run successfully on powerful workstations
with multi- (such as Intel Xeon) and many-core processors (such as Intel Xeon Phi x200) or many-core copro-
cessors (such as Intel Xeon Phi x100). Parallel image processing with MPI has been analyzed in many works.
Paper [29] presents design and results of a C+MPI framework for low-level image processing, run on a cluster
of up to 64 nodes connected with Myrinet. An example of a multi-baseline stereo vision application is used
for which speed-ups up to around 10 have been obtained on 32 nodes. In work [28] authors demonstrated
parallel extensions, also using MPI, to the Delft Image Processing LIBrary (DIPLIB) library. For geometric
mean filters and larger window sizes and image sizes (15x15 for an 256x256 and 9x9 and 15x15 for 1024x1024
images) the authors have obtained linear speed-ups up to 24 machines. Paper [33] introduced Parallel Image
Processing Toolkit (PIPT) that uses MPI, with load balancing schemes in the framework for transparent dis-
tribution of computations. Paper [2] deals with parallel image processing and considers data distribution for
heterogeneous machines with scalability results for an active contour algorithm. Website [5] provides a C/C++
with MPI implementation of several operations on images: contrast an image, filtering: smooth, blur, sharpen,
mean removal, emboss as well as computing image entropy.

Other parallel programming APIs allowing execution on clusters have also been used for image processing.
In paper [6] the authors extended the well known image processing tool GIMP with a possibility to use a cluster
based system for pipelined image processing. Paper [32] presents parallel processing of pressure-sensitive paint
images on a multiprocessor machine or a cluster with multiple nodes, however implemented with forks/pipes
and TCP/IP.

Recently, parallel image processing with GPUs has been explored deeper in many fields, for example: plant
growth analysis [30], medical applications such as cancer research [31] object recognition [35], embedded systems
[4]. Several frameworks for image processing with GPUs have been developed [1, 16] along with a possibility
to perform GPU image processing from higher level systems such as MATLAB [10]. However, GPUs have
limitations in terms of maximum memory capacity – currently up to 16GB in the latest and expensive cards
such as NVIDIA V100 or 12GB in NVIDIA Titan X. Consumer grade cards offer up to 8GB of memory. In
view of this, processing of very large images might require several communications over PCI Express and the
overall performance will suffer. Because of this, we explore the possibility of using NVRAM in parallel image
processing, especially in a cluster environment, in which NVRAMs from various nodes might offer even higher
capacities.

2.2. NVRAM applications. Non-volatile byte-addressable memory has several potential advantages
that make it an interesting solution in increasing performance of demanding applications [19]. These include
byte-addressability, sizes larger than RAM and persistence. There are several examples of applications analyzed
in the literature.

One is low overhead checkpointing. Paper [14] proposes NVM-checkpoints for storing checkpoints locally
and remotely. Authors propose checkpointing based on a hybrid memory model. An application uses an NVM
interface for provision of information regarding checkpointed data. While data remains in RAM, it can be copied
to NVM. NVM is used for local and less frequent remote checkpoints. Apart from an NVM kernel manager,
the provided NVM user library for handling checkpointed data: allocation, moving data from DRAM to NVM
and restart. Checkpointing using NVRAM was also proposed by us in [7] where wrappers to MPI functions
for use with NVRAM were proposed. We demonstrated that for expected performance characteristics of actual
NVRAM devices (latencies and bandwidth) NVRAM based checkpointing performs considerably better than the
traditional disk based approach for applications such as the HPCCG benchmark and the PageRank algorithm.

In terms of storage oriented solutions, several contributions have been made. Paper [17] presents NVWAL
that uses NVRAM for maintaining a write-ahead log that benefits from byte addressability of NVRAM, provides
a transaction-aware persistency and shows that NVWAL provides considerably better performance for SQLite
compared to using flash memory. In paper [39] authors present Mojim which is a two-tier system where the
first one contains a mirrored pair of nodes and the second tier encompasses secondary backup nodes with
weakly consistent data copies. The system provides reliability and availability. The paper demonstrates that a
solution with replication with non-volatile memory provides similar or better performance than a version with
non-volatile memory without replication. In paper [9] authors propose Phoenix (PHX) which is an NVRAM-

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 3

bandwidth aware object store for persistent objects. What is interesting is the fact that it can use NVRAM and
DRAM simultaneously as well as incorporate information such as bandwidths of devices, distances and energy
costs. The authors have presented that their solution reduced checkpoint/restart times for three tested HPC
benchmarks such as GTC, CM1 and S3D HPC compared to NVRAM only solutions.

Work [18] demonstrates how NVRAM can be used in order to improve performance of a browser. This
includes making use of NVRAM for placement of files for startup. Furthermore, perceived performance is
increased through caching of web resources in NVRAM.

Another application that can benefit from NVRAM is online transaction processing. Paper [12] presents
how NVRAM can be used for a logging subsystem and justifies that it provides better performance to cost ratio
than replacing the whole storage with NVRAM.

Paper [8], on the other hand, provides a study of impact of NVRAM on a Breadth-First Search (BFS)
graph traversal algorithm. An NVRAM simulator called PerMA has been used which allows to model latencies
and bandwidths of memory types from flash to RAM. The authors came to the conclusion that with sufficient
concurrency, with NVRAM the analyzed algorithm will be able to approach the performance of an in-memory
algorithm.

In paper [15] authors investigate benefits from using NVRAM for large scale data intensive (I/O) applica-
tions and demonstrated gains such as 3.85x I/O throughput and 1.6x for ort based data post processing over a
disk only approach.

Paper [36] demonstrates benefits through an average of 2.7x performance improvement of the map phase of
Map Reduce from using NVRAM. Benchmarks and workloads included those from Intel HiBench and PUMA.
Low level optimization of processing using NVRAM is analyzed in work [20] in which authors presents a software
cache in which lines to be flushed are buffered first and flushed later. Cache size is adapted at run time.

So far image processing with NVRAM has been addressed to a certain degree in the literature in terms of
energy efficiency. For instance, paper [25] presents that power consumption for parallel image processing can
be reduced greatly with the use of non-volatile memory. Work [37] presents energy efficient in memory machine
learning for image processing and corresponding benefits when using non-volatile memory.

2.3. Motivation and goal. Taking into account the aforementioned contributions, in this work we propose
to integrate usage of NVRAM for parallel image processing, especially large images, and demonstrate benefits
of this approach. With expected adoption of NVRAM in the nearest future, we believe that it will be an asset
applicable to a variety of fields and users.

3. Proposed solution.

3.1. Assumptions. From the HPC perspective, image processing could be regarded as performing a set
of operations on a two-dimensional matrix in which each element corresponds to a pixel of a selected color. In
the most straightforward approach an application performs the following steps:

1. The application opens an image file and reads an image as a matrix.
2. The matrix is split into submatrices.
3. Submatrices are assigned to processes (one to one or many to one depending on the processing paradigm)
4. Each process reads required data, performs its computations on the assigned part and writes output.
5. The application closes the file.

We believe that these steps make the application as simple as possible from a developer point of view. Our
solution sticks to this in order to make it easy to implement own image processing algorithms. On the other
hand, our solution uses NVRAM in an intermediate layer between files and the MPI I/O functions invoked
within the application.

Such an approach should be efficient with images of a size limited to the sum of all RAM capacities in a
cluster. In such case a file is read once at the beginning of processing and written back after computations have
been completed. The situation changes when the size of an image increases. The greater the size of a file, the
smaller image part can be processed at once and the application requires more read/write requests. Finally, the
application that used to be computationally bound becomes data intensive and I/O operations appear to be a
bottleneck.

4 A. Malinowski, P. Czarnul

Taking everything into account, the task is to design the application as simple as possible, keeping in mind
that in order to provide good application performance, it is required to perform I/O operations efficiently.

3.2. Design of the solution. As a base for our application we used the C programming language and
MPI which is the de facto standard for message passing parallel programming allowing to run applications on
clusters but also within nodes with multi-core CPUs. Choosing MPI ensures a wide knowledge of a platform
among HPC application programmers – e.g. MVAPICH, one of most popular MPI implementation, declares
being used by more than 2,750 organizations1. Many MPI implementations also offer additional advantages like
built-in Infiniband integration, efficient process managers, several levels of threads support or dynamic process
management routines.

In order to provide file access for all nodes within a cluster, in a typical HPC environment a parallel file
system (PFS) is used. Most popular PFSes provide POSIX support, but applications based on MPI can use
MPI I/O – a set of functions that allow accessing a file in a way convenient for a programmer. Popular MPI I/O
implementations also include many different optimizations, e.g. data sieving and two-phase I/O in ROMIO [34].

One of the conditions for comfortable file usage is the possibility to read and write a data chunk efficiently
independently from its location and size. As we will show in experiments, performance of specific operations
in regular MPI I/O and PFS could be significantly improved using our byte-addressable NVRAM distributed
cache [23].

The NVRAM cache, previously proposed by us, is a transparent component placed between an application
and MPI I/O. Its transparency is achieved through reimplementing selected MPI I/O API, so no additional
effort is needed from a developer. The most important requirements of this extension are installation of a
NVRAM device in each node of a cluster and the size of a file limited to the sum of all NVRAM capacities. As
justified in related work, NVRAM capacities are expected to far exceed RAM properties, so it should not be a
problem in the nearest future. The main distinguishing features of the cache are fully decentralized management,
prefetching the whole file during opening, synchronizing the whole file during closing and keeping minimal meta-
data. A set of tests with synthetic benchmarks and real-life applications like map searching, crowd simulation
or graph processing proved I/O improved performance, especially for long running applications [21, 22, 23]. An
additional feature of the cache that naturally benefits from NVRAM persistence is safety of the data during
processing [24]. The cache can also run using volatile RAM as its storage. Such a configuration forces reducing
RAM available for the application and does not offer any fail-safe mechanisms, but can be successfully applied
in order to enhance the efficiency of I/O.

Figure 3.1 presents the most important architecture components and their dependencies. As previously
stated, image files are served by a PFS. An application accesses it using MPI I/O API. The NVRAM cache is a
transparent component that improves efficiency of file access. Optionally, an application can use computational
accelerators.

3.3. Performance optimization. According to the description of the NVRAM based cache, overhead
for opening and closing a file may have a significant impact on application execution time. In a typical HPC
case this issue is negligible – in long running applications the gain from faster data access fully compensates the
initialization and deinitialization phases. However, omitting this overhead for fast and simple image processing
algorithms would be noticeable. The proposed application is prepared to be used as a service that is able to
process requested images one by one. The common idea in HPC used for avoidance of waiting for a data is
overlapping communication and computation. In our application we implemented a similar approach – image
processing overlaps with opening/closing a file.

Another important task was tuning the PFS. Our cluster was equipped both with Infiniband and 10Gb/s
Ethernet, so we were able to separate the application and the PFS traffic. Internal MPI communication was
based on Infiniband, while our cache was connected to PFS using Ethernet. The OrangeFS setting that has
the most impact on significant reduction of application execution time was turning off TroveSyncData option.
It allowed to omit costly data synchronization after each operation at the cost of increased risk of loosing data.
Instead of protection offered by OrangeFS we can use the fail-safe mode built into the NVRAM cache mechanism
or take the risk – in the worst case the application will process a lost image once more.

1http://mvapich.cse.ohio-state.edu/

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 5

Fig. 3.1. Architecture of the application for large image processing

Application optimizations included also, among others, tuning buffer sizes, reducing number of round-trips
between PFS and NVRAM cache or proper usage of MPI I/O flags like MPI MODE READONLY.

3.4. Exemplary filters. Our implementation contains code for parallel execution of three different filters.
Figure 3.2 presents exemples of an original image and processed results. The initial version of application
contains the following filters:

1. Blur – the idea is to blur an image by averaging values of neighboring pixels (to each pixel).
2. Multi-pass blur – similarly to the standard blur but the value of a considered pixel is also considered

in the average. Additionally, several passes through an image are executed.
3. Sobel – in this case, application of the filter relies on conversion of each pixel to grayscale (using a

luminosity approach) and application of a 3x3 operator on each pixel. This allows to compute minimum
and maximum values across a domain and then normalize final values based on these minimum and
maximum values. It should be noted that these minimum and maximum values need to be propagated
across all processes (realized using MPI Allreduce()).

4. Experiments. The main goal of experiments was not only to show that the application processes images
in reasonable time, but also to present a comparison of an architecture with and without the byte-addressable
NVRAM distributed cache. As parameters of expected NVRAM devices are not yet published, the last three
experiments were dedicated to different settings of the simulation platform.

4.1. Testbed environment. The extension was tested on cluster named Lap06, its technical specifications
are included in Table 4.1 and Table 4.2. As the actual NVRAM devices are not available on the market yet, we
used a hardware simulation platform. The platform internally uses RAM but increases its access latency and
modifies the bandwidth. Unless otherwise noted, the platform was set according to Table 4.3.

4.2. Results of NVRAM extension vs regular MPI I/O.

4.2.1. Various image sizes. The first set of experiments verified the possibility of processing large images
efficiently. In this scenario we processed a single image using 6 computing nodes, 7 processes per each. As
presented in Fig. 4.1 and 4.2, in one minute the application was able to apply blur filter on an 800 megapixel
image and blur multi-pass filter (10 passes) on a 500 megapixel image. As expected, processing time increases
linearly with increasing the size of an image. Comparison of unmodified MPI I/O and the one supported by
NVRAM cache clearly shows that extended version performed much better. For the blur filter execution time
was about 30% lower for small images (100 megapixels) up to more than 40% lower for images larger that 500

6 A. Malinowski, P. Czarnul

(a) Original image (b) Blur filter

(c) Blur-multipass filter (d) Sobel filter

Fig. 3.2. Original image and images processed using three different filters (fragment of a photo of Gdansk University of
Technology, author: Krzysztof Krzempek)

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 7

Table 4.1
Hardware used in performance tests

Number of computing nodes 6
Number of PFS nodes 2
CPU 2 x Intel R⃝ Xeon R⃝ E5-4620
RAM 15GB
Network 40Gb/s Infiniband, 10Gb/s Ethernet
Storage SSD
NVRAM simulation 17GB, hardware simulation

Table 4.2
Clusters’ software configuration

Operating system CentOS release 6.5
MPI implementation MPICH 3.2
PFS Orange-FS 2.9.6

Table 4.3
NVRAM simulation platform parameters

additional latency before accessing the data 2000ns
additional latency before flushing the data on device 600ns
memory bandwidth divider 4

megapixels. According to previous expectations, less demanding algorithms like blur suffer from overhead for
opening and closing a file. This issue does not occur with blur multi-pass – for this scenario we were able to
observe more than 90% reduction of the execution time.

Fig. 4.1. Image processing results, blur filter, 6 nodes, 42 processes, 512kB application buffers

4.2.2. Various number of images. The next set of tests was focused on testing effectiveness of overlap-
ping image processing with opening/closing a file. In order to verify the approach we compared the proposed
application running with multiple files and the same application, but executed for each single image sequentially.
Results presented in Fig. 4.3 and 4.4 demonstrate reduced execution times for application with overlapping.

8 A. Malinowski, P. Czarnul

Fig. 4.2. Image processing results, blur multi-pass filter, 6 nodes, 42 processes, 512kB application buffers

Unfortunately, the gain from implementation of overlapping was lower that expected. For a relatively simple
filter – Sobel – we observed reduction of execution time at the level of 5%. More complicated algorithms like
blur multi-pass allow for saving more time – for test scenario illustrated in Fig. 4.4 it was about 10%.

Fig. 4.3. Image processing results, Sobel filter, 6 nodes, 42 processes, 512kB application buffer, each image of 1 gigapixel

4.2.3. Various buffer sizes. Although our NVRAM distributed cache is designed to work well with
small data chunks (even with access to single bytes), the proposed application uses internal buffers. Two buffers
located in RAM, one for read and one for write operations, prevent from too frequent file requests. Results
presented in Fig. 4.5 and 4.6 prove that the NVRAM cache is prepared for serving even small data chunks.

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 9

Fig. 4.4. Image processing results, blur multi-pass filter, 6 nodes, 42 processes, 512kB application buffer, each image of
1 gigapixel

Results were similar both for simple and more demanding processing algorithms. With unmodified MPI I/O and
requests lower than 128kB the application is extremely slow, because the PFS is flooded with a large number
of requests incoming frequently. In our opinion, such a result is another argument for applying the proposed
architecture – implementing buffers is an additional overhead for developers, especially for more complicated,
non-linear image processing algorithms. The proposed solution allows to focus more on implementing algorithms
themselves, rather than on difficult I/O optimization.

Fig. 4.5. Image processing results, Sobel filter, 6 nodes, 42 processes, image of 0.5 gigapixel

10 A. Malinowski, P. Czarnul

Fig. 4.6. Image processing results, blur filter, 6 nodes, 42 processes, image of 0.5 gigapixel

4.2.4. Scalability. One of the most important parameters of HPC applications is scalability regarded as
the potential of reducing execution time with increasing hardware resources, today most often the number of
a cluster nodes and consequently the number of CPUs and cores. It may seem that with processing multiple
images, the application does not require good scalability because it could be executed multiple times for each
image independently. In practice, when the I/O is the bottleneck of the system, running many instances of a
data intensive application may result in overloading of PFS.

Figure 4.7 shows application speedup while increasing the number of nodes. Unmodified MPI I/O does
not scale well because the gain from higher computational power of greater number of nodes is insignificant
when PFS is more and more overloaded. The speedup of execution with NVRAM cache is also far from
linear, but still significant. Scalability is of the features of the distributed architecture of NVRAM cache. The
solution is designed in such way that each node participates in serving read/write requests. With an increasing
number of a file accesses from a higher number of processes, the extension has more nodes to process it, so the
average number of requests per node is constant. Furthermore, better scalability results are expected for more
demanding algorithms with a higher ratio of computations to I/O.

4.2.5. Various NVRAM simulation parameters. As we do not have NVRAM based devices yet, we
used a hardware simulation platform. Unknown properties of final devices result in necessity for testing solutions
for many different configurations in the range of expected parameter values. Although NVRAM devices should
outperform today’s SSDs, we assumed pessimistic values at the level similar to announced SSD specifications
(i.e. Intel R⃝ Optane R⃝ P4800X with typical latency of less than 10µs, up to 2400/2000MB/s read/write speed
and 500k IOPS for random requests [3]). The following three tests were performed using the blur multi-pass
filter.

Figure 4.8 presents comparison of execution times according to the memory bandwidth. Our nodes were
equipped with DDR3 1600Mhz memory units, the simulator allowed to divide the bandwidth by a certain factor.
In the plot we can observe that this parameter does not have a significant impact on the proposed application
– average growth of the execution time after reducing the bandwidth was less than 2.6%. With frequent, low
size requests our application depends more on the access latency rather than bandwidth.

Results shown in Fig. 4.9 concern an additional delay required to flush the cached data onto the device
to make it persistent. The plot is quite similar to the previous one – even when the additional latency before
flushing the data was doubled, average execution time of the application grew up about 2%. This latency is

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 11

Fig. 4.7. Image processing results, blur multi-pass filter, 512kB application buffers, image of 1.5 gigapixel

Fig. 4.8. Image processing results, blur multi-pass filter, 6 nodes, 42 processes, 128kB application buffer

added only for write accesses and in our application write operations are less common than reads.

A much more visible impact on execution time is shown in Fig. 4.10. In this scenario we increased the
additional latency added for each memory request. Obtained results resulted in about 7% growth of processing
time.

Those three experiments proved that the impact of NVRAM parameters is significant in terms of execution
time, but insignificant when comparing the application with NVRAM cache and the one without. This leads
to the conclusion that if only NVRAM devices provide performance at the level of SSD devices or better, the
proposed architecture will be more efficient using the proposed distributed cache.

12 A. Malinowski, P. Czarnul

Fig. 4.9. Image processing results, blur multi-pass filter, 6 nodes, 42 processes, 128kB application buffer

Fig. 4.10. Image processing results, blur multi-pass filter, 6 nodes, 42 processes, 128kB application buffer

5. Conclusions and future work. In this paper we proposed an architecture and software/hardware
components for large image processing application. Motivations included observation of increasing images sizes
and wide interest of efficient image processing architectures collected in the related work. In the exemplary
implementation we included three image processing filters: blur, Sobel and multi-pass version of blur. The
application is able to process a single image, as well as multiple images using additional optimization that
involves overlapping file opening and processing for subsequent images. The most distinguishing feature of the
proposed solution is application of byte-addressable NVRAM distributed cache. Emerging memory technology
combined with cache design allows for reducing PFS load, making the application development more convenient

A Solution to Image Processing with Parallel MPI I/O and Distributed NVRAM Cache 13

by using small data chunks efficiently and easily obtain better scalability with data intensive applications. The
presented experimental results show, among others:

1. efficiency of large (more than gigapixel) image processing,
2. better performance of NVRAM cache extension compared to unmodified MPI I/O,
3. performance gain obtained for processing multiple images using overlapping file opening and processing,
4. visible scalability of the solution,
5. impact of NVRAM parameters on the application execution time.

In the future we plan to improve performance of the NVRAM cache, which should also impact efficiency
of image processing with proposed architecture. Our idea involves a hybrid approach – using both plain PFS
performance and cache by balancing the load at runtime. Another interesting issue is connected with moving
the solution into a cloud – combining HPC and cloud processing becomes more and more popular nowadays.

Acknowledgments. The research in the paper was supported by a grant from Intel Technology Poland
and afterwards partially elaborated within statutory activities of Dept. of Computer Architecture, Faculty of
Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland.

REFERENCES

[1] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, GpuCV: A GPU-Accelerated Framework for Image Pro-
cessing and Computer Vision, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 430–439.

[2] J. Barbosa, J. Tavares, and A. J. Padilha, Parallel Image Processing System on a Cluster of Personal Computers, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 439–452.

[3] P. Bright, Specs for first Intel 3D XPoint SSD: so-so transfer speed, awesome random I/O, 2017. https://arstechnica.

com/?post type=post&p=1040631.
[4] M. Cavus, H. D. Sumerkan, O. S. Simsek, H. Hassan, A. G. Yaglikci, and O. Ergin, Gpu based parallel image processing

library for embedded systems, 2014 International Conference on Computer Vision Theory and Applications (VISAPP), 1
(2014), pp. 234–241.

[5] S.-D. Cosmin, Mpi-image-processor, March 2012. https://github.com/cosminstefanxp/MPI-Image-Processor.
[6] P. Czarnul, A. Ciereszko, and M. Fraczak, Towards Efficient Parallel Image Processing on Cluster Grids Using GIMP,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 451–458.
[7] P. Dorozynski, P. Czarnul, A. Malinowski, K. Czurylo, L. Dorau, M. Maciejewski, and P. Skowron, Checkpointing of

parallel mpi applications using mpi one-sided api with support for byte-addressable non-volatile ram, Procedia Computer
Science, 80 (2016), pp. 30 – 40.

[8] B. V. Essen, R. Pearce, S. Ames, and M. Gokhale, On the role of nvram in data-intensive architectures: An evaluation,
in 2012 IEEE 26th International Parallel and Distributed Processing Symposium, May 2012, pp. 703–714.

[9] P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan, Phoenix: Memory speed hpc i/o with nvm, in 2016 IEEE 23rd
International Conference on High Performance Computing (HiPC), Dec 2016, pp. 121–131.

[10] A. Georgantzoglou, J. d. Silva, and R. Jena, Image processing with matlab and gpu, in MATLAB Applications for the
Practical Engineer, K. Bennett, ed., InTech, Rijeka, 2014, ch. 22.

[11] Hasselblad Press Release, Hasselblad introduces the H6D-400c MS, 2018. https://www.hasselblad.com/press/

press-releases/hasselblad-introduces-the-h6d-400c-ms/.
[12] J. Huang, K. Schwan, and M. K. Qureshi, Nvram-aware logging in transaction systems, Proc. VLDB Endow., 8 (2014),

pp. 389–400.
[13] N. Kaiser, W. Burgett, K. Chambers, L. Denneau, J. Heasley, R. Jedicke, E. Magnier, J. Morgan, P. Onaka, and

J. Tonry, The Pan-STARRS wide-field optical/NIR imaging survey, Proc. SPIE, 7733 (2010), pp. 77330E–77330E–14.
[14] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, Optimizing checkpoints using nvm as virtual memory, in 2013

IEEE 27th International Symposium on Parallel and Distributed Processing, May 2013, pp. 29–40.
[15] S. Kannan, D. Milojicic, A. Gavrilovska, and K. Schwan, Using active nvram for i/o staging, 2011. HP Laboratories,

HPL-2011-131, http://www.hpl.hp.com/techreports/2011/HPL-2011-131.pdf.
[16] P. Karlsson, A gpu-based framework for efficient image processing, September 2014. LiU-ITN-TEK-A-14/043-SE, Depart-

ment of Science and Technology, Linkping University, Sweden.
[17] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, Nvwal: Exploiting nvram in write-ahead logging, SIGOPS Oper. Syst.

Rev., 50 (2016), pp. 385–398.
[18] K. Kyusik, C. Yongwoon, K. Seongmin, and K. Taeseok, Reducing the user-perceived latency of browsers with nvram,

JSTS:Journal of Semiconductor Technology and Science, 17 (2017), pp. 23–28. DOI: 10.5573/JSTS.2017.17.1.023.
[19] J. Layton, How persistent memory will change computing. Admin Magazine, accessed on 26th April 2017. http://www.admin-

magazine.com/HPC/Articles/Persistent-Memory, Linux New Media USA, LLC.
[20] P. Li and D. R. Chakrabarti, Adaptive Software Caching for Efficient NVRAM Data Persistence, Springer International

Publishing, Cham, 2017, pp. 93–97.
[21] A. Malinowski and P. Czarnul, Distributed NVRAM Cache – Optimization and Evaluation with Power of Adjacency

Matrix, Springer International Publishing, Cham, 2017, pp. 15–26.

14 A. Malinowski, P. Czarnul

[22] A. Malinowski, P. Czarnul, K. Czury lo, M. Maciejewski, and P. Skowron, Multi-agent large-scale parallel crowd
simulation, Procedia Computer Science, 108 (2017), pp. 917 – 926. International Conference on Computational Science,
ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

[23] A. Malinowski, P. Czarnul, P. Dorożynski, K. Czury lo, L. Dorau, M. Maciejewski, and P. Skowron, A Parallel MPI
I/O Solution Supported by Byte-addressable Non-volatile RAM Distributed Cache, in Position Papers of the 2016 Feder-
ated Conference on Computer Science and Information Systems, vol. 9 of Annals of Computer Science and Information
Systems, PTI, 2016, pp. 133–140.

[24] A. Malinowski, P. Czarnul, M. Maciejewski, and P. Skowron, A Fail-Safe NVRAM Based Mechanism for Efficient
Creation and Recovery of Data Copies in Parallel MPI Applications, in Information Systems Architecture and Technology:
Proceedings of 37th International Conference on Information Systems Architecture and Technology – ISAT 2016 – Part
II, Springer International Publishing, 2017, pp. 137–147.

[25] A. Mochizuki, N. Yube, and T. Hanyu, Design of a computational nonvolatile ram for a greedy energy-efficient vlsi
processor, in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Nov 2015, pp. 003283–
003288.

[26] NASA, Space Shuttle Mission STS-48 Press Kit, 1991. https://science.ksc.nasa.gov/shuttle/missions/sts-48/

sts-48-press-kit.txt.
[27] NASA/ESA, Hubbles High-Definition Panoramic View of the Andromeda Galaxy, 2015. http://www.spacetelescope.org/

images/heic1502a/.
[28] C. Nicolescu and P. Jonker, Parallel low-level image processing on a distributed-memory system, Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2000, pp. 226–233.
[29] C. Nicolescu and P. Jonker, A data and task parallel image processing environment, Parallel Computing, 28 (2002), pp. 945

– 965.
[30] A. Ozdemir and T. Altilar, Gpu based parallel image processing for plant growth analysis, in 2014 The Third International

Conference on Agro-Geoinformatics, Aug 2014, pp. 1–6.
[31] A. Remnyi, S. Sznsi, I. Bndi, Z. Vmossy, G. Valcz, P. Bogdanov, S. Sergyn, and M. Kozlovszky, Parallel biomedical

image processing with gpgpus in cancer research, in 3rd IEEE International Symposium on Logistics and Industrial
Informatics, Aug 2011, pp. 245–248.

[32] W. Ruyten and W. E. Sisson, Message passing for parallel processing of pressure-sensitive paint images, in Users Group
Conference (DOD UGC’04), 2004, June 2004, pp. 308–312.

[33] J. M. Squyres, A. Lumsdaine, and R. L. Stevenson, A toolkit for parallel image processing, in SPIE Annual Meeting, San
Diego, 1998.

[34] R. Thakur, W. Gropp, and E. Lusk, Data sieving and collective I/O in romio, Frontiers ’99 - Seventh Symposium On
Frontiers Massively Parallel Computation, Proc., (1999), pp. 182–189.

[35] K. Vincent, D. Nguyen, B. Walker, T. Lu, and T.-H. Chao, Gpu processing for parallel image processing and real-time
object recognition, 2014.

[36] M. Wasi-ur Rahman, N. S. Islam, X. Lu, and D. K. D. Panda, Can non-volatile memory benefit mapreduce applications on
hpc clusters?, in Proceedings of the 1st Joint International Workshop on Parallel Data Storage & Data Intensive Scalable
Computing Systems, PDSW-DISCS ’16, Piscataway, NJ, USA, 2016, IEEE Press, pp. 19–24.

[37] H. Yu, Y. Wang, S. Chen, W. Fei, C. Weng, J. Zhao, and Z. Wei, Energy efficient in-memory machine learning for data
intensive image-processing by non-volatile domain-wall memory, in 2014 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan 2014, pp. 191–196.

[38] M. Zhang, Bentley Used NASA Tech to Create This 53-Gigapixel Car Photo, 2016. PetaPixel, https://petapixel.com/
2016/06/23/bentley-used-nasa-tech-create-53-gigapixel-photo-car/.

[39] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson, Mojim: A reliable and highly-available non-volatile memory system,
in Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, New York, NY, USA, 2015, ACM, pp. 3–18.

Edited by: Dana Petcu
Received: Nov 6, 2017
Accepted: Dec 23, 2017

