
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2020 SCPE. Volume 21, Issues 4, pp. 673–688, DOI 10.12694:/scpe.v21i4.1806

FORGERY PROTECTION OF ACADEMIC CERTIFICATES THROUGH INTEGRITY

PRESERVATION AT SCALE USING ETHEREUM SMART CONTRACT

AUQIB HAMID LONE∗
AND ROOHIE NAAZ†

Abstract. Academic credentials are precious assets as they form an evidence for one’s identity and eligibility. Fraud in
issuance and verification of academic certificates have been a long-standing issue in academic community. Due to lack of anti-
forgery mechanisms there has been substantial increase in fraudulent certificates. The need of the hour is to have a transparent
and reliable model for issuing and verifying academic certificates to eliminate fraud in the process. Decentralized, Auditable and
Tamper-proof properties of Blockchain makes it possibly the best choice for issuing and verifying academic certificates. In this
paper we propose a model, where regulatory body authorizes higher education Institutes (universities and colleges) for issuing
academic certificates to students in a decentralized way. Anyone in the world can verify the authenticity of the certificate by
triggering appropriate smart contract functions, thus eliminating any possibility of fraud in the process. In addition we used
multi signature scheme where certificates are required to be signed by designated authority from Higher Education Institutes, thus
allowing for multi-level checks on certificate contents before being successfully deployed on Blockchain. We have also provide Proof
of Concept in Ethereum Blockchain and evaluated its performance in terms of cost, security and scalability.

Key words: Certificate Integrity, Forgery Protection, Smart Contract, Ethereum Blockchain

AMS subject classifications. 68M14, 94A60

1. Introduction. Higher Education has global impact and coverage and information regarding everyone’s
educational accomplishments should flow in a smooth and secured way. Academic credentials are used worldwide
and are an important asset for both students and professionals pledging for jobs, scholarships or academic
visibility. Traditional methods for recording, issuing and verifying academic credentials are expensive (due
to intermediaries that charge fees for their services), inefficient (due to delays in executing agreements) and
vulnerable (because it uses central system which can be compromised due to fraud, cyberattack, or a simple
mistake which can effect the entire system). Need of the hour is to have secure, immutable and trustable
academic credentials.

Blockchain in its simplicity is a series of connected tamper evident data structures called blocks, which
contain or record everything that happens on some distributed systems on a peer-to-peer network . Each block
is linked to and depends on previous block forming a chain, resulting in an append only system: a permanent
and irreversible history that can be used as a real time audit trail by any participant to verify the accuracy of
the records by simply reviewing data itself.

Blockchain was first developed for Bitcoin cryptocurrency and serves as distributed public ledger and
transactions or events recorded on it are nearly impossible to tamper[16]. The driving force behind the interest
in Blockchain research has been its key characteristics that provide security, anonymity and integrity without
relying on trusted third party organisations. Initially Blockchain usage was restricted to cryptocurrencies only,
since the advent of Ethereum: A next generation smart contract and decentralised application platform [8],
applications beyond cryptocurrencies are being developed and explored.

Smart contract [20] is a piece of code which is stored in the Blockchain network (on each participant
database). It defines the conditions on which all parties using contract agrees and certain actions described
in the contract can be executed if the required conditions are met. As the smart contract is stored on every
computer in the network, they all must execute it and get to the same result.

∗Department of Computer Science and Engineering, NIT Srinagar, Jammu and Kashmir, India, 190006 (ahl@nitsri.net).
†Department of Computer Science and Engineering, NIT Srinagar, Jammu and Kashmir, India, 190006

673

674 Auqib Hamid Lone and Roohie Naaz

The decentralised ledger functionality coupled with security provided by Asymmetric cryptography (Elliptic
curve cryptography [15]) and distributed consensus algorithms (Proof of Work in case of Bitcoin and Ethereum
[10]) of Blockchain, makes it a very attractive technology to solve the current financial as well as non-financial
problems. Blockchain by design enforces integrity, transparency, authenticity, security and audit-ability thus
making it possibly the best choice to make trust-less(distributed trust) systems to solve or improve traditional
means for recording, issuing and verifying academic credentials. The goal of Blockchain is to provide anonymity,
security and transparency to all its users.

1.1. Challenges and Limitations with Traditional methods for issuing and verifying academic

certificates . One of the key challenges in traditional means of certificate verification is to deal with fake
certificates. Traditional methods do not guarantee authenticity, security, tamper-resistance of academic records.
Major limitations in traditional methods for issuing and verifying academic certificates are enumerated below:

• Cost: Traditional methods of certificate verification are costly as verification agencies charge fee for
each certificate to be verified.

• Time : A great amount of time is lost in existing methods for verifying certificates as it depends on
location and the response time of the issuing authority.

• Availability: Physical documents are susceptible to loss or damage. In case of loss or damage, individuals
cannot readily avail duplicates of the certificates with existing process.

• Third party dependency: In traditional methods, organizations depend on third party verification
agencies to verify the authenticity of the certificates with the issuing authorities.

Rest of the paper is organized as follows: Section 2 presents a brief overview of previous attempts for
improving issuance and verification of academic certificates. Section 3 presents the description of proposed
model with PoC in Ethereum Blockchain. Section 4 provides evaluation and analysis of proposed model.
Finally, Section 5 concludes the paper and references are listed in the end. We also provide smart contract code
for proposed model as an Appendix.

2. Related Work. Collecting literature to have a longitudinal and representative view of Blockchain
applicability in certificate issuance and verification is challenging because of its rich diversity of Blockchain
applications. In order to have clear-cut, unbiased, complete and broader perspective many sources have been
explored including major online databases. One of the factors behind exploring major databases is their rich
library of journals with high impact factors.

The University of Nicosia is the first university in the world to issue academic certificates whose authenticity
can be verified through the Bitcoin blockchain. A Certificate granted to a student is issued as a PDF document.
The Hash of this certificate is computed and registered in the Bitcoin blockchain as a transaction [1]. Another
outstanding attempt in this direction is Blockcerts: an open standard for creating, issuing, viewing and verifying
blockchain-based certificates. These digital records are registered on a blockchain, cryptographically signed,
tamper-proof, and shareable. Blockcerts allows for batch issuance of certificates using Merkle trees to optimize
storage in Blockchain [9]. Both [1] and [9] exploit Bitcoin’s OP_RETURN feature to record certificate hashes.
Blockcerts comes with one major shortcoming as it stores revocation list on centralized server, which could be
exploited by the attackers to comprise the whole process. To overcome this author in [18] proposed Hypercerts,
a decentralized mechanism for credential revocation, by combining the capabilities of Ethereum smart contracts
and InterPlanetary File System (IPFS). The work presented in [5] proposed a Blockchain based scheme that
guarantees integrity, proof of existence and also allowed to assess trust in students’ data. This data is gathered
in a so-called ePortoflio and includes completed assignments, course transcripts and granted certificates. It is
stored in a peer-to-peer system called Interplanetary File System. Hashes of academic data are registered in
Ethereum blockchain. Authors in [19] proposed a blockchain solution that allows users to assess the trust in
academic data in terms of the reputation of the creators of such data. The assumption is that individuals trust
a piece of data to be genuine if it has been issued by a reputable person or entity. To measure reputation, a
currency called kudos is proposed.

Authors in [14] proposed a model of confidence in open and ubiquitous higher education, based on Blockchain
technology. Proposed model is used to certify the acquisition of competencies by student trained in different
educational institutions and is based on a consensus protocol of experts who are part of the system itself.
Authors in [13] gave a different concept of using hybrid Blockchain comprising of 2 Blockchains. One private

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 675

Table 2.1
Summary of Related Work

Scheme Blockchain Technology
Features

Multi-Sig
Regulatory Authority

Accredetion
Transparency Privacy

Issuing Authority & Certificate

Revocation
Accessibility

[11] Bitcoin No No Yes Yes No Yes
[10] Bitcoin No No Yes Yes Partial Yes
[12] Ethereum & IPFS No No Yes No Partial Yes
[17] Ark Yes Yes Partial Yes No Partial
[18] Ethereum No Yes Yes No Yes Yes

Blockchain for storing individual records and one public Blockchain for storing authentication information of
private Blockchain in order to prevent tempering. Authors in [12] proposed Blockchain based platform for
issuing, validating and sharing of Educational certificates. Authors in [21] proposed a blockchain-based higher
education credit platform (EduCTX) with proof of concept in Ark Blockchain Platform, for creating a globally
trusted higher education credit and grading system. Authors in [11] proposed a theoretical model for graduation
Certificate verification using Blockchain Technology. The work presented by the authors in [17] proposed a
Blockchain and smart contracts based scheme for higher education registry in Brazil. The authors in particular
aims at digitization of degree certificates and academic credits for higher education in the Brazilian education
system. Authors in [7] provided a detailed review on applicability of Blockchain in Education. In essence they
discussed challenges and benefits of applying Blockchain in Education sector.

Proposed model provides numerous benefits more specifically to Higher Education Industry and in general
to other industries also. Proposed model is generic in nature and can be applied to protect other digital
documents also. Multi Signature scheme in proposed model allows for multi-level checks of certificate before
being deployed to Blockchain. The potential benefits that proposed model could bring to Higher Education
Industry are briefly summarized below:

• Certificate credentials published to Blockchain are immutable, trustful and verifiable.
• Simplifies the workflow of certificate issuance and verification, thus making whole process efficient and

economical.
• Has the potential to transform education industry, by making processes involved more efficient, trans-

parent, democratic and secure.
• Can be extended to be used for authentication and verification of other official statements or files also.

Proposed model is beneficial for Issuing Authority as it helps them to issue cryptographically-secure records that
cannot be forged, records that are secure and auditable. Participants who have been issued degrees through
proposed model will get benefited as they now own and can share cryptographically secure records, with
instant access to academic accomplishments as Blockchain highly available in nature and instant verification
as Blockchain eliminates dependency on issuing authority to verify records.

3. Proposed Model. In this paper we propose a model for forgery protection of academic certificates
through integrity preservation using Ethereum Blockchain in Higher Education. Simplified architecture of
proposed model comprises of three parts as shown in figure 3.1. First part is about authorization request
and response: wherein Higher Education Institutes request Higher Education Regulatory Authority for issuing
certificates by presenting appropriate approval certificates and a list of delegated signature authorities. In
response to Higher Education Institutes request, Regulatory Authority after proper verification, authorizes the
institutes for issuing and revoking certificates to and from students. Part second of the proposed model is
about certificate signing, issuance and revocation of certificates: wherein first delegated signature authorities
of authorized Higher Education Institutes sign the certificates and then Institutes issue certificates to students.
Under certain rare situations certificates are revoked from students by authorized institutes. Third and last
part is about verification: wherein verifiers verify the authenticity of the certificates. Verification result is true
if integrity test passes i.e. if details present on physical copy of certificate matches with the one present on
the Blockchain else it returns false. Communication takes place via Blockchain network. For already issued
certificates that are not deployed on Blockchain we have provided an export functionality in proposed model
which helps Higher Education Institutes to put them on Blockchain.

Architecture of proposed model comprises of five main components namely Participants, Front-End, Core

676 Auqib Hamid Lone and Roohie Naaz

Fig. 3.1. Simplified Architecture of Proposed Model

Modules, Blockchain Network and Distributed Storage as shown in figure 3.2.

3.1. Participants. They are the real actors in any network. Participants mainly represent business but
have the potential of representing people, regulators or other stakeholders. In proposed model participants
include Higher Education Regulatory Authority, Higher Education Institutes and Verifiers. Regulatory author-
ity and Institutes act as full nodes, storing entire copy of the Blockchain, while as Verifiers need not to store
any Blockchain data. Verifiers verify claims made by any participant by fetching proof from Blockchain via
front-end and appropriate core module of the proposed model. Every action performed by participants gets
recorded on Blockchain via appropriate communication link. Thus in proposed model participants can be made
liable for their actions on Blockchain network.

3.2. Front-End. Proposed model front-end is developed with the help of HTML5 and CSS. Appropriate
JavaScript libraries (Web3.js [6]) have been used to connect front end with Blockchain network. It is beneficial
to perform certain tasks at client side itself rather than computing them on Blockchain, because every com-
putational step has a cost in Blockchain to be paid by participant who initiated the task. Certain validation
checks can also be enforced at client side itself.

3.3. Core Modules. They are heart and soul of the proposed model and facilitate the communication
of participants with Blockchain Network. Participants store and retrieve the certificate details to/from the
Blockchain by calling an appropriate core module. Core modules are basically Ethereum smart contract func-
tions. Proposed model Smart contract is written in Solidity language [4], compiled and tested both on Remix
IDE [3] and Ganache(testrpc) [2] private network. We first defined the academic certificate and higher education

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 677

Fig. 3.2. Operational Flow of Proposed Model

institutes approval certificate as a solidity structures comprising of following information:

Struct approvalCert contains

bytes32 hash;
bool registered;
uint expiry;
bool revoked;
address[] signAuth;
// other optional stuff

678 Auqib Hamid Lone and Roohie Naaz

• hash: Uniquely identifies the contents of Higher Education Institutes approval certificate issued by
Higher Education Regulatory Authority . Hash is obtained by taking the SHA256 of contents of the
approval certificate and other related information.

• registered: It comprises of boolean value, indicating whether Higher Education Institute is authorized
by Higher Education Regulatory Authority.

• expiry: It is a unix timestamp indicating validity of approval certificate.
• revoked: It comprises of boolean value, indicating whether Higher Education Institutes approval cer-

tificate is expired. If revoked is true Higher Education Institute can no longer issue certificates.
• signAuth: An array of type address, containing list of Ethereum account addresses from Higher educa-

tion Institute authorized for signing the certificate .

Struct studentCert contains

bytes32 certHash;
string regNumber;
string instName;
string stuName;
string stuGrade;
string stuDegree;
address[] signedBy

// other optional stuff

• certHash: Uniquely identifies the contents of students academic certificate issued by Higher Education
Institute . Hash is obtained by taking the SHA256 of contents of the certificate and other related
information.

• regNumber: regNumber is registration number assigned to the student by Higher Education Institute.
It uniquely identifies the credentials of student.

• instName: Full name of the Higher Education Institute which issued the certificate.
• stuName: Full name of the student to whom certificate was issued.
• stuGrade: This represents academic credits that student obtained.
• stuDegree: Name of the course that student completes.
• signedBy: Array of Ethereum account addresses who signed the certificate.

In order to ensure the integrity of smart contract execution on participant actions, core modules (smart contract
functions) are restricted based on the role. All functionalities of the smart contract were effectively screened
for role limitation. Role restrictions are achieved with the help of solidity modifiers. Following modifiers are
used in the proposed model for role restrictions.

1. onlyOwner: This modifier allows Higher Education Regulatory Authority which deploys smart contract
to grant/revoke authorization to Higher Education Institutes. No other participant can authorize/re-
voke Higher Education Institutes, as owner is set in smart contract constructor itself. Hence, if any
participant other than Higher Education Regulatory Authority tries to authorize any other participant,
the transaction reverts as onlyOwner modifier returns false.

2. onlyAuth: This modifier allows only authorized Higher Education Institutes to issue certificates. Hence,
if any participant other than authorized Higher Education Institute tries to issue certificates, the
transaction reverts as onlyAUth modifier returns false.

3. ifExists: This modifier allows addCert() function to execute only if certificate hasn’t been issued earlier.
4. isSignedByAll: This modifier allows addCert() function to execute only if certificate has been signed

by delegated authorities.
5. notSet: This modifier allows sign() function to execute only if certificate hasn’t been already signed by

the delegated authority.
6. onlyIncharge: This modifier allows sign() function to execute only if certificate is being signed by

authorized delegate authority, else transaction reverts.
Core modules in proposed model perform four basic functions 1) Higher Education Regulatory Authority

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 679

authorizing or removing Higher Education Institutes for issuing academic certificates. 2) Higher Education
Institutes issuing or revoking certificates to or from students. 3) Authorized signers from Higher Education
Institute signing the certificate 4) Verification about the authenticity of certificates. Core modules (Ethereum
smart contract functions) are triggered by the participants via front-end in the network. The constraints like
who should access what function and under what conditions access should be granted to participants, are all
enforced through solidity modifiers defined earlier. Pseudocode of the functions is presented below in the form
of algorithms.

Authorize Higher Education Institute. No Higher Education Institute can issue or revoke certificates unless
they are authorized by Higher Education Regulatory Authority (responsible for deploying smart contract).
register() smart contract function takes Higher Education Institutes Ethereum account address, hash of Higher
Education Institutes approval certificate (issued by Higher Education Regulatory Authority), expiry date of
approval certificate and array of Ethereum account addresses (whose signatures are required for the execution of
addCert() transaction) as input. On successful execution of the register() function, Higher Education Institute
gets registered under Higher Education Regulatory Authority. Appropriate modifier is used so that register()
smart contract function can only be executed Higher Education Regulatory Authority. register() smart contract
function is briefly summarized in Algorithm 10.

Algorithm 1: register()

Input: address institution, bytes32 certHash, uint notValidAfter, address[] signee
Result: Registers the Higher Education Institute under Higher Education Regulatory Authority for certificate

issuance and revocation
if onlyOwner then

if Higher Education Institute aleardy authorized then
revert

else

1. Set the hash of approvalCert struct corresponding to Higher Education Institutes
address(institution) with certHash

2. Set the expiry of approvalCert struct corresponding to Higher Education
Institute address(institution) with notValidAfter

3. Set the revoked of approvalCert corresponding to Higher Education Institutes
address(institution) with false

4. Set the registered of approvalCert struct corresponding to Higher Education
Institutes address(institution) with true

5. Push the signAuth of approvalCert struct corresponding to Higher Education
Institutes address(institution) with signee

6. Emit Registered event

else
revert

Remove Higher Education Institute. revoke() smart contract function takes Higher Education Institutes
Ethereum account address as input. On successful execution of revoke() function Higher Education Institute
gets removed from Higher Education Regulatory Authority approved institutes list and no longer can issue or
revoke certificate to or from students. Appropriate modifier is used so that revoke() smart contract function can
only be executed Higher Education Regulatory Authority. The removed Higher Education Institutes address
(institution) is pushed to revoked array, to prevent them from issuing certificates in future. revoke() smart
contract function is briefly summarized in Algorithm 11.

Add Certificate. Add Certificate function takes certificate details as input and associates them with regis-
tration number of the student and Ethereum account of Higher Education Institute. Only authorized Higher
Education Institutes can execute addCert() function. Furthermore all designated signers from Higher Education
Institute must sign on the certificate for the addCert() function to get successfully executed. addCert() smart
contract function is briefly summarized in Algorithm 12.

680 Auqib Hamid Lone and Roohie Naaz

Algorithm 2: revoke()

Input: address institution
Result: Removes Higher Education Institute under Higher Education Regulatory Authoritys authorized list
if onlyOwner then

if Higher Education Institute aleardy authorized then

1. Set the revoked of approvalCert corresponding to Higher Education Institutes address(institution)
with true

2. Push institution address to Higher Education Regulatory Authoritys revoked array
3. Emit Revoked event

else
revert

else
revert

Algorithm 3: addCert()

Input: bytes32 hash, string regno, string instname,string name,string grade, string degree
if authorized && isSignedByAll then

if certificate aleardy exists then
revert

else

1. Set the hash of studentCert struct corresponding to students regno(registration number)
and Institute account address with certHash

2. Set the regNumber of studentCert struct corresponding to students regno(registration number)
and Institute account address with regno

3. Set the instName of studentCert corresponding to students regno(registration number)
and Institute account address with instname

4. Set the stuName of studentCert struct corresponding to students regno(registration number)
and Institute account address with name

5. Set the stuGrade of studentCert struct corresponding to students regno(registration number)
and Institute account address with grade

6. Set the stuDegree of studentCert struct corresponding to students regno(registration number)
and Institute account address with degree

7. Emit CertAdded event

else
revert

Sign Certificate. sign() function takes student registration number, certificate hash and Institute address
as input and on successful execution signs the certificate. Only authorized signature authority from concerned
Higher Education Institute are allowed to sign the certificate and that too only once. Delegated signature
authority approves certificate by signing on the hash of certificate contents corresponding institute address and
student registration number. sign() smart contract function is briefly summarized in Algorithm 13.

Revoke Certificate. revokeCert() function takes student registration number as input and removes the
certificate details from Blockchain by deleting corresponding entry from smart contract mapping data structure.
The only check this function does is to ensure function is executed only by authorized Higher Education Institute
and certificate already exists. Successful execution of this function results in negative Gas, given as an incentive
for freeing some storage space on Blockchain. revokeCert() smart contract function is briefly summarized in
Algorithm 14.

Verify Certificate. verify() smart contract function takes registration number and Hash printed on cer-
tificate as input and on successful verification returns the certificate view from Blockchain else verification
fails. verify() function does not modify the state of the Blockchain, it only displays information retrieved from
Blockchain. verify() smart contract function is briefly summarized in Algorithm 15.

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 681

Algorithm 4: sign()

Input: Higher Eduaction Institute address, Hash of Certificate, Registration Number of Student
Output: Signs the certificate
if onlyAuthorizedSigner && notSignedEarlier then

1. Sign the certificate
2. Push the signer address to studentCert array signedBy

3. Emit signed event
else

revert

Algorithm 5: revokeCert()

Input: string regno
if authorized then

if certificate aleardy exists then

1. Delete the certificate details of studentCert struct corresponding to students
regno(registration number) and Institute account address

2. Emit RevokedCert event
else

revert

else
revert

3.4. Blockchain Network. It comprises of Peer-to-Peer (P2P) network and Consensus protocol that
governs the communication over P2P network. In proposed model Blockchain network is private, where reg-
ulatory authority and authorized institutes can only act as validators or miners validating transactions, peri-
odically collecting and creating blocks in the network. Higher Education Regulatory Authority is responsible
for configuring, operating and maintaining Blockchain network. Regulatory authority also manages how other
participants access and use the network.

3.5. Distributed Certificate Store. It comprises of distributed storage with authorization and authen-
tication module for safely storing and preserving the original certificate details. This represents the traditional
method for storing and preserving certificate records. But in proposed model it is optional for Authorized
Higher Education Institutes to store newly issued certificates in distributed certificate store, however they can
use export functionality of the proposed model to export already issued certificates from certificate store for
deploying them to Blockchain.

4. Experimental Evaluation and Analysis. This section presents the details of Experimental Eval-
uation and Analysis of proposed model. For experimentation we used Remix [3] IDE in-browser developing
and testing environment connected to private Ethereum Blockchain. We also used appropriate JavaScript code
snippet for catching events which get triggered on execution of various smart contract functions for analysis
purpose.

We first performed testing to validate and verify three key scenarios in proposed model 1) Authoriza-
tion/Revocation by Higher Education Regulatory Authority 2) Certificate signing and issuance/revocation by
authorized Higher Education Institutes and 3) Verification by any participant for certificate authenticity by
analysing outputs and logs of corresponding emitted smart contract events.

Authorization/Revocation by Higher Education Regulatory Authority. Higher Education Regulatory Au-
thority uses register() smart contract function to register and authorize Higher Education Institutes for issuing
certificates to students. Any participant calling register other than Higher Education Regulatory Authority
which deployed smart contract leads to execution failure. Revocation of Higher Education Institute from au-
thorized list is done by calling revoke smart contract function by Higher Education Regulatory Authority.
The Results of successful authorization and revocation of Higher Education Institute by Higher Education

682 Auqib Hamid Lone and Roohie Naaz

Algorithm 6: verify()

Input: Student Registration Number, Higher Eduaction Institute address, Hash of Certificate
Output: Displays the appropriate Certificate instance from EDUChain
if Registration Number exists && input Hash == Hash from Blockchain then

1. Verification Successfull
2. Return the Certificate view from Blockchain
3. Emit verified event

else
return verification unsuccessfull

(a) Successful Authorization (b) Successful Revocation

Fig. 4.1. Authorization and Revocation of Higher Education Institute by Higher Education Regulatory Authority

Regulatory Authority is shown in Figure 4.1.

Certificate Issuance and Revocation by authorized Higher Education Institutes to students. Only after
authorization from Higher Education Regulatory Authority, Higher Education Institutes can issue or revoke
certificates to/from students via Blockchain. Higher Education Institutes issue certificates by calling addCert()
smart contract function and revoke by calling revokeCert(). Designated signature authority sign Certificates
using sign() smart contract function to approve them for being deployed to Blockchain. The successful signing
of certificate hash by delegated signature authority are shown in figures 4.2.a and 4.2.b. Figures 4.2.c and 4.2.d
shows successful certificate issuance and revocation by authorized Higher Education Institute respectively.

Verification by any participant for certificate authenticity. Participants can verify the authenticity and
integrity of certificate by calling verify() smart contract function with appropriate parameters. Figure 4.3
shows decoded output of successful execution of verify() function.

After successfully validating and verifying different functionalities of the proposed model we then analysed
the feasibility of the proposed solution in terms of cost, security and scalability.

4.1. Cost Analysis. Every transaction executed on Ethereum Blockchain costs some Gas(unit of cost for
a particular operation). In Ethereum Gas is paid in terms of Ether, as it is crypto fuel for running applications
on the Blockchain network. There are transaction and execution gas costs for each function performed on the
blockchain network. Execution cost includes the cost of internal storage in the smart contracts as well cost
associated with any manipulation of Blockchain state. Transaction cost includes execution cost and the cost
related to other factors like contract deployment and sending data to Blockchain network.

Table 4.1 shows the gas costs of smart contract functions of the proposed model. Smart contract functions
are executed by the participants of the proposed model. verify() function costs least because it does not involve
any updation in the Blockchain state, while as addCert() function costs the most because it considerably changes
the state of the variables stored on Blockchain. constructor() function is a special function as it is related to
the deployment of smart contract and is executed once in the life-cycle of the proposed model.

4.2. Security Analysis. In this section we present brief security analysis on how our proposed solution
ensure key security goals such as integrity, non-repudiation, authorization, availability and accountability.

1. Integrity: Proposed model ensures integrity by storing traceability provenance data in immutable
Blockchain infrastructure. Cryptographic hash functions make Blockchain immutable in nature.

2. Non-Repudiation: Every action is recorded in tamper-proof logs in proposed model and all actions

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 683

(a) Successful Signature 1 (b) Successful Signature 2

(c) Successfully Issued Certificate (d) Successful Revocation

Fig. 4.2. Signing and Issuance/Revocation of Certificates by Higher Education Institute

Fig. 4.3. Successful Certificate Verification

are linked and cryptographically signed by the initiator. No participant can deny their actions as
everything is saved in the tamper-proof logs.

3. Authorization: In proposed model role restrictions have been enforced by using solidity modifiers to
ensure proper authorization checks before executing any smart contract function.

4. Availability: Once certificate is deployed on Blockchain, it immediately becomes available to verifiers.
The information stored on the Blockchain is saved in distributed and decentralized fashion and thus is
immune to single point of failure.

5. Accountability: Since Ethereum account address of Higher Education Institutes is linked with approval
certificate, thus Higher Education Institutes can be made accountable for their actions on Blockchain.

4.3. Scalability Analysis. Since Blockchain is append-only database, thus its size only increases with
time. Size of Blockchain at any instant of time t is the sum total of the size of all blocks present in the blockchain
at time t. Size of the single block is the sum total of the size of all transactions in it and size of the block header
HS which is a constant. Scalability analysis of the proposed model is based on the following assumptions:

• Chain configuration parameters are same as that of Ethereum mainnet
• Blocks are being generated at a constant rate of 15s i.e. T = 15 seconds
• Header size is same as that of Ethereum mainnet

Blockchain size heavily depends on the workload of the system, which in turn depends on many different
factors like block gas limit G (maximum amount of gas that transactions in a block can consume) and block
time period T (represents the rate at which new blocks are created in the Blockchain network.). if It(txn) is
set of transactions included in the Blockchain at time t, Hs is the header size of the single block, then size of

684 Auqib Hamid Lone and Roohie Naaz

Table 4.1
Cost of Smart Contract Functions in proposed model

Function Caller Function Name Gas Used Transaction size in Bytes

Higher Education Regulatory Authority constructor 2963591 10948
Higher Education Regulatory Authority register() 152015 447
Higher Education Regulatory Authority revoke() 86412 255
Higher Education Institute addCert() 182043 735
Higher Education Institute removeCert() 32870 351
Signature Authority sign() 87708 383

the Blockchain Bs(t) at time t can be approximated by the following equation:

Bs(t) =
t

T
∗Hs +

∑

txn∈It(txn)

S(txn)(4.1)

where S(txn) is size of the transaction. Since block creation rate is constant, with new block being generated
after every T second, thus equation (4.1) can be rewritten as

Bs(t) = N ∗Hs +
∑

txn∈It(txn)

S(txn)(4.2)

where N is number of Blocks in the Blockchain at time t. The factor N * Hs is the total overhead due to block
headers in the Blockchain at time t, thus equation (4.2) can rewritten as:

Bs(t) = Ho +
∑

txn∈It(txn)

S(txn)(4.3)

where Ho represents total overhead due to headers in the Blockchain at time t. The first term in equation (4.3)
is dependent on block period T and second term is variable in nature depending on the time, block gas limit
G and workload of the system. The growth of Blockchain size over a time interval [t1:t2] can be approximated
by the equation below:

Bs(t1 → t2) = H
t1→t2
o +

∑

txn∈It1→t2
(txn)

S(txn)(4.4)

where Ht1→t2
o is the total overhead due to block headers recorded in the Blockchain from time period t1 to t2

and It1→t2(txn) is set of transactions recorded in the Blockchain from time period t1 to t2. Since we were not
able to find any publicly available statistics about number of approval certificates given by Higher education
regulatory authority to Higher education institutes and number of degree certificates issued by approved Higher
education institutes to students. We considered synthetic workloads with n number of institutes authorized for
issuing certificates and each institute issuing 10n certificates per year. Thus equation (4.4) reduces to:

Bs(t1 → t2) = H
t1→t2
o + n+ 10n2 + 10n2(4.5)

2nd term in equation (4.5) represents total register() transactions, 3rd term represents total issueCert() trans-
actions and 4th term represents total sign() transactions, as at least one signature from signature authority
of authorized higher education institute is required for certificate to be broadcasted on Blockchain. We used
equation (4.5) for computing the annual growth in Blockchain size with different classes of workloads. Results
are presented in the Table 4.2. The second column of Table 4.2 contains the values for Blockchain growth rate
per year with block period equal to 15 seconds, third column of Table 4.2 includes the growth rate without
considering block headers overhead and fourth column contains overhead percentages. Results have shown even

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 685

0 200 400 600 800 1000

2

4

6

8

10

12

14

Workload

Bl
oc

kc
ha

in
 S

iz
e

in
 G

B

 Worklaod and Blokchain Size
 Workload and Overhead

0

20

40

60

80

100

O
ve

rh
ea

d
%

Fig. 4.4. Blockchain Size/Year and Block Header Overhead % with different classes of Workload

Table 4.2
Growth in Blockchain size with different values for n

Workload Bs(t) with T = 15s Bs(t) - Ho Ho/Bs(t) %
n = 100 2.062 GB/Year 0.104 GB/Year 94.9
n = 250 2.608 GB/Year 0.650 GB/Year 75
n = 500 4.561 GB/Year 2.603 GB/Year 42.9
n = 750 7.799 GB/Year 5.841 GB/Year 25.1
n = 1000 12.370 GB/Year 10.412 GB/Year 15.8

in case when 1000 institutes are authorized by regulatory body and institutes issues total of 10 million certifi-
cates per year, the growth rate is around 12.3 GB per year, which is acceptable given the storage capacities of
modern-day high-end devices.

It is evident from the Figure 4.4, with increase in system workload Blockchain size increases, however
overhead percentage decreases, thus proposed model scaling is limited by the workload of the system. In case
of higher workload, Regulatory Authority can allow Institutes to issue certificates in batches, where a single
transaction is done for issuing certificates to a batch of students thus reducing workload on the system. The
concept of issuing certificates in batches was first implemented in Blockcerts [9].

5. Conclusions and Future Work. In this paper, we have proposed Blockchain based model for Aca-
demic certificate issuance and verification in Higher Education. Our proposed model architecture, algorithm,
testing and implementation details are generic enough and can be applied to issue and verify other kind of certifi-
cates apart from academic ones. We provided the prototype of proposed model based on Ethereum Blockchain
and evaluated its performance in terms of cost, security and scalability. Results confirm the feasibility of the
proposed model. The future work will aim at developing complete optimized, privacy preserving end to end
integrated framework for issuing and verifying academic certificates backed by distributed and decentralized
storage with detailed case study on Indian Higher Education.

REFERENCES

[1] Blockchain certificates (academic and others).

686 Auqib Hamid Lone and Roohie Naaz

[2] Ganache a personal blockchain for ethereum development.
https://www.trufflesuite.com/docs/ganache/overview. Accessed: 19-12-2019.

[3] Remix ide for ethereum smart contract programming. https://remix.ethereum.org/. Accessed: 19-12-2019.
[4] Solidity a high-level language for implementing smart contracts.

https://solidity.readthedocs.io/en/develop/. Accessed: 01-08-2019.
[5] University to open. open blockchain.
[6] Web3 javascript api to interact with ethereum nodes.
[7] A. Alammary, S. Alhazmi, M. Almasri, and S. Gillani, Blockchain-based applications in education: A systematic review,

Applied Sciences, 9 (2019), p. 2400.
[8] V. Buterin, Ethereum: A next-generation smart contract and decentralized application platform, 2013, URL

{http://ethereum. org/ethereum. html}, (2017).
[9] E. Durant, A. Trachy, and . O. of Undergraduate Education, Digital diploma debuts at mit, Oct 2017.

[10] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun, On the security and performance
of proof of work blockchains, in Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security, ACM, 2016, pp. 3–16.

[11] O. Ghazali and O. S. Saleh, A graduation certificate verification model via utilization of the blockchain technology,
Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10 (2018), pp. 29–34.

[12] W. Gräther, S. Kolvenbach, R. Ruland, J. Schütte, C. Torres, and F. Wendland, Blockchain for education: lifelong
learning passport, in Proceedings of 1st ERCIM Blockchain Workshop 2018, European Society for Socially Embedded
Technologies (EUSSET), 2018.

[13] K. Kuvshinov, I. Nikiforov, J. Mostovoy, D. Mukhutdinov, K. Andreev, and V. Podtelkin, Disciplina: Blockchain
for education, 2018.

[14] D. Lizcano, J. A. Lara, B. White, and S. Aljawarneh, Blockchain-based approach to create a model of trust in open
and ubiquitous higher education, Journal of Computing in Higher Education, (2019).

[15] H. Mayer, Ecdsa security in bitcoin and ethereum: a research survey, CoinFaabrik, June, 28 (2016), p. 126.
[16] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008.
[17] L. M. Palma, M. A. Vigil, F. L. Pereira, and J. E. Martina, Blockchain and smart contracts for higher education

registry in brazil, International Journal of Network Management, 29 (2019), p. e2061.
[18] J. Santos, A non-siloed blockchain-based certification service.
[19] M. Sharples and J. Domingue, The blockchain and kudos: A distributed system for educational record, reputation and

reward, in European Conference on Technology Enhanced Learning, Springer, 2016, pp. 490–496.
[20] N. Szabo, The idea of smart contracts, Nick Szabo’s Papers and Concise Tutorials, 6 (1997).
[21] M. Turkanović, M. Hölbl, K. Košič, M. Heričko, and A. Kamišalić, Eductx: A blockchain-based higher education

credit platform, IEEE access, 6 (2018), pp. 5112–5127.

Appendix A. Smart contract code of the proposed model.

1 pragma solidity >=0.4.22 <0.6.0;

2 contract Main{

3 address private owner;

4 address[] private revoked;

5 // Events

6 event CertAdded (address indexed_from ,string reg_no, uint date);

7 event signed(address indexed_from ,bytes32 certHash , uint date);

8 event verified(address indexed_from ,bytes32 certHash , string regno,address[] signers);

9 event Revoked(address from, address to, uint date);

10 event RevokedCert(address by ,string regno, uint date);

11 event Registered(address from, address to, uint date);

12 //Structures

13 struct BlockCert{

14 bytes32 hash;

15 string reg_no;

16 string inst_name;

17 string name;

18 string grade;

19 string degree;

20 bool isSet;

21 address[] signedBy;

22 }

23 struct AuthCert {

24 bytes32 apprCert;

25 uint expiry;

26 bool revoked;

27 address[] inch;

28 bool registered;

29 }

Forgery Protection of Academic Certificates through Integrity Preservation at Scale using Ethereum Smart Contract 687

30 constructor() public{

31 owner=msg.sender;

32 }

33 // Mappings

34 mapping (address => AuthCert) private authorized;

35 mapping(address=>mapping(string=>BlockCert)) certs;

36 mapping(address=>mapping(bytes32=>bool)) signatures;

37 // Main Modules

38 function register(address institution , bytes32 cHash, address[] memory incharges , uint notAfter)

public onlyOwner {

39 authorized[institution].apprCert = cHash;

40 authorized[institution].expiry = notAfter;

41 authorized[institution].revoked = false;

42 authorized[institution].registered = true;

43 authorized[institution].inch = incharges;

44 emit Registered(owner, institution , now);

45 }

46 function revoke(address institution) public onlyOwner {

47 require(authorized[institution].registered);

48 authorized[institution].revoked = true;

49 revoked.push(institution);

50 emit Revoked(owner, institution , now);

51 }

52 function check(address institution) public view returns(bool) {

53 require(authorized[institution].registered);

54 if (authorized[institution].revoked || authorized[institution].expiry < now)

55 return false;

56 return true;

57 }

58 function sign(address inst, bytes32 certHash , string memory regno) public notSet(msg.sender,certHash

) onlyIncharge(inst,msg.sender)

59 {

60 signatures[msg.sender][certHash] = true;

61 certs[inst][regno].signedBy.push(msg.sender);

62 emit signed(msg.sender,certHash ,now);

63 }

64 function isIncharge(address inst,address addr) private view returns (bool)

65 {

66 for (uint i=0; i< authorized[inst].inch.length; i++)

67 {

68 if(authorized[inst].inch[i] == addr) return true;

69 }

70 return false;

71 }

72 function addCert(bytes32 hash,string memory regno,string memory instname ,string memory name,string

memory grade,

73 string memory degree) public onlyAuth(msg.sender) ifExists(msg.sender,regno) isSignedByAll(msg.

sender,hash) {

74 certs[msg.sender][regno].hash= hash;

75 certs[msg.sender][regno].reg_no=regno;

76 certs[msg.sender][regno].inst_name=instname;

77 certs[msg.sender][regno].name=name;

78 certs[msg.sender][regno].grade=grade;

79 certs[msg.sender][regno].degree=degree;

80 certs[msg.sender][regno].isSet= true;

81 emit CertAdded(msg.sender,regno,now);

82 }

83 function revokeCert(address inst, string memory regno) onlyAuth(msg.sender) ifExists(msg.sender,

regno) public

84 {

85 delete certs[inst][regno];

86 emit RevokedCert(msg.sender, regno, now);

87 }

88 function verify(address inst,string memory regno) public

89 returns (bytes32 hash,string memory instname ,string memory name,

688 Auqib Hamid Lone and Roohie Naaz

90 string memory grade,string memory degree, address[] memory signers){

91 hash= certs[inst][regno].hash;

92 regno= certs[inst][regno].reg_no;

93 instname= certs[inst][regno].inst_name;

94 name=certs[inst][regno].name;

95 grade=certs[inst][regno].grade;

96 degree=certs[inst][regno].degree;

97 signers= certs[inst][regno].signedBy;

98 emit verified(inst,hash,regno,signers);

99 }

100 function isSigned(address inst, bytes32 hash) private view returns (bool){

101 uint count=0;

102 for (uint i = 0; i < authorized[inst].inch.length; i++)

103 {

104 if(signatures[authorized[inst].inch[i]][hash]){

105 count++;

106 }

107 }

108 return (count==authorized[inst].inch.length) ;

109 }

110 // Modifiers

111 modifier onlyIncharge(address inst, address sender){

112 require (isIncharge(inst,sender));

113 _;

114 }

115 modifier onlyAuth(address auth)

116 {

117 require (check(auth)) ;

118 _;

119 }

120 modifier notSet(address signer,bytes32 hash)

121 {

122 require(signatures[signer][hash]== false);

123 _;

124 }

125 modifier isSignedByAll(address escow, bytes32 certHash)

126 {

127 require (isSigned(escow,certHash));

128 _;

129 }

130 modifier onlyOwner {

131 require(msg.sender == owner);

132 _;

133 }

134 modifier ifExists (address inst,string memory regno) {

135 require(certs[inst][regno].isSet== false);

136 _;

137 }

138 }

Edited by: Dana Petcu
Received: Sep 22, 2020
Accepted: Dec 13, 2020

