
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2020 SCPE. Volume 21, Issues 4, pp. 649–660, DOI 10.12694:/scpe.v21i4.1799

SCIENTIFIC APPLICATIONS IN THE CLOUD:
RESOURCE OPTIMISATION BASED ON METAHEURISTICS

ANAS MOKHTARI∗, MOSTAFA AZIZI†, AND MOHAMMED GABLI‡

Abstract. The advent of emerging technologies such as 5G and Internet of Things (IoT) will generate a colossal amount of

data that should be processed by the cloud computing. Thereby, cloud resources optimisation represents significant benefits in
different levels: cost reduction for the user, saving energy consumed by cloud data centres, etc. Cloud resource optimisation is a
very complex task due to its NP-hard characteristic. In this case, use of metaheuristic approaches is more rational. But the quality
of metaheuristic solutions changes by changing the problem. In this paper we have dealt with the problem of determining the
configuration of resources in order to minimise the payment cost and the duration of the scientific applications execution. For that,
we proposed a mathematical model and three metaheuristic approaches, namely the Genetic Algorithm (GA), hybridisation of the
Genetic Algorithm with Local Search (GA-LS) and the Simulated Annealing (SA). The comparison between them showed that the
simulated annealing finds more optimal solutions than those proposed by the genetic algorithm and the GA-LS hybridisation.

Key words: Cloud computing, Resources Management, Optimisation, Metaheuristic, Artificial Intelligence

AMS subject classifications. 68M14, 68T01, 90C10

1. Introduction. The cloud computing is a distributed computer system based on an emergent technolo-
gies like the virtualisation. By comparing it with the conventional distributed computing, the latter has the
objective of providing a collaborative sharing of resources to which users are linked, while the cloud computing
has the objective of providing services or applications with ensuring of the scaling, the transparency (vis-a-vis
the physical implementation of the cloud), the security, the supervision and the management.

There are three main types of cloud models:
IaaS (Infrastructure as a Service) offers a low level computing resources in the form of Virtual Machines

(VM). EC2 [1] and Azure [3] are two IaaS examples provided respectively by Amazon and Microsoft.
PaaS (Platform as a Service) offers ready to use software platforms on which users develop and deploy

their applications. Heroku [6] and Google App Engine [4] provide this type of cloud.
SaaS (Service as a Service) offers ready-to-use applications. It’s the highest level in the cloud. G Suite [5]

(Google) and Office 365 [7] (Microsoft) are SaaS models.
There are numerous applications that require High Performance Computing (HPC). Weather forecast,

chemical process modeling, and the physics simulations are examples of such applications. Since the available
computing resources in the cloud are very efficient, users of the HPC applications showed interest in running
their intensive applications in the cloud environment.

Cloud computing face several challenges and problems that are subject to scientific research. The excessive
consumption of the electric energy and the performance degradation of the application execution because of
underestimation of reserved resources are examples of problems that cloud systems face.

This work addresses the problem of performance and cost of applications execution in the cloud. It’s a
double contradictory objectives problem. The first one is to maximise the resources to be used to have a good
performance by reducing the execution time. The second one is to minimise the resources to be used to reduce
the payment cost.

There are several works in the literature which have dealt with this type of problem. The complexity
of the cloud resource optimisation problem has led researchers to use metaheuristics. For instance, in our

∗MATSI Lab., ESTO, University Mohammed Ist, Oujda, Morocco (a.mokhtari@ump.ac.ma).
†MATSI Lab., ESTO, University Mohammed Ist, Oujda, Morocco (azizi.mos@ump.ac.ma).
‡LARI Lab., FSO, University Mohammed Ist, Oujda, Morocco (medgabli@ump.ac.ma).

649

650 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

Table 2.1
Definition of variables

Variable Definition

P Set of packages types offered by a cloud provider during a set of time periods
CM Set of consumer requirements as the maximum cost
TM Maximum time for execution
DS Disk storage
MC Memory capacity
Gf Processing demand in Gflop
p A package type from the set P (p ∈ P)
cp The cost of purchasing the package p for one period of time
dp Disk storage computing resource for the package p

mp Memory capacity for the package p

gp Processing power for the package p

NM Maximum limit of packages that a consumer can purchase at a period of time

previous works [20, 21, 22], we considered weighted objective functions in our model and chose the approach
of genetic algorithms for dealing with this issue. The authors of [25] investigated the meta-heuristic resource
allocation techniques used in the IaaS cloud computing environment. Jena et al. [26] proposed a hybridisation
of modified Particle swarm optimization (MPSO) and improved Q-learning algorithm to load balancing of tasks
on the cloud environment. Coutinho et al. [10] implemented an ILP model and then used Greedy Randomised
Adaptive Search Procedure (GRASP) to solve the resource optimisation problem. Except that the proposed
metaheuristics has been compared with a deterministic algorithm. Due to difficulty of this problem, which
is classified as NP-hard [10], most of these works have tried to solve it using metaheuristic approaches. The
effectiveness of these approaches in terms of the solutions found varies from one problem to another.

In this work, we used three metaheuristic algorithms: Genetic Algorithm (GA), Simulated Annealing (SA)
and hybridisation of GA and Local Search method (GA-LS). Our goal is executing demanding HPC applications
in the IaaS cloud.

The remaining of this paper is organised as follows: in the Sect. 2, we describe the mathematical model
used. In the Sect. 3, we explain the three proposed resolution metaheuristics. In the Sect. 4, We compare
between these approaches by experiments, then analyse the obtained results. We conclude in Sect. 5.

2. Mathematical model. In the infrastructure cloud (IaaS), resources are the virtual CPUs (vCPU), the
memory, the storage drives, etc. of the VMs. Each resource type has the same characteristics as the equivalent
physical resources (like processor frequency for the vCPU).

Cloud infrastructure service providers make available to the users a variety of VM choices. Each type has
a specific computing power and usage price per hour.

The mathematical model that we present is based on the variables cited in the Table 2.1.
Our optimisation problem is composed of two objective functions: (i) minimise the total cost and (ii)

minimise the execution time. We transformed them to a unique objective function by their sum with coefficients
assigned to each of these two functions (weighted sum). So, we have [10]:

(CC ILP) min(αf1 + (1− α)f2) (2.1)

with

f1 =
∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit (2.2)

and

f2 = tm (2.3)

Scientific Applications in the Cloud: Resource Optimisation based on Metaheuristics 651

subject to

∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit ≤ CM (2.4)

∑

p∈P

NM∑

i=1

dpxpit ≥ Dsxp′i′t, ∀t ∈ T, ∀p′ ∈ P, ∀i′ ∈ {1, ..., NM} (2.5)

∑

p∈P

NM∑

i=1

mpxpit ≥MCxp′i′t, ∀t ∈ T, ∀p′ ∈ P, ∀i′ ∈ {1, ..., NM} (2.6)

∑

p∈P

NM∑

i=1

∑

t∈T

gpxpit ≥ Gf (2.7)

∑

p∈P

NM∑

i=1

xpit ≤ NM , ∀t ∈ T (2.8)

tm ≥ txpit, ∀t ∈ T, ∀p ∈ P, ∀i ∈ {1, ..., NM} (2.9)

xpit+1 ≤ xpit, ∀t ∈ T, ∀p ∈ P, ∀i ∈ {1, ..., NM} (2.10)

xpi+1t ≤ xpit, ∀t ∈ T, ∀p ∈ P, ∀i ∈ {1, ..., NM − 1} (2.11)

xpit ∈ {0, 1}, ∀t ∈ T, ∀p ∈ P, ∀i ∈ {1, ..., NM} (2.12)

tm ∈ Z (2.13)

The terms α and (1 − α) represent the weights of the two objectives. To automate the choice of the weights
and ensure a fair treatment between the two objective functions [12], we used dynamic weights to meet the
condition (2.14):

|α(t)f1 − (1− α(t))f2| ≺ ε, (2.14)

where ε is a positive number in the vicinity of 0, t is a time-step, and α(t) and (1 − α(t)) are the dynamic
weights. α(t) is calculated by the formula (2.15):

α(t) =
|f2(xt−1)|

|f1(xt−1)|+ |f2(xt−1)|
(2.15)

where xt−1 is the best solution of the iteration (t− 1) of the metaheuristic. For more details, see our previous
work [20].

652 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

Table 3.1
The SA variables definitions.

Variable Definition

S Solution that represents a combination of packages.
∆ The difference between the value of the optimisation function of the

current solution and that under the evaluation.
T System temperature.

3. Metaheuristic resolution approaches.

3.1. Simulated Annealing. The origin of this method come from the experiments done by Metropolis
et al. [19] to simulate the stochastic evolution of such physical system. In the context of minimisation of the
objective function f , the process of simulated annealing is illustrated in the Algorithm 5. Table 3.1 defines the
used variables in this algorithm.

Algorithm 1 Simulated Annealing

1: Generate an initial solution S ← S0

2: Initiate the temperature T ← T0

3: repeat
4: for a predetermined number of iterations do
5: Generate a solution S0 in the vicinity of S
6: Calculate ∆ = f(S0)− f(S)
7: if ∆ < 0 then
8: S ← S0

9: else
10: S ← S0 with the probability e

−∆

T

11: end if
12: end for
13: Decrease the temperature T

14: until The stop criterion is satisfactory
15: Return to the best configuration found

The proper functioning of the Simulated Annealing algorithm depends on the configuration space and the
temperature decrease function. For example, Dréo et al. [11] and Kirkpatrick et al. [18] propose methods to
define this function.

3.2. Genetic Algorithm. The Genetic Algorithm is an optimisation technique that mimic the natural
evolution. The first work on the GA was developed by John Holland in 1962 [16]. The popularity of the GA
returns to the work of David Golberg [14]. In this context, we call chromosome x any proposed solution by
the GA. This chromosome is composed of a set of values called genes. The Algorithm 6 presents the second
approach. Table 3.2 describes used variables.

The fitness function permits to evaluate each chromosome by assigning it a value that depends on the
quality of this solution (chromosome). The crossover operation randomly chooses two chromosomes and a
position of crossing. Then, we exchange the bits which are very close to the position of crossing. The mutation
operation is to select a gene and replace its value by another randomly chosen from a given set.

3.3. Hybridisation of GA and Local Search method. The metaheuristic methods of optimisation
are classified into two categories: approaches which aim at diversification and those which aim at intensification
in the research space. The main difference between these two categories [13] is that in intensification, research
focuses on the evaluation of neighbours of elite solutions, while diversification encourages the research process to
evaluate regions not visited and to generate solutions that differ significantly from the solutions seen previously.

Scientific Applications in the Cloud: Resource Optimisation based on Metaheuristics 653

Algorithm 2 Genetic Algorithm

1: Initialise t← 0. Randomly generate an initial population of individuals P (0)
2: Put f(x, t) = α(t)f1(x) + (1− α(t))f2(x) and α(0) = 0.5
3: for A predetermined number of iterations do
4: Put t ← t + 1. Apply on each solution (chromosome) of the current population an evaluation by the

fitness function f

5: Apply the selection operator on the current population P (t) to produce a new population P ′(t)
6: Apply the crossover operator on P ′(t) with a probability Pc. A new population P ′′(t) is created
7: Apply the mutation operator on P ′′(t) with a probability Pm. The result population is noted P (t+ 1)
8: Update the weight α(t) by using the dynamic method described by the formula (2.15)
9: end for

Table 3.2
Definitions of the genetic algorithm variables

Variable Definition

P (t) Population composed of several candidate solutions used in the iteration t.
x A solution that represents a combination of packages.
Pc Crossover probability.
Pm Mutation probability.

GA are based on diversification, while the Local Search (LS) algorithm intensifies its search in the vicinity of
a solution.

Evolutionary algorithms, including GA, suffer from the inability to intensify research enough. As a result,
they cannot effectively achieve high quality candidate solutions [17]. A significant improvement in the perfor-
mance of the GA for combinatorial problems can be ensured by the application of LS on the solution found by
the GA. We talk about hybridisation between GA and LS (GA-LS).

The third approach is presented by the Algorithm 7. We are considering the improvement of the solution
proposed by the GA using LS as a method of intensification [8]. The first part of this algorithm (lines 1 to
10) represents the GA. It consists in initialising a population of candidate solutions, then repetitively carrying
out the operations of evaluation, selection, crossing and mutation. In the second part (lines 11 to 18), which
represents the LS algorithm, the best solution found by the GA, noted s, is selected to become the initial
configuration of LS.

4. Comparison of the Results.

4.1. Description of data. One of the most important parts of a comparison between metaheuristics
is the testbed on which it is made [23]. It is preferable to develop a new test bed (program) to implement
the metaheuristics and compare between them. In addition, so that the execution time of each algorithm is
comparable to the others, the best approach to use consists in implementing these algorithms by the same
programming language, compiling them in the same machine with the same parameters (flags) of compilation
and run them in the same machine [23].

We implemented our approaches in Java language, then compiled the code by the javac compiler (Open-
JDK), version 11.0.6, on a machine characterised by an Intel processor ® Core™ i7-2670QM which contains
eight cores clocked at 2.20 GHz. We tested our programs on the same computer using the Java virtual machine
(OpenJDK JRE), version 11.0.6.

We have applied these algorithms on four instances of applications with different sizes: an application which
deals with the problem of manipulation of the biological sequence (raxml) [24], a typical analysis application for
the CMS experience (CMS-1500) [9] and two applications for solving the QAP1 problem by the separation and

1Quadratic Assignment Problem

654 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

Algorithm 3 Hybridisation algorithm between the genetic algorithm and the local search (GA-LS)

1: Set t← 0
2: Randomly generate an initial population of individuals P (0)
3: Put f(x, t) = α(t)f1(x) + (1− α(t))f2(x) and α(0) = 0.5
4: for A predetermined number of iterations do
5: Put t ← t + 1. Apply on each solution (chromosome) of the current population an evaluation by the

fitness function f

6: Apply the selection operator on the current population P (t) To produce a new population P ′(t)
7: Apply the crossover operator on P ′(t) with a probability Pc. A new population P ′′(t) is created
8: Apply the mutation operator on P ′′(t) with a probability Pm. The result population is noted P (t+ 1)
9: Update the weight α(t) by using the dynamic method described by the formula (2.15)

10: end for
11: Choose the solution s ∈ S found by the genetic algorithm
12: repeat
13: Choose s′ in the vicinity of s (s′ ∈ V (s))
14: ∆ = f(s)− f(s′)
15: if ∆ > 0 then
16: s← s′

17: end if
18: until The stop criterion is satisfactory

Table 4.1
Characteristics of the applications used in the experiment [10]

Application Memory Storage GFLOP Time Max Cost
(GB) (GB) (hour) packages ($)

raxml 3 2 3, 317, 760 10 20 50
cms-1500 2, 250 30 324, 000, 000 10 20 75
nug28-cbb 528 528 541, 765, 325 10 20 120
nug30-cbb 918 918 967, 438, 080 15 30 250

evaluation algorithm (nug28-cbb and nug30-cbb) [15]. The characteristics of these applications are summarised
in the Table 4.1.

In order to have realistic results, we applied our simulation to the offers of two cloud computing providers:
Amazon EC2 [1] and Google Compute Engine [2] (cf. Table 4.2).

For each application, we performed the metaheuristics several times to ensure the accuracy of the results
obtained. Details are presented in Table 4.3.

To give metaheuristic approaches more chance of finding good solutions, we have extended the execution
time for larger application problems (between 1 and 20 seconds, cf. Table 4.3-left). In addition, in order to
verify the influence of this duration on the quality of the results obtained, we launched other tests with a long
execution time (cf. Table 4.3-right).

Since the LS depends on the solution found after the execution of the GA, and in order to be able to
compare between the results of the GA and GA-LS hybridisation approaches, we have allocated to the LS part
an execution time equivalent to approximately 8% of the execution time of the GA alone:

Duration(GA-LS) ≈ 1.08× duration(GA)⇒ Duration(GA-LS) ≈ duration(GA)

Generally, the parameters values of each algorithm must be determined by its designer because their change
influences the performance of metaheuristics [23]. For the case of our approaches, we fixed the parameters

Scientific Applications in the Cloud: Resource Optimisation based on Metaheuristics 655

Table 4.2
Cloud Provider’s VM Instance Pricing

Cloud Instance vCPU Memory Storage Price
provider type (GB) (GB) (/hour)

Amazon EC2 c4.large 2 3.75 200 $0.128
c4.xlarge 4 7.5 400 $0.255
c4.2xlarge 8 15 800 $0.509
c4.4xlarge 16 30 1, 600 $1.018
c4.8xlarge 36 60 2, 500 $1.938

Google Compute n1-highcpu-2 2 1.80 100 $0.0764
Engine n1-highcpu-4 4 3.60 200 $0.1529

n1-highcpu-8 8 7.20 400 $0.3058
n1-highcpu-16 16 14.40 800 $0.6116
n1-highcpu-32 32 28.80 1, 600 $1.2233
n1-highcpu-64 64 57.60 2, 500 $2.4077

Table 4.3
Parameters used for the execution of the three approaches: GA, GA-LS hybridisation, and SA: for a no long duration (left)

and for a long duration (right)

Application Execution Number of
time (s) trials

raxml 1 10
cms-1500 5 10
nug28-cbb 10 10
nug30-cbb 20 10

Application Execution Number of
time (s) trials

raxml 180 2
cms-1500 180 2
nug28-cbb 180 2
nug30-cbb 180 2

according to the application concerned. The details are presented in Table 4.4 for GA and GA-LS, and Table 4.5
for SA.

4.2. Results analysis. One of the most important points in the comparison between metaheuristics is
the solution quality. The measurement of this quality is relative and it depends on the treated application.
For long-term planning, the acceptable difference between the found and the optimal solutions is smaller than
that of short-term planning applications [23]. For that, we must compare between the solutions found by
metaheuristics and not determine if they reach a threshold of solution quality [23].

To compare the solutions found by metaheuristics, we must base ourselves on a metric. In our case, we
have the possibility of using one of the following two metrics [23]:

• Deviation from best-known solutions for a problem;
• Deviation between the algorithms being compared: This method has the advantage of making the

comparison between the algorithms very explicit. However, these comparisons lack any sense of the
actual error of solutions.

In our knowledge, there is no best-known solutions for the case of our problem. So, we used the second metric.

The results of our experiment are detailed in the Table 4.6. We have limited ourselves in this table to the
best solution found in the ten trials carried out by application.

In the Application column, we put the name of the problem instance to be executed with the name of the
cloud on which this execution is planned. For example, the first line (raxml_am) concerns the execution of
raxml instance in the Amazon EC2 (am) cloud, while for the fifth line (raxml_go), we are talking about the
same application in the Google Compute Engine (go) cloud.

The details of the solution for each metaheuristic are represented in five columns: the payment cost f1

656 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

Table 4.4
Parameters used for the GA

Problem Population Crossover Mutation
instance size probability (Pc) probability (Pm)

raxml 40 0.5 0.01
cms-1500 40 0.5 0.01
nug28-cbb 40 0.5 0.01
nug30-cbb 60 0.5 0.01

Table 4.5
Parameters used for the SA

Problem instance Annealing rate (λ) Initial temperature

raxml 0.9 100
cms-1500 0.9 100
nug28-cbb 0.9 100
nug30-cbb 0.9 100

(in dollars) of the found solution, the duration f2 (in hours) necessary for the execution of the application,
the value of the weighted objective function f , favg to check the robustness of this solution by calculating the

average of the values of f for the ten trials carried out (favg =
∑10

i=1

ftriali

10
), and the fifth column contains the

execution time of the metaheuristic (in seconds) which allowed to have this result.

From Fig. 4.1, we can easily notice that, for all the tested applications, the best minimisation of the
objective function f is ensured by the SA, followed by the GA-LS hybridisation algorithm. The optimal cost
of f found by the SA is 53.34% (nug30-cbb_go) to 92.3% (raxml_go) less than that found by the GA, and
29.27% (nug28-cbb_go) to 90.57% (raxml_go) less than the GA-LS.

The fact that the GA-LS optimises the objective function better than the GA is expected since the GA-LS
diverts the weakness of the GA in terms of intensification.

Since the function f is the result of the weighted sum of the two functions f1 and f2 (f = αf1+(1−α)f2),
we also analysed and compared these two objectives for the three metaheuristic approaches. The histograms
in Fig. 4.2 and Fig. 4.3 represent, respectively, the values of f1 and f2.

Simulated Annealing gives us, for all the tested applications, cheaper solutions (f1) and faster execution
(f2) than those proposed by the GA and the GA-LS. Solutions of the GA-LS hybridisation algorithm are more
expensive than those found by the GA (case of nug28-cbb_go and nug30-cbb_go in Fig. 4.2), but are always
faster in execution (cf. Fig. 4.3).

Since the aforementioned results represent the best solutions found among the ten trials that we carried out,
this brings us back to verifying that these solutions do not represent particular cases (noise). The robustness of
the GA is presented in Fig. 4.4. The red (dark) bar represents the value f and the red+blue (dark+light) bar
represents favg. The best values of f are 20.5% to 46.35% smaller than the average favg of the solutions found
by the ten trials. Similarly, f of the GA-LS (cf. Fig. 4.5) is 20.6% to 49.79% lower than favg. This variation
is more reduced in the case of the SA (cf Fig. 4.6) since it is between 0.01% and 29.72%. The long-term
execution of the three algorithms (180 seconds) did not considerably improve the quality of the found solutions
(details in the Table 4.6). In this case too, the SA gives in all the tested cases more optimal solutions than
those of the GA and the GA-LS.

5. Conclusion. In this paper, we treated the problem of multi-objective optimisation of the cloud com-
puting resources, for the execution of the intensive computing applications. We took into account the decrease
in the budget by reducing the allocation price of computing resources (first objective) and the increase in per-
formance by minimising the execution time (second objective). Then, we implemented three problem solving

Scientific Applications in the Cloud: Resource Optimisation based on Metaheuristics 657

T
a

b
l
e

4
.6

R
es

u
lt

s
o
bt

a
in

ed
by

th
e

G
A

,
th

e
G

A
-L

S
h
y
br

id
is

a
ti

o
n

a
n

d
th

e
S

A
.

T
h
e

fi
rs

t
h
a
lf

o
f

th
e

re
su

lt
s

(8
li

n
es

)
re

p
re

se
n

t
th

e
so

lu
ti

o
n

s
fo

u
n

d
by

o
u

r
a
lg

o
ri

th
m

s
ex

ec
u

te
d

in
d
u

ra
ti

o
n

s
be

tw
ee

n
1

a
n

d
2
0

se
co

n
d
s.

T
h
e

se
co

n
d

h
a
lf

re
p
re

se
n

ts
th

e
te

st
s

o
f

th
es

e
a
lg

o
ri

th
m

s
in

lo
n

g
d
u

ra
ti

o
n

s
(1
8
0

se
co

n
d
s)

.
T

h
e

va
lu

es
o
f
f
1
,
f
2

a
n

d
f

re
p
re

se
n

t
th

e
be

st
so

lu
ti

o
n

fo
u

n
d

a
m

o
n

g
th

e
1
0

te
st

s
la

u
n

ch
ed

.
T

h
e

co
lu

m
n

s
o
f
f
1

re
p
re

se
n

t
th

e
es

ti
m

a
te

d
co

st
o
f

pa
y
m

en
t

in
d
o
ll

a
rs

.
T

h
e

co
lu

m
n

s
o
f
f
2

a
re

th
e

ex
ec

u
ti

o
n

ti
m

es
o
f

th
e

a
p
p
li

ca
ti

o
n

in
qu

es
ti

o
n

,
es

ti
m

a
te

d
in

h
o
u

rs
.
f

is
th

e
fi

tn
es

s
fu

n
ct

io
n

(o
bj

ec
ti

ve
fu

n
ct

io
n

)
o
f

th
e

so
lu

ti
o
n

fo
u

n
d
.

T
o

en
su

re
th

e
ro

bu
st

n
es

s
o
f

th
es

e
so

lu
ti

o
n

s,
w

e

a
d
d
ed

th
e

co
lu

m
n

s
o
f
f
m

o
y

w
h
ic

h
re

p
re

se
n

t
th

e
a
ve

ra
ge

o
f

th
e

va
lu

es
o
f

th
e

o
bj

ec
ti

ve
fu

n
ct

io
n

s
o
f

th
e
1
0

te
st

s
ca

rr
ie

d
o
u

t
(f

m
o
y
=

∑
1
0

i=
1

f
t
e
s
t
i

1
0

).

A
p

p
li

c
a
ti

o
n

G
e
n

e
ti

c
A

lg
o

ri
th

m
G

A
-L

S
H

y
b

ri
d

is
a
ti

o
n

S
im

u
la

te
d

A
n

n
e
a
li

n
g

f
1

f
2

f
f
a
v
g

D
u
ra

ti
o
n

o
f

f
1

f
2

f
f
a
v
g

D
u
ra

ti
on

of
f
1

f
2

f
f
a
v
g

D
u
ra

ti
on

of
ex

ec
u
ti

o
n

(s
)

ex
ec

u
ti

on
(s

)
ex

ec
u
ti

on
(s

)

ra
x
m

l_
am

45
.5
52

3
4

7
.1
10

8
13

.2
5
52

1
5
.0
9
3
1

3
3
.2
6
9
2

6
.5
1
1
5

1
.0
8

0
.6
36

8
1

0
.7
78

1
0
.8
48
6

1
C

M
S
-1

5
00

_
am

60
.8
25

5
8

12
.1
5
23

1
5
.2
86

0
5

56
.7
6
62

3
7
.5
9
0
3

9
.5
7
2
9

5
.3
6

52
.5
59

9
2

3
.8
53

3
5
.4
82
6

5
n
u
g2

8-
cb

b
_

am
9
9
.7
77

5
4

7
.5
8
6
0

13
.9
68

6
1
0

91
.9
9
59

3
6
.3
3
2
1

9
.7
1
7
7

10
.7

89
.1
16

6
2

3
.9
12

2
5
.4
20
3

10
n
u
g3

0-
cb

b
_

am
16

7
.3
06

6
7

13
.4
76

3
2
2
.8
3
0
6

2
0

1
66

.3
8
51

4
10

.5
6
0
3

1
4
.6
7
1
0

21
.5

15
7.
50

61
3

5
.8
87

8
7
.2
27
1

20

ra
x
m

l_
go

28
.3
62

3
6

9
.0
49

7
12

.3
5
24

1
28

.2
1
21

3
7
.3
9
2
1

9
.0
9
6
9

1
.6
1

0
.5
35

1
1

0
.6
97

2
0
.7
68
4

1
C

M
S
-1

5
00

_
go

65
.3
56

2
5

9
.3
6
52

1
5
.4
2
9
8

5
53

.7
4
82

3
6
.6
7
0
3

9
.0
5
4
2

5
.3
68

46
.2
07

4
2

3
.8
34

0
5
.2
60
8

5
n
u
g2

8-
cb

b
_

go
7
7.
70

1
8

7
1
2
.3
8
3
8

16
.9
32

1
1
0

79
.4
2
14

3
8
.1
6
5
4

1
0
.2
8
4
5

10
.7
45

77
.2
02

9
3

5
.7
75

5
5
.7
76
0

10
n
u
g3

0
-c

b
b
_

go
14

1.
81

58
7

12
.5
85

5
22

.7
71

0
2
0

1
54
.4
2
03

4
10

.2
3
2
0

1
3
.7
6
5
0

22
.0
04

13
7
.6
62
0

3
5
.8
72

0
7
.2
01
0

20

ra
x
m

l_
am

4
4.

82
37

6
11

.0
9
31

11
.0

93
1

1
8
0

1.
0
2
2
2

1
1.

0
0
3
9

1.
8
4
8
5

19
3.

40
4

0.
63

68
1

0.
77

81
0.

77
81

18
0

C
M

S
-1

50
0_

am
73

.7
05

6
6

11
.4

8
18

12
.2

66
0

1
8
0

54
.1

6
20

2
6.

2
2
3
3

8.
1
1
2
6

19
3.

47
9

54
.6

75
6

1
1.

96
40

1.
96

40
18

0
n
u
g2

8
-c

b
b
_

am
92

.8
21

7
8

14
.8

6
91

16
.6

12
8

1
8
0

95
.6

3
04

2
9.

5
8
2
5

9.
8
2
9
7

19
3.

63
4

89
.4

68
4

2
3.

91
25

3.
91

31
18

0
n
u
g3

0
-c

b
b
_

am
17

8
.2

7
15

12
20

.6
8
93

22
.2

00
3

1
8
0

1
74

.4
7
13

3
11

.9
6
1
1

1
3.

6
6
8
8

19
4.

84
7

15
6.

42
87

3
5.

88
70

5.
88

75
18

0

ra
x
m

l_
go

4
5.

63
86

5
9.

69
28

9
.6

92
8

1
8
0

10
.0

5
32

2
3.

1
8
3
6

3.
3
2
9
1

19
2.

21
8

0.
53

51
1

0.
69

72
0.

69
72

18
0

C
M

S
-1

50
0_

go
62

.9
90

1
8

14
.1

9
69

15
.1

92
5

1
8
0

46
.4

0
05

2
7.

0
0
3
5

7.
5
7
9
7

19
3.

56
9

46
.0

90
8

2
3.

83
36

3.
83

37
18

0
n
u
g2

8-
cb

b
_

go
1
02

.7
01

5
9

1
6.

98
7
0

17
.1

7
02

1
8
0

77
.5

5
16

3
9.

0
9
4
5

9.
0
9
7
7

19
5.

79
5

77
.2

40
4

2
3.

89
90

3.
89

90
18

0
n
u
g3

0-
cb

b
_

go
1
50

.7
86

7
8

1
5.

31
3
7

17
.4

7
29

1
8
0

1
51

.8
1
42

2
9.

6
7
3
7

1
2.

5
2
6
5

20
.0

48
3

13
7.

73
98

3
5.

87
21

5.
87

21
18

0

658 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

Fig. 4.1. Comparison of the objective function values found by the GA, the GA-LS hybridisation and the SA.

Fig. 4.2. Comparison of payment costs of solutions found by the GA, the GA-LS hybridisation and the SA.

Fig. 4.3. Comparison of the durations of the solutions found by the GA, the GA-LS hybridisation and the SA.

Fig. 4.4. Robustness of the GA verified by the comparison between the best solution found (f) and the average of the solutions
of the ten tests carried out (fmoy).

Scientific Applications in the Cloud: Resource Optimisation based on Metaheuristics 659

Fig. 4.5. Robustness of the GA-LS hybridisation verified by the comparison between the best solution found (f) and the
average of the solutions of the ten tests carried out (favg).

Fig. 4.6. Robustness of the SA verified by the comparison between the best solution found (f) and the average of the solutions
of the ten tests carried out (favg).

metaheuristics, namely the Genetic Algorithm, the hybridisation between the Genetic Algorithm and Local
Search, and the Simulated Annealing. To compare between these approaches, we launched simulations on
different sizes applications. The obtained results showed that the Simulated Annealing finds more optimal
solutions than those proposed by the Genetic Algorithm and the hybridisation between the Genetic Algorithm
and Local Search.

In the future, we plan to extend our work by comparing the Simulated Annealing with other metaheuristics,
and test them in a different context such as the multi-cloud.

REFERENCES

[1] https://aws.amazon.com/fr/ec2/, Oct. 2017.
[2] https://cloud.google.com/compute/, Oct. 2017.
[3] https://azure.microsoft.com/fr-fr/, Feb. 2020.
[4] https://cloud.google.com/appengine/, Feb. 2020.
[5] https://gsuite.google.fr/intl/fr/, Feb. 2020.
[6] https://www.heroku.com/, Feb. 2020.
[7] https://www.office.com/, Feb. 2020.
[8] C. Blum and A. Roli, Metaheuristics in combinatorial optimization: Overview and conceptual comparison, ACM computing

surveys (CSUR), 35 (2003), pp. 268–308.
[9] C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. Sirunyan, W. Adam, T. Bauer, T. Bergauer,

H. Bergauer, M. Dragicevic, et al., The cms experiment at the cern lhc, 2008.
[10] R. d. C. Coutinho, L. M. Drummond, and Y. Frota, Optimization of a cloud resource management problem from a

consumer perspective, in European Conference on Parallel Processing, Springer, 2013, pp. 218–227.
[11] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard, Métaheuristiques pour l’optimisation difficile, 2003.
[12] M. Gabli, E. M. Jaara, and E. B. Mermri, A genetic algorithm approach for an equitable treatment of objective functions

in multi-objective optimization problems., IAENG International Journal of Computer Science, 41 (2014).
[13] F. Glover and M. Laguna, Tabu search kluwer academic, Boston, Texas, (1997).

660 Anas Mokhtari, Mostafa Azizi, Mohammed Gabli

[14] D. Goldberg, Genetic algorithms in search, optimization, and machine learning, addison-wesley, reading, ma, 1989, NN
Schraudolph and J, 3 (1989).

[15] A. D. Goncalves, L. M. Drummond, A. A. Pessoa, and P. Hahn, Improving lower bounds for the quadratic assignment
problem by applying a distributed dual ascent algorithm, arXiv preprint arXiv:1304.0267, (2013).

[16] J. H. Holland, Outline for a logical theory of adaptive systems, Journal of the ACM (JACM), 9 (1962), pp. 297–314.
[17] H. H. Hoos and T. Stützle, Stochastic local search: Foundations and applications, Elsevier, 2004.
[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, science, 220 (1983), pp. 671–680.
[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by

fast computing machines, The journal of chemical physics, 21 (1953), pp. 1087–1092.
[20] A. Mokhtari, M. Azizi, and M. Gabli, Optimizing management of cloud resources towards best performance for applications

execution, in 2017 First International Conference on Embedded & Distributed Systems (EDiS), IEEE, 2017, pp. 1–5.
[21] , Multi-cloud resources optimization for users applications execution, in International Conference Europe Middle East

& North Africa Information Systems and Technologies to Support Learning, Springer, 2018, pp. 588–593.
[22] , A fuzzy dynamic approach to manage optimally the cloud resources, in International Conference on Innovative

Research in Applied Science, Engineering and Technology, IEEE, 2020.
[23] J. Silberholz and B. Golden, Comparison of metaheuristics, in Handbook of metaheuristics, Springer, 2010, pp. 625–640.
[24] A. Stamatakis, Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models,

Bioinformatics, 22 (2006), pp. 2688–2690.
[25] S.H.H. Madni, M.S.A. Latiff, Y. Coulibaly and S.I.M. Abdulhamid, An appraisal of meta-heuristic resource allocation

techniques for IaaS cloud, Indian Journal of Science and Technology, 2016, 9(4), 1-14.
[26] U.K. Jena, P.K. Das and M.R.Kabat, Hybridization of meta-heuristic algorithm for load balancing in cloud computing

environment, Journal of King Saud University-Computer and Information Sciences, 2020.

Edited by: Dana Petcu
Received: Aug 14, 2020
Accepted: Dec 6, 2020

