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TRUST MANAGEMENT IN THE WORLD OF CLOUD COMPUTING.

PAST TRENDS AND SOME NEW DIRECTIONS

MAHREEN SALEEM, M.R WARSI, SAIFUL ISLAM, AREESHA ANJUM AND NADIA SIDDIQUII ∗

Abstract. Over the past years, Cloud computing has become one of the most influential information technologies to combat
computing needs because of its unprecedented advantages. In spite of all the social and economic benefits it provides, it has its own
fair share of issues. These include privacy, security, virtualization, storage, and trust. The underlying issues of privacy, security,
and trust are the major barriers to the adoption of cloud by individuals and organizations as a whole. Trust has been the least
looked into since it includes both subjective and objective characteristics. There is a lack of review on trust models in this research
domain. This paper focuses on getting insight into the nomenclature of trust, its classifications, trust dimensions and throws an
insight into various trust models that exist in the current knowledge stack. Also, various trust evaluation measures are highlighted
in this work. We also draw a comparative analysis of various trust evaluation models and metrics to better understand the notion
of trust in cloud environments. Furthermore, this work brings into light some of the gaps and areas that need to be tackled toward
solving the trust issues in cloud environments so as to provide a trustworthy cloud ecosystem. Lastly, we proposed a Machine
Learning backed Rich model based solution for trust verification in Cloud Computing. We proposed an approach for verifying
whether the right software is running for the correct services in a trusted manner by analyzing features generated from the output
cloud processed data. The proposed scheme can be utilized for verifying the cloud trust in delivering services as expected that can
be perceived as an initiative towards trust evaluation in cloud services employing Machine learning techniques. The experimental
results prove that the proposed method verifies the service utilized with an accuracy of 99%.
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1. Introduction. Cloud Computing as a paradigm shift, has enabled convenient and on-demand /im-
mediate accessibility to the available pool of shared resources. With the unstoppable advancements in the
networking technologies and rapidly increasing demand for computing resources, cloud adoption has become
as inevitable and convenient as the daily-life utilities like gas, water, and electricity. Cloud service providers
(CSP) commonly utilize Virtual Machine (VM) [1] technologies backed up by the contemporary data centers to
dynamically provide computing services like ubiquitous network access, computing-on-demand, rapid resource
elasticity on a pay-as-you-use basis [2]. The different types of services that Cloud computing offers consist of
‘Infrastructure as a Service (IaaS)’, ‘Platform as a Service (PaaS)’, and ‘Software as a Service (SaaS)’. With
IaaS, a CSP offers computing, storage or networking infrastructure to its customers for use. With Platform
as a Service (PaaS), a CSP allows customers to leverage the shared location-independent cloud resources from
the resource pool of CSP to operate custom applications. Software as a Service (SaaS), allows consumers to
employ softwares running on CSP’s infrastructure. For most customers, the facility of pay-as-you-go is a great
motivation to migrate to Cloud, as it relieves the user of the planning and maintenance of the underlying
architecture.

Yet, in spite of the swift acceleration of cloud services adoption, most IT administratives still are skeptical
to commend a “cloud-first” approach. Even worse, some desist to utilize any of the cloud services, quoting
privacy and security issues, functional challenges and most prominently the diminishing of control over the data
after it goes beyond the boundary [3]. Undoubtedly, the issue of trust management is one of the most complex
in cloud computing systems where a collection of services, applications, and nodes function collectively to serve
each other [4] [5] [6]. This calls for the deployment of urgent means that uphold awareness for transparency,
accountability, and, governance of the CSPs. To improve adoption of cloud, trust is a must desired criteria that
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if guaranteed, would motivate individuals and organizations at whole to migrate to the cloud [7] [8]. The solution
is to build a holistic cloud trust scheme — one that involves potential business and IT stakeholders to deliver
accurate checks and balances to create secure cloud environment that allows a controlled and cost-effective
cloud investment.

By building a cloud trust framework to evaluate and monitor, upgrade and enhance their cloud environment,
and to certify and comply with it, IT experts can transform cloud fear into an possibility to tackle increasingly
complicated security and privacy issues [3] [9]. However, despite of the significance of cloud trust evaluation in
trust management, there is a lack of relevant literature addressing this challenge comprehensively. Considering
trust to play a pivot role in Cloud systems the main objective of this paper is to survey the existent trust
models and to highlight the significant contemporary trust management challenges faced in Cloud Computing
and finally to propose a solution for verifying trust in Cloud service utilization.

Briefly, the outlines of this paper are as follows:

• Providing the basic semantics, taxonomy, and notion of trust specific to Cloud Computing.
• Offering the overview of Trust evaluation mechanism in Cloud environment.
• Systematically discussing the significant Trust Models in Cloud Computing.
• Comparing the reviewed Trust models and mechanisms, and outlining their major features.
• Highlighting the open issues and suggestions to establish the trust in cloud computing systems.
• Proposing a Machine Learning backed Rich model based solution for trust verification in Cloud Com-

puting.

The rest of this paper is structured as follows. Section 2 introduces the trust semantics and terminologies.
Section 3 offers the overview of trust in Cloud context and gives insight into challenges in trust management.
Section 4 describes various trust dimensions and trust evaluation measures in cloud systems. Section 5 presents
an overview of a few proposed Trust cloud models in the literature. Section 6 presents the discussion and
outlines some open issues. In section 7 we propose a Machine Learning backed Rich model based solution for
trust verification in Cloud Computing. Finally, section 8 ends this paper.

2. Semantics Of Trust. Trust is a complex notion; therefore a multidisciplinary approach is required
to describe it. Trust is, for the most part, characterized as “the certainty levels in something or somebody”
[10]. In IT environments, this implies that your counterpart functions in accordance with the defined protocols.
Trust is to be expanded by alleviating technical and psychological boundaries to utilizing cloud services.

According to Leonard.G et al. [11], trust in something can be described as the level of certainty that
an object will perform in an acceptable fashion. This assurance can be related to the ‘quality of service’ or
the ‘security and privacy policies’ that the object follows. Trust management in the system can assist in
establishing collaborations among new devices that have joined the network. Nodes may be reported as safe
or unsafe, subject to the trust level [12]. Rousseau and colleagues [13], describe trust as a psychological state
of accepting to being intentionally vulnerable on the basis of positive expectations of someone else’s behavior.
In computer science, trust is considered to be quantifiable, and object X’s trust in object Y for any service S
implies that X believes that the behavior of Y will be satisfactory for a specified time period within a defined
context for the service S.

Reputation and trust are recurrently used exchangeably; though the conception of both is quite very much
alike but not the same [11]. Reputation is the belief someone has regarding something. Trust information
can be collected from the reputation; however trust formation takes other components as well. Reputation is
established on the basis of past behavior of an entity while trust predicts its future behavior [14].

Often times, security is associated with trust. Security guards systems against the malicious entities.
Nonetheless, there is a need of essential pre-configured and established information well equipped to protect
network entities. In trust context, security measures could be viewed as transporters of trust from the source
where it is established to the point where it is required [15]. If the two interacting entities share their key, they
have officially established trust with one another.

2.1. Trust Terminology. Alhanahnah et al. [16] presented a taxonomy of trust factors in their article
and they define trust-related terms to avoid ambiguity as they often have varying connotations in the literature.
Those are defined as follows:
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Trust factors (TFs): Trust factors are the criteria that are considered for trust evaluation in CSPs.
Security, privacy, and data management are some instances of high-level TFs.

Trust indicators (TIs): These are the indicators that represent trust factors. Score (e.g. 90 percent),
or rating (4 out of 5 stars) are TIs that represent the trust factor reputation.

Trustor: An agent that trusts some other entity is termed as trustor. In cloud context, a trustor corre-
sponds to a consumer or user.

Trustee: An entity trusted by the trustor is the trustee. In cloud context, a CSP corresponds to the
trustee entity. Two entities are involved in building trust –trustor and trustee – both have two different goals.
The essential role of the trustor is to assess the accurate trustworthiness, that is to predict the future behavior,
of the trustee. However, the goal of the trustee is to acquire the creditably best trust values.

Trustworthiness: Trustworthiness is perceived as the collection of all significant trust factors.

Trust decision: A trustor decides to connect with the trustee only if it’s trust value is perceived to be
sufficiently high at that instant. This decision is termed as the trust decision.

3. Understanding Trust in Cloud Context. First off, we sketch the perception of trust in cloud
computing and feature notable concerns that highlight the need for constructing and managing the trust in
cloud context. Then we put forward the taxonomy and outline how it can be enforced to practical scenarios.

Trust is widely described in generic literature, however, it is still in its infancy in the cloud computing
setting. In IT environments, the notion of trust pertains to further than security. It encompasses reliability,
dependability, integrity, and capability to execute a service. Trust additionally propels collaboration among
groups. In online communities having a majority of unknowns, the trust metric would predict the degree to
which a user can trust another user in the network [17]. Trust in cloud computing setting has three important
referents: trust in the Cloud provider; trust in the Cloud services that CSP has to offer; and trust in the Cloud
as a technology itself. Among the three potential referents the most difficult one seems the trust in the Cloud
itself as it involves motivating users to adopt cloud computing as a technology.

Fujitsu Research Institute conducted a 2010 survey [18] that derived 88% of potential cloud end users
are concerned mainly about who else has access to their information and necessitated more transparency of
what happens in the physical servers at the backend. Surveys suchlike demonstrate the pressing need for IT
executives and researchers to address the obstacles to trust urgently. While there exist preventive measures like
encryption, ID profiling based access control etc. to mitigate privacy and security risks, they are not sufficient.
Due to insufficient confidences in the Cloud, many users are reluctant to migrate their data to the Cloud or
to utilize the shared computing resources provided by it. Security, privacy and trust issues have become one
of the major barriers to the adoption of Cloud services by many individuals and organizations. Cloud Service
providers do not provide guaranteed service performance. In terms of dependability, some initial approaches
exist in levels of service availability and reliability [19] [20] [21].

Due to the very complex and distributed nature of cloud computing, cloud consumers lose control over
their information, as the data resides on the distributed cloud data centers located across different geograph-
ical locations. Concerns over the security of remotely stored information and the consequent ownership and
diminishing transparency issues are aggravated by the fact that most customers may not be conscious of the
underlying security and privacy measures enforced by the CSP [22]. Building trust plays a significant role to
combat these challenges [1] [6] [16] [23]. Undeniably, trust can remunerate the absence of control and build
the confidence of the consumers in the security and privacy measures executed by the CSP. As such, a CSP ’s
trustworthiness is a denotation that the CSP conforms to the security and privacy benchmarks, and meets the
safety prerequisites of its consumers [16].

Challenges of Trust Management in Cloud Computing. We discuss in what follows the trust management
challenges associated with establishing trust among consumers and CSPs. It categorizes trust management
challenges into various levels based on different approaches as outlined in this section.

The Cloud Security Alliance listed some top threats in cloud computing in their report ‘Top Threats to
Cloud Computing V1.0’ [22]. There are many challenges in Cloud Computing in addition to internal and exter-
nal threats, software bugs, hardware failures, server misconfigurations, etc. [24] [25] [26]; the most significant
ones are being highlighted below:
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• Security and Privacy
• Integrity
• Interoperability and Portability
• Reputation
• Virtualization
• SLA
• Standardization
• Query and access
• Service quality, and
• Trust management

Trust management facilitates the establishment of trust between entities and specifies the structure and mecha-
nisms that enable the trust to be manifested in a system. For the first time, trust management conception was
introduced by ‘M. Blaze, J. Feigenbaum, and J. Lacy’ [27]. They outline the definition of trust management
as “the problem of figuring based on formulated security policies and security credentials if a set of security
credentials of an entity satisfies the security policies”. To guarantee the trustworthiness of an entity, trust
management describes the two aspects of the system trust: 1) What information to gather, and 2) How to
gather that information. Trust management encompasses three major components: i) Trust establishment ii)
Trust update and iii) Trust revoke [12].

In service oriented IoT, the goal of trust management is to guarantee whether connecting to the service
provider is safe in terms of reliability, security, and availability [28] [29] [30]. This trust-related information is
either stored centrally or in a distributed setup prior to being delivered to the network.

Trust management of cloud services is a challenging issue. This is accredited to the unique characteristics
of cloud services wherein millions of nodes, services, and applications are deployed to serve each other under
a single umbrella. The nature of cloud computing is very dynamic where newer cloud services and nodes keep
joining the network. Moreover, it is difficult to access the legitimacy of the user trust feedbacks [31]. Also, it
is challenging to assign credibility to experienced users and track bad-mouthing in order to identify malicious
trust feedback [32].

Navimpour et al. [33] in their survey paper categorized trust issues of cloud systems into four sub-classes,
that comprise:

(a) How to define and access trust related to dynamic cloud systems.
(b) How to handle recommended trust information from the malicious entities.
(c) How to provide varying levels of service in accordance to the expected trust degree, and
(d) How to monitor trust values as they update with variation in time and context, and to update the trust

information and adapt the system to the dynamic changes as and when they occur in time.

Practically, autonomic trust management is difficult to realize due to the ever-expanding scale of deployment
of the cloud of things and the very dynamic nature of the cloud systems further complicates the task [2].
Ryan Ko et al. [10] mentioned the primary issues and challenges in building a trusted cloud environment
through the establishment of detective controls and presented the ‘TrustCloud’ framework, that attends to the
accountability issues in cloud computing through technical and policy-based techniques. The authors quote
that in spite of auditability contributing a significant role in building trust, the present day leading CSPs (e.g.
Amazon EC2/S3, Microsoft Azure etc.) still do not grant complete transparency and facilities to track and
audit record access history and the provenience of the server (physical and virtual) usage [18]. At present,
clients can at best have transparency to track performance metrics of the virtual hardware and monitor service
event logs [34] [35].

4. Trust Management Overview.

4.1. Trust Dimensions. Trust computing is a subcategory of trust management that describes how trust
information is collected, what trust features are used, and how the gathered trust values are aggregated to
generate the final concluding trust values that are again broadcasted over the network. J. Guo et al. [36]
classified trust computing methods in service-oriented IoT into five dimensions: i) Trust composition ii) Trust
propagation iii) Trust update iv) Trust formation v) Trust aggregating.
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Trust Composition: Trust composition is a major component of trust management and it defines the
components that are contemplated in the computation of trust. The set of trust components can be categorized
into two components: i) Quality of Service (QoS) component and ii) Social trust component. QoS trust is
defined by the level of assurance in the node to deliver the requested service [37]. Social trust component is
reflected from social affiliations of entities, their social networking etc and it could be employed to contribute
to overall trust derivation.

Trust Propagation: This dimension of trust computation represents how to store the composed trust
values in the network. In the literature, two major schemes are outlined; centralized and distributed. In
the centralized trust propagation scheme a centralized entity, like the cloud, is responsible for acting as a
datastore of trust information for all network entities. A centralized datastore of trust information makes
message propagation simple. Also, the centralized server can be responsible for the processing of trust values.
Every entity in the network has access to the same central information; hence limited storage issue in the
resource-constrained entities is resolved. However, this causes the central node to eventually be a single point of
breakdown. In a distributed approach, instead of a central entity, every object in the network has the obligation
to compute and store the required trust values, and render recommendations to other objects. However, the
distributed approach can suffer from attacks such as bad-mouthing.

Trust Update: Trust information once collected and propagated either centrally or in a distributed manner
needs to be updated. When these trust values are updated, is described by the trust update dimension. Trust
update can be either event-driven or time-driven. In the event-driven approach, trust update takes place after
the occurrence of an event e.g. after completion of a transaction. In the time-driven approach, there is a
periodic update in trust values at regular time intervals. In a distributed scenario time-driven approach is
considered to be more suitable by virtue of it being energy persevering in contrast to an event-driven scheme
[36]. Though, over the course of time the trust value of an entity may waver; hence, making the time-driven
approach questionable and less accurate. To maximize accuracy and minimize energy consumption, an optimal
time interval needs to be estimated.

Trust formation: Once the trust information is collected from multiple features, trust properties need
to be weighted corresponding to their relevance. Thus, trust formation specifies how trust constitution takes
place from composite trust features. Trust formation can take place either by single-trust, wherein one single
trust property like QoS is considered, or by multi-trust where multiple properties are considered.

Trust aggregation: Once the trust attributes are finalized, trust information is to be collected from the
network entities. Trust aggregation defines how these trust feature values are collected from other members
in the network. In the current literature, the most common method for combining these trust experiences
into a single value is the weighted sum method [36] [38]. Other techniques for aggregating the trust values
include Bayesian inference, belief theory, fuzzy logic, and regression analysis [36]. Subjective logic, a type of
probabilistic logic, is the most appropriate aggregation technique for fog computing. It takes source trust and
its uncertainty into account.

4.2. Components of Trust Evaluation in Cloud Computing. To build confidences in cloud by
mitigating challenges in cloud trust management, we primarily require the understanding of the key components
impacting cloud trust. The criteria that are considered while evaluating cloud trust are termed as Trust factors
(TFs) [16] . Security, privacy, and data management are the instances of high-level (in terms of significance)
trust factors. Ryan KO et al. [10] specify the following significant components that affect trust viz:

1. Security - Techniques like encryption that makes it challenging for an unauthorized individual to gain
access over some information [39].

2. Privacy – Protecting confidential data from exposure or leakage.
3. Accountability – Obligation of an individual or organization to be answerable and liable for delivering

agreed-upon services.
4. Auditability – The relative simplicity of inspecting a framework or a domain. Poor auditability implies

inadequately-maintained (or non-existent) evidences or records that empower proficient reviewing of
procedures inside the cloud.

In the paper [40] M. Alhamad et al., developed a model for trust evaluation based on the five most significant
components of cloud trust; which include security, availability, scalability, and usability parameters. The
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authors developed a trust evaluation scheme, for IaaS model with an e-learning application as a case study,
using fuzzy-set theory since each of these trust properties is characterized by fuzzy aspects.

Parameters of Trust Evaluation. Specifically, trust should be quantifiable, measured for a particular context,
and necessitated to be updated. In order to draw a comparative outline of the trust frameworks, Alhanahnah
et al. [16] identified five criteria, based on the available literature.

• Standardization effort- whether or not trust frameworks contemplate cloud standards (such as ‘Cloud
Security Alliance’s Cloud Controls Matrix’ [41] and ‘European Commission initiatives’ [42]) in their
design.

• Multifaceted criteria - measuring trustworthiness from diverse features, instead of relying only on a
single percept for evaluation.

• Consumer perception of trust- determines whether the consumers are allowed to convey their orientation
towards specific trust factors through the trust framework.

• Extensibility – ensures that the trust frameworks must be having the capacity to accommodate changes
owing to the dynamic and constantly evolving nature of the cloud.

• Context awareness- whether the trust framework can comply to diverse application contexts with
varying consumer’s trust requirements.

4.3. Trust Value Computation and Evaluation Strategies. A simple method to compute reputation
scores in a rating based system, as was used in eBay’s reputation forum [43] [44] [45]. However, due to simplicity
of this method the results obtained are not much effective. Most commercial websites like Epinions [46], eLance
and Amazon use sophisticated approaches that calculate the weighted average over all ratings depending upon
the user’s credibility. Pan et al. [47] utilize Jaccard’s Similarity Coefficient and Pearson Correlation Coefficient
to seect trustorthy cloud services. Guo et al. [36] discuss several trust computation techniques that aggregate
the trust values obtained from various sources. The authors reported weighted sum to be the most commonly
used method in the literature. In reputations based systems [14], the most reputed users have the heaviest
impact on the final trust value evaluated from the weighted sum method [48]. Other approaches described
by Guo et al. [36] include Bayesian Systems [49] [50] [51], Regression Analysis [52], Belief Models [53], Fuzzy
Models [54] [55] [56] [57] [40] [58] [29], and Flow Models [59] [60] [61]. Bayesian systems and Fuzzy models
are the two most widespread trust evaluation strategies. Subjective logic, a special type of belief theory and
regression analysis, has been mentioned in various studies [36]. Adopting logistic Regression analysis for trust
estimation is a recent approach. It being more computation heavier than subjective logic provides better results.
Subjective logic is based on the foundation of belief model. Figure 4.1 depicts the relation between the three
variables defined by Josang [53], where the trust degree for an object i corresponds to a point in the triangle
defined by the tuple

wi = (bi, di, ui)

where ‘belief’ b of an observer represents the belief in the object to be in trust state, ‘disbelief’ d depicts the
likelihood for the object not being in trust state and ‘uncertainty’ u satiates the gap between belief and disbelief,
as defined by Josang [53], such that

b+ d+ u = 1

Josang and Knapskog [62] gave a metric to evaluate the values of b,d,u, as depicted in Equations 4.1 to 4.3,
where p and n represent the count of positive and negative experiences respectively.

b =
p

p+ n+ 1
(4.1)

d =
n

p+ n+ 1
(4.2)

u =
1

p+ n+ 1
(4.3)
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Fig. 4.1: Relationship between trust variables

Mei et al. [63] presented a ‘Trusted Bytecode Virtual Machine Module’ (TBVMM) as a technique of dynamic
remote verification in cloud computing. To solve the dynamics of trust relationships in a distributed environment
they used Bayesian model and Kalman filter. Wang et al. [64] investigated the existing dynamic trust level
scheduling (DLS) and presented a cognitive model inspired novel Bayesian method for cloud computing. The
proposed framework offered low dependability, integrity and safety confidentiality. Barsoum and Hasan [65]
have proposed a cloud-based storage strategy that permits indirect reciprocal trust among the CSP and the
data owner. Table 4.1 presents a detailed description of various trust computation techniques.

5. Cloud Trust Models. Trust is widely discussed in the generic computing literature, nonetheless, trust
still is an emerging concept in the cloud computing environment. The challenges and issues in building trusted
Cloud ecosystems has been talked about from various perspectives and there is a lack of any standard model
for evaluating cloud trust. Trust is a standout amongst the most significant pointers for benefit determination
and suggestion in Cloud adoption. There are three most common categories of trust models 1) Service Level
Agreement (SLA) based trust model, 2) Recommendation based trust model and 3) Reputation based trust
model. In this section we highlight some of the Cloud Trust models existing in the literature:

I. TrustCloud Model

Ryan K Lo and colleagues at Cloud & Security Lab of Hewlett-Packard Laboratories (HP), Singapore and
Bristol presented the TrustCloud framework [10] that handles accountability issues in cloud computing
through some technological and policy-based mechanisms. In their paper, they highlight that there is a
pressing need for research in the domain of accountability in cloud systems. They classified trust compo-
nents into two categories: Preventive Controls and Detective Controls. Preventive approach mitigates the
happening of an event at all (like firewalls). Detective approach identifies the risks that are against the
security and privacy policies of the system (like security audit trails, intrusion detection systems (IDS),
and logs). Furthermore, there are also corrective controls, which happen to fix any unwanted events that
occur.
For the cloud framework, the authors have focused on detective controls since they are non-invasive, and
not only investigate the external risks alone, but the risks arising from inside the CSP as well. Although
measures to directly stop the occurrence of irregularities are scarce, in cloud computing detective controls
serve as some kind of a psychological barrier to policy breaches and even serve as a forensic record should
there be any case of non-compliance. Detective controls act in a manner similar to speed cameras for
traffic control. Generally, the combination of both the approaches is needed to complement each other for
appropriate protection.

II. EY Cloud Trust Model

In the report “Building Trust in Cloud” Ernst & Young Global Ltd. (EY) [3] presented the ‘EY Cloud
Trust lifecycle Model’ as a foundation that could be utilized by the organizations to build trusted cloud
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Table 4.1: Description of various trust computation techniques

Technique Description Features Source

Rating based
system

Users provide a star rating as a feedback
for products or services consumed.

Simplicity of method leading to ineffective
results. Absence of feedback validity re-
sults in unfair ratings.

[43]
[44]
[45]

Bayesian Sys-
tems

Bayesian systems are built around prior be-
liefs for estimating the mean of a popula-
tion.

This is useful for rankings so there is a need
for a backdrop of a scale of all competing
products’ number of ratings. It is relevant
when dataset is small.

[49]
[50]
[63]
[56]
[51]

Regression
Analysis

A set of statistical processes for relation-
ship estimation among variables. Mostly
used for prediction and forecasting. Specif-
ically it may be used to estimate continu-
ous response variables.

Computation heavier than subjective logic,
hence provides better results. Requires
complex statistical analysis.

[42]

Belief Models
/Subjective
logic

It is a framework for dealing with uncer-
tainty. It operates on opinions and beliefs
about the world. A special type of belief
theory and regression analysis is subjective
logic.

It employs components from the
‘Dempster-Shafer’ belief theory. Un-
certain probabilities are based on belief
model.

[36]
[53]

Fuzzy Models Compute trust by fuzzy logic rules.
Need domain experts for doing parameter
tuning and defining fuzzy rules

[54]
[55]
[56]
[57]
[40]
[58]

Flow Models
Trust evaluation task is handled using net-
work flow model.

Model is more compact and general and
provides integral optimum solutions.

[59]
[60]
[61]

ACO (Ant
Colony Opti-
mization)

It introduces the pheromone concept and
transition probability for dynamic trust
representation.

Suitable for distributed feedback systems
like cloud computing. Takes change of time
and interaction frequency into account for
direct trust evaluation.

[61]
[62]

ecosystems. As shown in Fig. 5.1, the framework provides the following broad functionalities:
• Monitor and evaluate the risk profile of the organization and then developing strategies addressing

the key areas of vulnerability.
• Improvise by performing remediation activities to enhance the developed strategies.
• Obtain certification and compliance from the third-party for assuring the security, trustworthiness,

and auditability of the organization’s cloud ecosystem.
The authors describe the six key dimensions that serve as a blueprint for the making of the trusted cloud
systems [3]. The key dimensions also line up with the CSA’s ‘Cloud Control Matrix’ and help in the
understanding of the trust cloud characteristics. The six dimensions, as shown in Fig.5.1, are described
below:
(a) Organizational: Organizations’ internal users and CSP staff can introduce risk in the cloud ecosystem

if the CSPs fail to manage organizational roles and human resources that deal with the challenges
that emerge in a cloud ecosystem.

(b) Technology: With the right technical configurations of CSPs in place, like encryption, key man-
agement, access management, underlying infrastructure, vulnerability management, virtualization
management, API security etc. can make a huge difference in building a trusted cloud ecosystem.

(c) Data: Maintaining the organization’s data assets at different geographic locations puts challenges on
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Fig. 5.1: EY Cloud Trust Model and Lifecycle Framework (after [3])

data protection. For adequate protection of data assets, organizations are required to know about
their owned assets and the value that these assets hold.

(d) Operational: Moving IT operations to the CSP has an impact on those operations. There is a need
of IT operation management system that controls the physical and environmental risks, provides
backup and recovery plans, improved efficiency, and data security etc.

(e) Audit and compliance: CSPs need to have robust compliance procedures, audit plans and a third
party assurance report at the minimum.

(f) Governance: A well-established governance model should be in place to design scalable programs,
manage compliance and risks and monitor performance.

The authors conclude that by utilizing the ‘EY Cloud Trust model’ build upon six key cloud dimensions,
trusted cloud ecosystems can be built. There has to be a balance between the risks and the value that
the CSPs impart to the business. This trust model involves both preventive and detective measures for
building trust.

III. Hierarchical Trust Model

In the paper [66], the authors presented a ‘Trust Model for Measuring the Security Strength of Cloud
Computing Services’ that evaluates the cloud trust value based on the identified parameters relevant
to security aspects. Both the static trust and the dynamic trust is evaluated to determine cloud service
security. The evaluated trust value represents the overall strength of the cloud service security. Trust values
identified include Identity Management System (IDM), Authentication, Authorization, Data Protection,
Confidentiality, Communication, Isolation, Virtualization, and Compliance. The detailed description of
the parameters is given in [66]. The trust model is indicated in the form of a hierarchical tree structure,
where the root indicates the trust value and the child nodes represent the parameters with varying weights
at different levels. The root node or the final trust value is the weighted sum of all the vector parameters.
This model is based on the preventive approach of establishing trust.

Trust Factor Taxonomy:

In the article [16], the authors Alhanahnah et al. present a taxonomy of trust factors for trust evaluation
that aims at helping cloud customers to choose trustworthy cloud service providers. This paper describes
the notion of trust in cloud computing as discussed in Sec. 2. and also highlights some of the significant
cloud trust concerns that demand rapid solutions for establishing and maintaining trust. Authors describe
the two conceptual trust phases: 1) Establishing trust and 2) Maintaining trust. The establishing trust
phase identifies the trust factors that evaluate the CSP trustworthiness. The trust factors are categorized
as: 1) ‘SLA’ Trust Factors (TFs) and 2) ‘Non-SLA’ Trust Factors; as shown in Table.5.1. Briefly stated,
SLA TFs are the trust properties extracted from the Service Level Agreements (SLA) [67] [68] [69] [70],
whereas the non-SLA TFs are the trust properties derived from various other sources. The establishing
trust phase generates a pretrust value which is then re-evaluated iteratively by the maintaining trust phase
that follows; to keep the trust value updated. The maintaining trust phase monitors allegiance of service
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Table 5.1: Taxonomy of Trust Factors (TFs)

SLA TFs Non SLA TFs

Performance CSCs Feedback
Security Experts Opinion
Data Management Financial Status
Personal Data Protection(PDP)
Cost

provider with the SLA which is significant for dynamic trust evaluation.

IV. Trust Model in Cloud of Things Environment

In the cloud of things environment, an autonomic system for trust management is difficult to be realized
because there is a lack of control due to large scalability of deployment, node mobility, limited computing
capacity [10] [71]. Therefore, in such scenarios, the trust manager must be flexible and adapt to the
dynamic circumstances posed by the network. Namal et al. [4] present an autonomic trust framework for
managing trust in Cloud-based IOT Applications called MAPE-K. MAPE-K is the feedback loop which
is based upon ‘Monitor’, ‘Analyse’, ‘Plan’, ‘Execute’ and, ’Knowledge’ for evaluation of trust levels in
IoT-cloud systems. The distributed trust agents in the framework filter the required trust information
out of rest of the information to support autonomic trust decision-making. The monitor component filters
and aggregates the information to detect any symptom which requires analysis. The analyze component
carries out data analysis on the pre-detected symptoms from the monitor component. If any modifications
are needed to achieve some targeted objectives, a change requisition is sent to the plan component that
plans the actions and formulates the procedures needed to achieve the desired objectives. Execution phase
actually brings the necessary modifications in the system behavior using effectors, as recommended by
the plan component. The knowledge (K) includes the data associated with all the MAPE components
that is centrally shared among all the trust agents in the network employing cloud infrastructure to serve
decision-making. The knowledge data includes trust values, symptoms, context information, metrics,
topology information, historical logs, and policies etc.

V. Other Models

M.Alhamad et.al. [40], presented a fuzzy logic based scheme for evaluating trust in cloud applications
enabling cloud users to evaluate the trustworthiness of CSPs when migrating their operations to cloud data
centers. The evaluation method uses four input factors: security, scalability, usability, and availability.
The input parameters are fed to the fuzzy inference system employing Sugeno fuzzy technique with gbell
membership function. Neural networks are employed to lessen the count of fuzzy rules in the training
process to select only the most significant IF-THEN rules. M. Balasubramanian et al. [54] presented a
framework to evaluate the trustworthiness of cloud servers and trust authority based on fuzzy approach by
evaluating conformity on QoS parameters. Emeakaroha et.al [72] presented a trust-label system developed
to communicate trust values in order to boost consumer confidences in Cloud services. Q. Chenhao and
Rajkumar Buyya [56] presented a ‘Hierarchical Fuzzy Inference based System’ for evaluating Cloud Trust
for Service Selection that evaluates trust of IaaS cloud based upon the user requirements. The model offers
linguistic descriptors for both naïve and expert consumers to submit their vague demands or uncertain
resources. The authors generated benchmark results for the 11 dynamic attributes that include CPU
Speed, Memory Read, Memory Write, Disk Read, Disk Write, Network In, Network Out, Availability,
Failure Rate, VM Startup, and VM Shutdown.
Sherchan et al. [73], proposed a Hidden Markov Model (HMM) based model for predicting trust in service
web. It utilizes a time sensitive dynamic model for training pool. Xiaonian Wua et al. [74] proposed a
‘D-S evidence theory’ based model with sliding windows for evaluating trust in cloud computing. They
calculated the direct trust of entities as the first-hand evidence by employing DS combination rules. Trust
assesment relies upon the interaction evidence between CSP and CU. Since, the significance and legitimacy
of evidence eventually would decay with time, sliding window is employed to delineate the timeliness of
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Table 6.1: Comparison of different trust models

Source Method / Model Parameters Observations

R.Shaikh
[66]

Hierarchical tree structure
based trust model for evalu-
ating the overall strength of
security in Cloud Computing
Services .

Identified trust values include
IDM, Authentication, Autho-
rization, Data Protection, Confi-
dentiality, Communication, Iso-
lation, Virtualization, and Com-
pliance.

Calculates both static and dy-
namic trust values. Uses
weighted sum aggregation tech-
nique.

Ryan K.
Lo [10]

TrustCloud framework
Preventive and Detective Con-
trols

The model handles account-
ability issues of cloud systems
through policy-based mecha-
nisms.

Namal et
al. [4]

An autonomic trust framework
for managing trust in Cloud-
based IOT Applications called
MAPE-K.

The feedback loop which is
based on ‘Monitor’, ‘Analyse’,
‘Plan’, ‘Execute’ and, ’Knowl-
edge’ to evaluate trust.

MAPE-K evaluates the trust
levels in an IoT cloud ecosys-
tem.

M. Bala-
subrama-
nian et al.
[54]

Fuzzy logic approach
Evaluation based on conformity
to QoS parameters.

The cloud server and trust au-
thority parameter values are col-
lected from cloud benchmark
service.

M.Alhamad
et al. [40]

Fuzzy logic based trust evalua-
tion scheme for cloud applica-
tions.

Evaluation parameters include:
security, scalability, usability,
and availability.

Neural networks are employed
to reduce the number of fuzzy
rules in the training process to
select only the most significant
IF-THEN rule.

Xiaonian
Wua et al.
[74]

D-S evidence theory and sliding
windows based trust evaluation
model.

Direct trust of entities calcu-
lated by DS combination rules.
Evaluation is based on interac-
tion evidence between CSP and
CU.

Describes the timeliness of the
evidence information and takes
care of the dynamisim of inter-
action evidences.

Lin et al.
[75], Bedi
et al. [76]
[77]

Ant colony optimization (ACO)
technique

Use ‘pheromone’ to model tran-
sition possibility for represent-
ing behavior trust.

ACO based trust-recommender
system takes change of time and
interaction frequency into ac-
count for trust evaluation.

the evidence information and it also takes care of the dynamism of interaction evidences.
Lin et al. [75] proposed a cloud trust model that is based on behavior of entities in cloud environment.
Since the trust associations among corresponding entities are difficult, dynamic, and mostly unknown;
the authors presented an Ant colony optimization (ACO) technique which is based on the conception of
‘pheromone’ to model transition possibility for representing behavior trust. Bedi et al. [76] also proposed
an ant colony based trust-recommender system.

6. Discussion and Open Issues. The central aspect of trust management in Cloud environment is to
determine how to assess the corresponding trust values of an entity. Various trust components have been
specified however, not all possible trust properties should be gathered and stored. Determining the most
relevant trust components is significant to obtain the accurate trust predictions. Machine learning approaches
could be used to determine the set of properties that provide the most accurate trust predictions. Table 6.1
draws a comparison of different trust models and highlights the trust parameters identified in various studies.

As we explore some open issues in cloud trust management the central problem that has been identified
is how to collect and verify trust information. The authenticity of trust information is a major concern and
requires further research. Furthermore, different deployment models like public and private cloud models might
need different trust management schemes. Trust information can be used as a metric to analyze system state in
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a particular duration or service context. Trust information can perform other tasks in addition to facilitating
service selection. Lowered trust value could be an indication that the CSP is misbehaving due to resource-
depletion at peak hours of the service usage. In the following subsection we provide a summary of the identified
open issues that are potentially significant roadblocks that hinder cloud trust.

6.1. Open Issues. There is an absence of a reliable trust and reputation model that is standard and
specific to the cloud architecture that assists the customers in choosing the trustworthy service providers [40].
Despite the fact that the development of trust and reputation management systems has been widespread and
popularly implemented for several online services, there does not exist any such model implemented for cloud
computing. Here we highlight some of the major open issues in Cloud Trust Management:

• As described in section 2, while we defined semantics of trust, trust is context-dependent. Hence, it
may present some inaccurate information in some intense contextual conditions. There has to be a
standard definition for describing trust in cloud scenario.

• The literature has addressed a broad range of SLA-based variables. However, there is no agreement
defining and choosing a correct set of trust variables, as most methods are not in line with standard-
ization bodies’ norms and guidelines.

• Trust management system needs a uniform mechanism for accumulating multiple trust attributes irre-
spective of the evaluation procedures employed to evaluate the subjective trust parameters.

• In the complex IoT-based cloud environments, SLAs are inadequate. Often times, the ambiguous
clauses and vague technical specifications of SLAs can prevent service consumers from identifying
trustworthiness of cloud services.

• In the cloud of things environment, having an autonomic trust management system is difficult to be
realized due to node mobility, limited computing capacity, and lack of control [10] [71].

6.2. Datasets for Trust Evaluation. We have identified some datasets that could be employed to
evaluate trust related computations applicable to cloud computing setting:

• Cloud Armor dataset [78]: It is the real time data containing the trust information obtained from
various cloud service providers derived from consumer feedbacks [32].
[Cloud Armor [79] is a research project aiming to develop a scalable Trust Management System for
cloud services, at the University of Adelaide, Australia.]

• Trust Feedback Dataset [78]: This dataset is a collection of consumers’ feedback of cloud services; based
on QoS attributes. The dataset is a collection of 10,000+ feedbacks received from nearly 7,000 service
consumers for 113 real-world cloud services.

• Epinion Dataset [80]: Epinion is a review website where people post product reviews. A trust network
of users is created by adding other users to their ”Web of Trust” whose reviews and ratings they
find consistently valuable” and conversely adding users to their ”Block list” whose reviews are found
consistently not valuable or inaccurate. The Epinion dataset collected from the website Epinions.com
contains about 664,824 reviews and 487,181 issued trust statements from 49,290 users for 139,738
different items.

• Extended Epinion Dataset [80]: This dataset also contains distrust lists for items. The dataset consists
of 841,372 reviews (717,667 trusts and 123,705 distrusts) received from about 132,000 users.

The datasets described above are merely based on user feedbacks and rely solely on user experiences and
preferences. These consumer feedbacks act as Trust Indicators that lead to Trust Formation and assist cloud
users to choose a trustworthy cloud service among a pool of available service providers; and also gives cloud
users an idea of the services they can trust. However, there is a lack of available data for evaluating cloud
services based on their functionalities rather than the user experiences or ratings. Evaluating services for their
functionalities provides more transparent, accurate and direct trust metrics for system evaluation. We derived a
service evaluation dataset from a standard BOSSBase dataset for trust verification of cloud services, the details
of which are introduced in the next section.

7. Proposed Rich Model based Machine Learning solution for Trust Verification. As the ad-
vancements in the field of Machine Learning continue to expand, several approaches to solving cloud computing
challenges have utilized the opportunities of problem solving using Machine Leaning algorithms [81] [82]. Gulen
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et al. [83], [84] utilized machine learning algorithms to solve the issue of anomaly detection in Clouds. Khilar et
al. [85] put forth an access control model for cloud computing based on trust by employing Machine Learning.
Wang et al. [86] designed a machine learning techniques based privacy-preserving framework using feature
extraction.

In this study we identified one major direction that would serve as a roadmap for creating trusted cloud
environment. As we have seen that cloud-based services have increasingly gained much popularity, yet there is
a lack in the tools that allow cloud consumers to verify that these services perform as expected [87] [88] [89].
Dykstra et al. [90] for the first time provided an evaluation model for some cloud-forensic acquisition tools that
aids in providing confidences in the acquired evidences. In addition to promising security guarantees these tools
should verify functional correctness and performance along with the service availability and reliability. Users
would be immensely benefited from knowing as to what extent the CSP delivered the services as promised.
More precisely, the agreement between the cloud consumer and the service provider should be verified and
not merely be reliant on cloud provider’s report. It is quiet important to capture the misbehavior of CSP in
terms of functional correctness of the service promised so as to detect failures. As cloud software is delivered
by a third party as a Software-as-a-Service, the actual code of implementation is expected to be unavailable to
the service users. Thus the utilization of white-box technique strategies (like symbolic execution [91] [92] [93])
cannot be utilized.

In our work we mainly focus on two key areas: A) Trusted Software: To verify whether the right software
is running for the correct services. B) Functional correctness: To verify whether the running service is working
as it is expected to perform. Here we consider cloud customers falling into two categories, one is the service
providers that deploy their services or softwares in the cloud (PaaS or IaaS), and the other is cloud users that
utilize a software or cloud storage service.

7.1. Approach for verifying the trusted software. If the software deployed by the cloud service
provider is tampered with or replaced by some other low cost version, the requested service being invoked by
the user would deviate from the expected behavior and result in trust violation. Hence, for the service providers
in order to guarantee that trusted software is running, verifying the trusted software running on cloud nodes
on the basis of output generated from the service utilization be facilitated at the consumer end. We propose
an approach to verify functional properties of a cloud services based on the validation of results or the output
generated after utilizing a particular cloud service; without involving a third party for certification or without
the need of accessing the implementation code of the service utilized. As image processing jobs are computation
and storage costly services, due to their large scale processing needs, many such requests are processed over
the cloud to reduce computational and implementation overheads at the client site.

As a use-case, we consider a scenario where one such service is being invoked by a cloud user. The user
requests the service over a set of input images submitted to a cloudlet. The service provider performs the
computation over a given set of input data as requested by the user. At this point the service provider may
either satisfy the user request by faithfully processing the data utilizing the legitimate software or maliciously
employ a low-cost, or some tampered/ unlicensed version of the software. The users would find it difficult to
capture the violation in the services delivered unless they have the verification mechanisms at their disposal to
verify the legitimacy of the output produced. We have proposed a Machine Learning backed software verification
approach based on Spatial Rich Models (SRM) [94] inspired by its wide applicability in steganographic detectors
in the domain of digital forensics [95] [96] [97] [98].

Our approach relies on the hypothesis that any data processing service would leave some digital footprints
that would enable verification of the software utilized for processing user requests. The goal is to extract distinct
features from the processed output returned to the service consumer in order to capture the slight differences
in the output generated from the distinct softwares utilized by the service provider. We extract spatial rich
features for the output data and investigate the residual noise distributions for capturing any violations in
the usage of software-as-a-service. We evaluate these features by the Machine learning model called Ensemble
Classifier [99] which constitutes an array of base learners that predicts the output class based on majority
voting. The effectiveness of the classifier is evaluated using ROC curve. The detailed algorithms for generating
features for evaluation and model training are explained in the Algorithm 1 and 2 respectively.
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Algorithm 1: Generate Features for verification (Dn, F )

Input: Dn Set of Input data
Output:F Feature Set

1. User submits n service requests to cloud server:

I. Cloud server receives DI= (Di1, Di2, Di3... Din) input n files to be processed.

2. Cloud service provider invokes the requested service to process input queries.

I. Apply the required data processing operations on the input data received DI .
(At this point the service provider may ideally utilize the genuine software to process the requests
and faithfully return the output data to the user or may maliciously utilize a low cost version of
the software for the task.)

3. Return the output data to the customer after applying the required data processing.

I. Customer receives the resulting processed data DR= (Dr1, Dr2, Dr3... Drn), from the Cloud
Server.

II. This DR= (Dr1, Dr2, Dr3... Drn), will be used to verify the cloud service utillized.

4. Extract spatial rich features in the output data DR by employing Spatial Rich Models (SRM).

I. Extract the discrete rich models that are constructed from the neighbouring noise residual samples
in the spatial domain.

II. Extract all the 106 rich spatial submodels from the output data returned by the service provider;
for each data item in DR.

III. The extracted submodels (F) have the dimensionality of 34671, for each R in DR.
IV. Spatial rich features F= (F1, F2, F3... Fn), are analyzed to verify the legitimacy of the cloud

service utilized.

Algorithm 2: Evaluating Features for Software Verification (F,Cp)

Input: F Feature Set
Output: Cp Predicted Class

1. Train the Machine learning model for Feature Evaluation.

I. Train the verification model on random samples (F) of the features obtained from pre-processed
data of licensed and unlicensed versions, using cross validation method.

II. Decision is carried out by majority voting by employing Ensemble classifier of L binary base
learners.

2. Verify the cloud service utilized by the customer

I. Customer verifies the data DR received from the Cloud Server for its legitimacy using the trained
machine learning classification model.

II. The area-under-curve (AUC) in the ROC curve gives the classification prediction accuracy of the
model.

7.2. Experimental Setup. For the usecase described in Section 7, we utilized SRM for feature extraction
as it has been widely employed to extract spatial features from neighboring pixels to capture slight variations
in the spatial domain. The process involves assembling many submodels derived from the noise distributions of
neighboring samples of image residuals. The assembling of submodels is made a part of the machine learning
training process that is driven by corresponding Matlab and Octave processed samples. By capturing the
variations in the spatial domain, after the data undergoes processing using different softwares, we were able to
utilize the power of rich models for verifying trust in cloud services. Another important aspect of employing
SRM as a feature extractor is its ability to be used as a general-purpose model for digital forensics as it is
independent of the data content [94].

As a feature classifier, and for assembling individual models, we utilized Ensemble classifier. As SRM
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features have a high dimentionality and we are processing large training datasets, the random forest of Ensemble
classifiers is more suitable due to its low computational complexity and its efficiency for high-dimensional
features involving big training datasets. Using Ensemble as a classifier also solves the problem of over-fitting
when dealing with large training samples; which could have been a case if we used SVM classifier instead. The
Ensemble classifier is based on an array of individual base learners that arrive at a consensus by majority voting.
Every individual learner is trained on a random feature-set and acts as an independent classifier. By evaluating
how various spatial submodels involve in trust verification of cloud services, trust violation is detected.

Our proposed model works in two steps: A) Extracting features for model training and service verification
using SRM. B) Evaluating rich features for service verification using Ensemble classifier. First off we generate
service utilization datasets that act as samples to pre-train our proposed model. The datasets were created
by performing image processing operations on a standard BOSSBase dataset. To verify the effectiveness of
our model we invoked image processing services using a legitimate software(Matlab) and also using is low-cost
version (Octave) for capturing variations in spatial domain. After deriving the required datasets for Matlab
and Octave, we extracted rich features for the derived datasets using SRM. A total of 106 sub-models are
extracted, each having an average dimentionality of 327, thereby making a total dimentionality of 34671 for a
single feature set against each data file. Then, we trained random forest of Ensemble classifiers using ten-fold
cross validation on the extracted rich feature-sets.

Once our model is trained on sufficient feature-sets, it is utilized for trust evaluation of services utilized.
When a cloud user submits a request along with the input data to a cloud server invoking a service, the service
provider responds with the requested output. Whether the service provider has utilized the legitimate software
for processing the user request, is verified by evaluating the rich features of the output produced.

Due to the lack of availability of Trust-datasets that evaluate direct trust values in cloud services, we derived
a new trust dataset for direct trust evaluation. The datasets described in section 6.2 include user feedbacks
and reviews, hence these can be utilized to evaluate indirect trust that does not add to increased transparency
in cloud service monitoring.

7.3. Results and Discussion. As a usecase we consider an image processing task being invoked by the
customer wherein the user requests for Edge Detection algorithm operated over a set of input images using
Matlab software. We extract two streams of SRM features, one corresponding to a set of images processed
by Matlab and another using an unlicensed low cost version Octave. We have explained the details of the
experiments in [100] and [101]. We utilized the standard BOSSBase dataset having 10,000 images, for our
experimentation. The prediction accuracy of the trained Ensemble classifier is calculated by out-of-bag (OOB)
error. Figure 7.1. a) shows the histogram of base learners and Fig 7.1. b) shows the variation in OOB estimate
with variation in the count of base learners. The count of base learners, at which the OOB saturates, is fixed.
Fig 7.2. shows the area-under-curve plot of ROC curve that gives the true positive rate (recall) vs. false positive
rate (fall-out). The results suggest that spatial rich features give a prediction accuracy of 99% with an average
testing error of 0.0040 (+/- 0.0009) calculated over 10 splits. This high prediction accuracy is accredited to the
large number of diverse submodels involved in extracting rich features using SRM, along with all the varying
combinations of submodels and their quantization levels. These individual models capture large number of
relationships among neighboring pixels in the data and thus contribute to high prediction accuracy.

Although, Rich Models have not been utilized for evaluating cloud service trust verification, but we have
compared its prediction accuracy with related domains that utilize SRM. Jian et.al [102] utilized local residual
descriptors for predicting recapture effect in images and achieved an accuracy of 96.72% with three submodels
and an accuracy of 98.43% with ten submodels of SRM. Han et.al [95] utilized Rich models for detecting image
manipulations. They adopted two-stream R-CNN network to predict if the image has been manipulated or
not and achieved a prediction accuracy of 93.7% on NIST16 dataset. In another similar work Cozzolino et.al.
[103] utilized SRM for image forgery detection. They extracted a single model SRM feature-set using CNN and
employed SVM classifier for forgery detection. The prediction accuracy recorded was 84% to 99% for different
image manipulations.

These results suggest that Rich Models are powerful feature extractors that have a great potential in the
domain of image forensics and we have successfully utilized its potential for verifying cloud services for functional
correctness. The proposed approach of feature generation from the output data for verifying the cloud trust
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Fig. 7.1: a) Majority voting histogram b) Change of OOB error with change in base learner count.

Fig. 7.2: Classification accuracy ROC estimate.

in delivering services as expected can be perceived as an initiative towards trust evaluation in cloud services
employing Machine learning techniques.

8. Conclusion. Cloud computing being an opportune technology, but inadequate trust management is
hindering its progress. Despite significant efforts to mitigate trust issues, the lack of control and fear of change
inhibits individuals and organizations to adopt cloud computing. Even though the legal approaches have been
laid down for cloud trust assurance, they continue to be insufficient on their own. Cloud service users still
have to rely on cloud providers’ promises to provide the desired services. Rather than obliging consumers to
rely on providers’ genuine behavior, cloud services should employ a standard trust management system so that
the users could access and predict accurate trust information. In the literature, the detailed review discussing
the issue of trust management is very rare. We presented a review of trust management in the cloud context
and highlighted some open issues and possible research domains to uncover the trust issues in cloud computing
scenario. A few open questions have been identified. The central issue is to determine the most relevant trust
properties to predict accurate trust values and to identify the most effective method to aggregate multiple
trust variables to obtain the final trust value. One open issue is to reach for a trade-off between a centralized
and distributed trust propagation technique. A potential solution is to implement a hierarchical approach by
combining both the approaches. We proposed a Rich model based Machine Learning backed solution to verify
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the software-as-a-service utilized by the cloud consumer. We performed the experimentation on the standard
dataset to evaluate the effectiveness of our scheme to verify the utilization of spatial noise residuals as features
for classifying trusted services. Nevertheless, there are several open questions pertinent to trust management
in cloud computing that need to be explored further.
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