
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2022 SCPE. Volume 23, Issues 4, pp. 129–145, DOI 10.12694/scpe.v23i4.1987

MAP-REDUCE BASED DISTANCE WEIGHTED K-NEAREST NEIGHBOR MACHINE
LEARNING ALGORITHM FOR BIG DATA APPLICATIONS

E. GOTHAI∗, V. MUTHUKUMARAN†, K. VALARMATHI‡, SATHISHKUMAR V E§, THILLAIARASU.N¶, AND

KARTHIKEYAN P∥

Abstract. With the evolution of Internet standards and advancements in various Internet and mobile technologies, especially
since web 4.0, more and more web and mobile applications emerge such as e-commerce, social networks, online gaming applications
and Internet of Things based applications. Due to the deployment and concurrent access of these applications on the Internet
and mobile devices, the amount of data and the kind of data generated increases exponentially and the new era of Big Data
has come into existence. Presently available data structures and data analyzing algorithms are not capable to handle such Big
Data. Hence, there is a need for scalable, flexible, parallel and intelligent data analyzing algorithms to handle and analyze the
complex massive data. In this article, we have proposed a novel distributed supervised machine learning algorithm based on the
MapReduce programming model and Distance Weighted k-Nearest Neighbor algorithm called MR-DWkNN to process and analyze
the Big Data in the Hadoop cluster environment. The proposed distributed algorithm is based on supervised learning performs
both regression tasks as well as classification tasks on large-volume of Big Data applications. Three performance metrics, such
as Root Mean Squared Error (RMSE), Determination coefficient (R2) for regression task, and Accuracy for classification tasks
are utilized for the performance measure of the proposed MR-DWkNN algorithm. The extensive experimental results shows that
there is an average increase of 3% to 4.5% prediction and classification performances as compared to standard distributed k-NN
algorithm and a considerable decrease of Root Mean Squared Error (RMSE) with good parallelism characteristics of scalability
and speedup thus, proves its effectiveness in Big Data predictive and classification applications.

Key words: Machine Learning, Big Data Analytics, MapReduce Programming, k-Nearest Neighbour, Classification, prediction

AMS subject classifications. 94A16, 68T05

1. Introduction. Now a days, all recent applications, like credit rankings, pattern recognition, location
oriented Geographical Information Systems (GIS), all facilities management, recommendation systems, com-
puter vision, smart-cities services and so on are in need of well-organized processing of queries using bigdata
methodologies. One of the best query retrieval method is Nearest Neighbor Query. When we consider two
points are given, A as Query and B as Training, NN finds out the nearest neighbors of B for every position of
A. This form of query is very much helpful in reality.

For example, kNN can be used in recommendation systems since it helps to find public with analogous
qualities. It can also be used in an online video streaming platform, for example, to suggest a content that a user
is more possible to outlook based on what other users look at. For image categorization, the KNN algorithm
can also be used. It is important in a variety of computer vision applications since it can group similar data
points jointly, such as cats and dogs in split classes. Additional applications of the kNN include classification,
graph-based computational learning etc. when the datasets concerned are moderately small, kNN be able to

∗Associate Professor, Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode 638060,
Tamilnadu, India.(egothai@kongu.ac.in)

†Assistant professor, Department of mathematics, School of Applied Sciences, REVA University, Bangalore-
560064.(muthu.v2404@gmail.com)

‡Professor, Panimalar Engineering College, Bangalore Trunk Road, Varadharajapuram, Poonamallee, Chennai-
600123.(valarmathi_1970@yahoo.co.in)

§Post-Doctoral Researcher, Department of Industrial Engineering, Hanyang University, Seoul, Republic of Ko-
rea.(srisathishkumarve@gmail.com)

¶Assistant professor, School of Computing and Information Technology, REVA University, Bangalore-
560064.(thillai888@gmail.com)

∥Associate Professor, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu,
India.(mailbox7576@gmail.com)

129



130 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

be capably answer in a central background. This is commonly not the reason when we are working with huge
quantity of data, considering that we live in the epoch of WWW and in the mobile technology. There is huge
quantity of data coming out through GIS devices, sensor networks, geotagged tweets, scientific devices, etc. and
their handing out is very challenging, thus we come out with the mapping of parallel and distributed computing
environment is very much essential to get results in a reasonable amount of time.

The k-Nearest Neighbors (kNN) algorithm [1, 2] is one of the top 10 supervised machine learning algorithms
that perform classification as well as regression analysis in Big data applications. Due to its non-parametric
nature, easy implementation, and effectiveness, it becomes an important part of the machine learning domain
and also it has an inherent feature of parallel implementation in Map Reduce environment. Due to this,
the kNN and Map reduce framework found applications in various diverse fields like pattern classification [3],
image classification [4, 5], big data classification [6], automated world wide web usage mining [7] and document
classification [8, 9, 10, 11, 12].

The contributions of this paper include:

• A distributed and parallel Distance Weighted k-Nearest Neighbor model has been proposed to analyze
big data
• Hadoop MapReduce framework cluster has been established to improve execution efficiency and scala-

bility of the proposed system
• Different block size of data in the underlying HDFS chosen to handle large datasets with high efficiency

rate.
• Several experiments have been designed and executed to show the speedup and scale-up of the proposed

distributed algorithm
• Classification accuracy of the proposed system measured and analyzed for different size of k-Nearest

neighbors
• The performance of the proposed system is evaluated on the authentic, standard and reliable dataset.

The rest of this paper is organized as follows. Section two provides Literature survey and Section three
provides an introduction to the distance weighted k-NN algorithm; we discussed the big data technology Hadoop
framework and the architecture of the proposed MR-DWkNN model with the Hadoop implementation algorithm
in section four. The experimental setup such as Hadoop computational cluster and its components, various
benchmark datasets, and performance metrics for evaluation are described in section five. The conduct of
experiments, performance analyses, and results in comparison with standard k-NN are presented in section six
while section seven draws conclusions from the experimental study and suggests the directions for future work.

2. Literature Survey. There are several variants of the kNN algorithm have been proposed to handle
various kinds of data and are shown to be very effective in its performance. Keller et al. [13] proposed a modified
version of the kNN algorithm based on fuzzy concepts called fuzzy-kNN with three techniques to assign fuzzy
memberships to the data points. Denoeux [14] proposed a method D-SkNN based on Dempster-Shafer theory
to address the problem of unseen pattern classification in a dataset based on the kNN algorithm. The author
demonstrated the performance of the new method D-SkNN with a real-time dataset as well as a simulated
dataset and compared it with the standard kNN and majority voting methods. Kuncheva [15] specified an
intuitionistic fuzzy version of the kNN rule called IF-kNN and incorporated the voting rule with assigned
weights based on the membership and non-membership to a certain category of class. Based on the threshold
value, the vote is categorized as positive or negative. Yang et al. [16] developed an enhanced version of the kNN
algorithm with a fuzzy editing rule and incorporated a few asymptotic properties into kNN. The experimental
results conducted on various datasets conformed that this approach outperforms the standard kNN algorithm.
Huang et al. [17] developed a modified version of kNN called DCT-kNN which is based on feature weighting
and class distribution. The experiments on UCI datasets had shown a considerable classification accuracy
improvement.

Liu et al. [18] introduced the kNN method for Multi-class classification problems and demonstrated its
performance in the classification of Multiclass datasets. Liu and Zhang [19] designed the variant of the kNN
algorithm termed as mutual nearest neighbors (MkNN) to remove the noisy data and improved the data
classification accuracy. Zhang [20] incorporated the certainty factor measure to the kNN algorithm to apply it
over the imbalanced class distribution dataset and the variant is called kNN-CF. The authors also demonstrated



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 131

that kNN-CF algorithm accuracy is better than the standard kNN algorithm. Shichao et al. [21] proposed
a novel method called self-reconstruction to determine the k-value of the kNN algorithm for each training
sample and applied on real datasets for data classification. The experimental results show that this method
outperformed the standard data classification methods in terms of classification accuracy.

In recent years, the map-reduce based distributed and parallel machine learning algorithms are the focus
of the research community. The MapReduce framework has emerged as a powerful, robust, and distributed
parallel programming model [22, 23, 24, 25] provides a solution with good performance and efficient execution
to large-scale data analytic applications including data mining, web page access ranking, graph analysis, image
classification and bioinformatics [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Kolb et al.
[45] investigated the use of the MapReduce programming model for parallel entity resolution with automated
data partitioning on real-world datasets.

The application of the kNN algorithm and its variants in the context of big data for classification and
regression has been already considered. Triguero et al. [46] suggested a method for handling big data in kNN
classification. They proposed a novel partitioning method based on the Map-Reduce framework and distributed
the functioning of algorithms to multiple nodes in the cluster environment without any loss of classification
accuracy. The performance of this method was tested with 5.7 million instances on Poker hand dataset, obtained
an accuracy of 0.5171 for k=3 and the results show that kNN is a suitable algorithm to handle big data.

Ding et al. [47] proposed a clustering-based approach for processing large high-dimensional datasets. The
authors added the Principal Component Analysis for dimensionality reduction in addition to the kNN classifi-
cation algorithm in the processing of large datasets. Deng et al. [48] introduced the kNN algorithm in big data
applications for classifications. The authors applied the k-means clustering algorithm on a large size dataset,
as a result, it is split into several subsets. Finally, they applied the kNN method, its variants RC-kNN and
LC-kNN, classified the samples in each subset of the dataset with an accuracy of 72.21%, 83.89% and 86.35%
on MNIST dataset. In [49] the authors propose a new distributed and parallel kNN join operation on large real
and synthetic datasets in the Map-Reduce platform. They demonstrated the scalability and efficiency of the
method with hundreds of millions of records. In [50], the authors developed a cost-effective MapReduce-based
k-Nearest Neighbor (MR-kNN) algorithm for Big Data classification and tested for different k-values against
the Pokerhand dataset. The classification accuracy was about 0.5386 for k=7. In [51], an iterative Hadoop
MapReduce method called iHMR-kNN was developed for kNN based classification and analysis of the image
dataset. Singh, A.P. et al [52] employed kNN in deep learning architectures for image classification which
shows a higher classification accuracy. In [53], a label driven latent subspace learning for multi-view image
classification model was developed which produces an improved classification result.

3. Distance Weighted k-Nearest Neighbor (DWkNN) Algorithm. k-Nearest Neighbor algorithm
is a lazy learner and nonparametric method which does not rely on building a model during the training phase,
and whose classification rule is based on a given similarity function between the training samples and the query
(testing) sample to be classified. Unlike the existing model-based classification algorithms (building a model
with a given training dataset and predicting any test samples with the built model), the kNN algorithm needs
to keep all the training examples in memory, to search for all the K nearest neighbors for a test sample.

Let TR = x1, · · · , xn be the training dataset with n instances and m attributes. All the instances are class
labeled data points (xi, cj), j = 1, · · · , nc the corresponding class labels of the instances. Here n > nc. In the
k-NN algorithm, the learned target function may be either categorical (discrete-valued) or continuous-valued
(real-valued) function. Given a query instance , from the collections of query instances dataset TQ, its unknown
class c

′

is determined as follows.
Step 1: Compute the Euclidean distance between the query instances to all instances in TR. Let the instance

xi in TR is described as a feature vector (a1(xi), a2(xi), · · · , am(xi)) where az(xi) denotes the zth

attribute value of instance xi.
Let d(xi, xq) is the Euclidean distance between the query instance xq and the instance xi in the dataset
TR and is computed as per equation (3.1)

d(xi, xq) =

√

√

√

√

m
∑

z=1

(az(xi)− az(xq))2 (3.1)



132 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Step 2: Sort the instances in the dataset TR in ascending order of their Euclidean distances as given in
equation (3.2), n is the total data points.

sort(TR < (d(xi, xq) >)), 1 ≤ i ≤ n (3.2)

Step 3(a): For discrete-valued learning target function:
The general form of a discrete-valued learning function is f(x) = TRm → V , where V is the finite set
v1, · · · , vs, here s is the number of classes.
Let x1, · · · , xk denote the k instances from TR that are nearest to the query instance xq.
Return the class label for the query instance xq as given in equation (3.3).

f
′

(xq)←

k
∑

i=1

δ(υ, f(xq)) (3.3)

where δ(x, y) = 1 if x = y and where (x, y) = 0 otherwise.
Step 3(b): For real-valued target function:

The general form of the function is f : TRm− > TR
The target attribute value for the query instance xqis computed as given in equation (3.4)

f
′

(xq)←

∑k

i=1 f(xi)

k
(3.4)

The above steps illustrate the standard kNN algorithm and this can be enhanced with the inclusion of
weight function as given in equation (5),

Step 4(a): Select the k-nearest neighbors from the dataset TR Let TR
′

= x1, · · · , xk be the k nearest instances.
Assign a weight wi to ith nearest neighbor of the query xq using the distance-weighted function as given
in equation (3.5)

wi =







d(xq,xk)−d(xq,x1)
d(xq,xk)−d(xq,x1)

, ifd(xq, xk) ̸= d(xq, x1)

1 ifd(xq, xk) ̸= d(xq, x1)







(3.5)

Based on the majority voting, assign the class label cj to the query instance xq of discrete-valued
function as given in equation

f
′

(xq)← argmaxυϵV

k
∑

i=1

Wi(υ, f(xq)) (3.6)

Step 4(b): For real-valued target functions, the target attribute value for the query instance xq is computed
as given in equation

f
′

(xq) =

∑k

i=1 wif(xi)
∑k

i=1 wi

(3.7)

4. Hadoop Implementation of our proposed algorithm.

4.1. Hadoop Distributed Framework. Hadoop is an Apache project, initially introduced in 2007 as
a free and open-source framework with two major components Hadoop Distributed File System (HDFS) and
MapReduce (MR) programming model. It becomes very popular in recent years because of its simplicity, built-
in fault tolerance, scalability on data-intensive tasks, parallel execution of tasks, and capable of running on
a Hadoop cluster with 1000s of commodity hardware machines. Hadoop framework itself takes care of job
scheduling, job execution, controlling of all underlying tasks in the cluster, and other runtime management
tasks.



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 133

MapReduce is a software framework that enables the application developers to explore all the options
of parallel procedures with Map and Reduce functions. The MapReduce programming model supports the
developers to write and execute the applications upon a cluster consists of a few hundred to several thousand
commodity hardware machines. The three major classes of the MapReduce program are Master/Driver, Mapper,
and Reducer. The Master class is responsible for setting various execution parameters to the MapReduce job
to run in the Hadoop cluster. The parameters are names of Mapper and Reducer classes, data types, and job
names to be executed. The MapReduce framework operates on (key, value) pairs. Each Map task process an
input split (block) generating intermediate data of (key, value) format. Then, they are sorted and partitioned
by key, so later at the Reduce phase, pairs of the same key will be aggregated to the same reducer for further
processing [54, 55].

5. MapReduce Architecture of proposed Distance Weighted kNN Algorithm. The main pur-
pose of the supervised machine learning technique is to facilitate an algorithm to learn from the previous
historical data/events and extracts the knowledge from the events. The extracted knowledge is represented
as an intelligent mathematical model that can be used to make predictions or classifications on the given new
scenario/future events. In most general terms, the machine learning model consists of two phases, the training
phase, and the testing phase. Fig. 5.1 depicts the Map-Reduce architecture of the proposed Distance weighted
kNN algorithm and its implementation.

Algorithm 1 provides the details of the Map function operation of Distance weighted kNN. The input train-
ing dataset TR with m samples and n features is split into s partitions/blocks as p1, p2, · · · , ps in the distributed
file system of the Hadoop cluster. Each partition takes one block storage size of HDFS (64MB/128MB/256MB)
as set initially in the Hadoop file system. Each partition contains m/s samples, distributed uniformly with a
default replication factor of 3. The dataset TQ contains the query instances and since the K-Nearest Neighbor
is a lazy learner, the pattern matching process initiated only on the submission of query instance xq to the
system. For each block of the input file, a separate map task is created and each map task computes the
Euclidean distance between the query instance xq and all the instances in the block. The Euclidean distance
that is computed for all the blocks is converted into <key, value> pair as <instance_id, (Euclidean distance,
attributes)> and these are stored in HDFS as intermediate results.

The reducer part of the MapReduce program collects the intermediate results generated by all the map
tasks and sorts the instances on Euclidean distance from smallest to largest. After sorting instances, k-nearest
samples are selected and weights are assigned to the samples based on Euclidean distance using the distance
weighted function as in equation (3.5). Finally, the reducer finds the class label for the query instance xq if the
target attribute is a discrete-valued function as given in equation (3.6) and computes the target attribute value
for the real-valued target function as given in equation (3.7). The detailed operation of the Reduce function is
given in algorithm 2. The Map-reduce architecture of standard k-NN is the same as Fig 5.1 with the exclusion
of distance weighted function as given in equation (3.5) and is called an MR-SDkNN algorithm.

---------------------------------------------------------------------

Algorithm 1 Map function of Distance Weighted kNN

---------------------------------------------------------------------

Procedure DWkNN-MAP (TR, TQ, k))

Input: TR-> Training dataset with n instances and m attributes

TQ-> Dataset with query instances

k-> number of neighbors

key-> instance_id,

value -> <Euclidean instance, instance features>

Output: Class label/target attribute value for the query instance x_q and performance

metrics of the proposed methodology.

for a given query instance x_q in TQ

for t=1 to size(TR) do

ED(x_q,x_i )<-compute Euclidean distance (TR(x_i ),x_q )

result<-(<key:instance_id(t) ;value:(ED(x_q,x_i ),instance)>



134 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Fig. 5.1: Proposed Distance Weighted kNN Algorithm (MR-DWkNN)



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 135

context.write(t,ED(x_q,x_i ))

end for

end procedure

---------------------------------------------------------------------

---------------------------------------------------------------------

Algorithm 2 Reduce function of Distance Weighted kNN

---------------------------------------------------------------------

Procedure DWkNN-REDUCE (key, value)

Key: instance_id

Value: Euclidean distance, Attributes

For all k-nearest instances of TR do the following

Compute w_i as given in equation (5)

Assign the distance-weighted value to all k-instances

If the target function is discrete-valued then

Find the class-label of x_q using equation (6)

Compute the performance metric classification Accuracy

Context.write(x_q, <class label, accuracy>)

else

Find the target attribute value of x_q using equation (7)

Compute the performance metrics RMSE and Determination coefficient (R2)

Context.write(x_q, (class label, RMSE, Determination coefficient (R2)))

endif

end for

6. Experimental Setup. This section describes the Multi-node Hadoop cluster configured for this re-
search work (Sec 5.1), specifications of the datasets chosen (Sec 5.2), and the various performance metrics
employed to measure the classification and regression task performances. (Sec 5.3).

6.1. Hadoop cluster environment. The various experiments designed for this proposed research work
are executed on a Multi-node Hadoop cluster established with 25 physical machines. One machine is designated
as a master node (Name node) and configured to run Hadoop services and the remaining machines are configured
as the worker nodes (data node). The configuration of all the physical machines is Core i5 four-core Processor,
2.1GHz clock speed, 16 GB RAM, 6MB Cache, 1 TB HDD with 1 Gbps network card.

The specific details of the software used in the cluster and Hadoop environment configuration parameters
are the following:

Hadoop framework version 2.9.0
Operating system: Ubuntu Linux
18.04.03 LTS 64-bit
Replication factor: 3
HDFS size: 64 MB/128MB
Virtual memory for the map and reduce task: 8 GB

The total cores in the cluster are 50, enabling the hardware level hyper-threading features, the cores in the
cluster become 100.

6.2. Datasets. In this research work, we will use six benchmark large-size datasets from the UCI machine
learning repository. Among the six datasets, three datasets with real-valued target attributes used for the
regression task (Table 6.1), and the remaining three datasets with discrete-valued target attributes are used for
the classification task (Table 6.2). We tabulate the number of attributes (attributes), Data type of attributes
(Data types), number of instances (instances), file size (File size), and the year of publication (year). In our
experimental work, all the datasets are partitioned into training and test dataset using an nth fold cross-
validation technique.



136 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Table 6.1: Summary description of the datasets with discrete-valued target attributes

S.No Dataset #Attributes #DataTypes # instances #File size #year

1
Super

conductivity
Data

81 Multivariate 21,263 26.8MB 2018

2

Year Prediction
MSD (Subset
of Million song

Dataset)

90 Multivariate 515,345 433MB 2011

3
Wave Energy
Converters

49 Multivariate 288,000 123MB 2019

Table 6.2: Summary description of the datasets with discrete-valued target attributes

S.No Dataset #Attributes #DataTypes # instances #File size #classes #year
1 Higgs 28 Multivariate 11,000,000 7.4GB 2 2014
2 Susy 18 Multivariate 5,000,000 2.22GB 2 2014
3 Pokerhand 11 Multivariate 1,025,000 23.4 MB 10 2007

6.3. Performance measures. In our research work, the performance of the proposed MR-DWkNN algo-
rithm is assessed with the following four metrics.

Root Mean Square Error (RMSE): The error value of the regression model is measured in terms of RMSE.
This metric shows the square root of the quadratic mean of the differences between the predicted and expected
values of the target attribute. RMSE is computed as given in equation (6.1)

RootMeanSquareError(RMSE) =
1

N

N
∑

i=1

(xi − yi)
2 (6.1)

Determination coefficient (R2): This metric analyzes how the differences in one variable (x) can be explained
by a difference in another variable (y). This measure evaluates how a model approximates the real data points.
The higher R2, the more efficient is the prediction model and its value usually between 0 and 1 is computed
using equation (6.2).

Determinationcoefficient(R2) = 1−

∑N

i=1(xi − yi)2
∑N

i=1(xi − x)2
(6.2)

Accuracy: The performance of classification model is measured using the metric accuracy. It is defined as
the ratio of the number of correctly predicted samples to the total number of input samples in the dataset as
given in equation (6.3).

Accuracy =
Numberofcorrectlypredictedsamples

TotalNumberofinputsamples
(6.3)

These are three commonly used performances metric for measuring the performance of the standard predic-
tors/classifiers

Scalability: This defines the capability of an algorithm in a parallel computing cluster environment to
enhance both in terms of the number of processing cores/nodes in the cluster and the number of instances
in the dataset. It can also be defined as the capability of an s-times larger computing system in the cluster
environment to execute an s-times larger computational task in the same given job execution time as the original
system and this can be expressed as in equation (6.4).

Scalability(s, TD) =
JET (1, TD)

JET (s, sTD)
(6.4)



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 137

Table 7.1: Performance metrics of a Classification task

Dataset
No.
of

Instances

No.
of

Blocks
/Map
Tasks

k=3 k=5
MR-

SDkNN
MR-

DWkNN
MR-

SDkNN
MR-

DWkNN
Higgs 1,100,000 12/12 0.67382 0.69782 0.68688 0.71065
Susy 1,000,000 8/8 0.76361 0.79416 0.78754 0.80965

Pokerhand 1,025,000 1/1 0.54784 0.55329 0.55064 0.56548

where ‘s’ is the number of cores/nodes in the cluster environment, JET(1, TD) is the job execution time on one
core/node with data size of TD, JET(s, sTD) is the job execution time of the parallel tasks with ‘s’ cores/nodes
in the cluster environment with data size s times of TD. Ideal parallelism shows a constant scale up with an
increasing number of computing cores in the cluster and dataset size [56-57]

Speedup: Speedup is also one of the measures employed in evaluating the performance of the parallel
algorithms and is used to enhance the job execution time in the cluster. It is defined as the ratio of the time
of sequential execution to the time of parallel execution. Speedup can be expressed as in equation (6.5).

Speedup(s, TD) =
JET (1)

JET (s)
(6.5)

where ‘s’ is the number of cores in the cluster environment, JET(1) is the job execution time on one core with
data size of TD, JET(s) is the job execution time of the parallel tasks with ‘s’ cores in the cluster environment
with the same data size TD.

7. Conduct of experiments and discussion of results. In this section, we evaluate the proposed
supervised MR-DWkNN algorithm on six public datasets in the UCI Machine Learning repository. Here we
described the four experiments conducted and compare the results collected from these experiments with the
MR-SDkNN algorithm.

1. In the first two experiments, the MR-DWkNN method was executed against the three datasets under
the regression category and another three datasets under the classification category. The performance
metrics are compared with the standard MR-SDkNN method as given in section 5.1 and 5.2 respectively.

2. Third, the scalability performance of the MR-DWkNN model on regression and classification datasets
are analyzed, reported in section 5.3

3. Finally, the performance of our proposed method for different k-values was tested and the performance
metrics are described in section 5.4.

7.1. Performance of MR-DWkNN model with MR-SDkNN model. In this experiment, the HDFS
block size is set as 64MB, and 10% instances from the Higgs dataset, 20% from Susy dataset, and the entire
Pokerhand dataset are chosen. Initially, we run the parallel version of the standard kNN algorithm MR-
SDkNN over all the six datasets which is used for comparison with its variants. To do this, 20% of the instances
are chosen randomly from each dataset as query instances (TQ) and the remaining 80% of the instances
are considered as Training instances (TR). The performance metrics root mean square error (RMSE) and
Determination coefficient (R2) are recorded for the regression task and accuracy is recorded for the classification
task.

Afterward, we executed the MR-DWkNN algorithm over all the three datasets under the classification
category. In this, the entire input dataset file is split into HDFS block size of equal-sized files and contains an
equal number of samples. The samples in each file have been distributed evenly and studied the performance
of the proposed MR-DWkNN algorithm. Initially, the Map-Reduce model is trained with 80% of the training
samples. Table 7.1 shows the classification accuracy of MR-SDkNN and MR-DWkNN on three benchmark
datasets for two different k-values. Similarly, the regression performance of MR-SDkNN and MR-DWkNN is
tabulated in Table 7.2. From the above two tables, we can conclude that,

1. In the case of the classification task, the proposed MR-DWkNN algorithm produces an increase of
classification accuracy in the range of 1.5% to 3.5% for all three datasets as compared with the standard
MR-SDkNN.



138 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Table 7.2: Performance metrics of a Regression task

Dataset
No.
of

Blocks
/Map
Tasks

MR-
SDkNN
(k=3)

MR-
DWkNN
(k=3)

MR-
SDkNN
(k=5)

MR-
DWkNN
(k=5)

RMSE
Det.Coe
(R2)

RMSE
Det.Coe
(R2)

RMSE
Det.Coe
(R2)

RMSE
Det.Coe
(R2)

Super
conductivity

Data
1/1 63.65784 0.89327 52.63257 0.90676 55.75436 0.89878 52.63257 0.91564

Year
Prediction

MSD
7/7 364.73621 0.86213 325.63850 0.88126 343.65785 0.86899 307.64545 0.89675

Wave
Energy

Converters
2/2 245.71917 0.90234 232.67719 0.91452 241.43650 0.90768 212.65432 0.92456

Table 7.3: Scalability performance of MR-SDkNN and MR-DWkNN

Dataset #instances
#cores
used

#Map
Tasks

Scalability
MR-

SDkNN
MR-

DWkNN

Higgs

1,100,000 12 12 1.00000 1.00000
2,200,000 24 24 0.98650 0.97964
4,400,000 48 48 0.93256 0.92546
8,800,000 96 96 0.89756 0.87659

Poker Hand

1,025,000 1 1 1.00000 1.00000
2,050,000 2 2 0.98082 0.96702
4,100,000 4 4 0.97125 0.94576
8,200,000 8 8 0.94366 0.91342
16,400,000 16 16 0.92453 0.87905
32,800,000 32 32 0.89786 0.84704

Year Prediction
MSD

515,345 7 7 1.00000 1.00000
1,030,690 14 14 0.97908 0.95409
2,061,380 28 28 0.96880 0.94378
4,122,760 56 56 0.94788 0.91876

Wave Energy
Converters

288,000 1 1 1.00000 1.00000
576,000 2 2 0.98761 0.97699
1,152,000 4 4 0.96034 0.95578
2,304,000 8 8 0.95979 0.93456
4,608,000 16 16 0.93435 0.90671
9,216,000 32 32 0.87692 0.85674

2. In the case of regression task, the MR-DWkNN algorithm produces an increase of Determination
coefficient (R2) in the range of 1.5% to 3.2%, and consequently, there is a fall of RMSE in the range of
1.5% to 2.5% for all three datasets as compared with the standard MR-SDkNN.

7.2. Scalability, dataset split and distribution. To demonstrate how well both the MR-SDkNN and
MR-DWkNN scales up, two datasets under each category were chosen. The scalability experiments were
performed where the instances of the dataset/size of the dataset were increased in proportion to the number of
cores. Table 7.3 summarizes the datasets used for the scalability experiment, number of instances, computing
processor cores, the number of map tasks, and the scalability results obtained for both MR-SDkNN and MR-
DWkNN algorithms. From the Table 7.3, it is observed that the scalability of both MR-SDkNN and MR-
DWkNN decreases slowly when the size of the dataset increases, and the number of processor cores used for
the computation increases.

Fig 7.1 shows the performance results of our proposed model on Higgs datasets. The experiment was
conducted with a size of 1.1 million, 2.2 million, 4.4 million, and million 8.8 million instances on 12, 24, 48, and



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 139

Fig. 7.1: Scalability of MR-SDkNN and MR-DWkNN [Higgs Dataset]

Fig. 7.2: Scalability of MR-SDkNN and MR-DWkNN [Poker Hand Dataset]

96 cores respectively. Since the initial size of the dataset with 1.1 million instances is 740 MB, it occupies about
12 HDFS blocks, hence 12 cores have been chosen initially for its execution. Afterward, the size of the cluster
has been doubled. It is observed that the scalability of both MR-SDkNN and MR-DWkNN decreases slowly
when the size of the dataset increases and it maintains a value of scale-up higher than 89.76% for MR-SDkNN
and 87.65% for MR-DWkNN.

The scalability performance of MR-SDkNN and MR-DWkNN algorithms on the Poker Hand dataset is
shown in Fig. 7.2. The initial size of the dataset is 23.4 MB with 1.025 million instances occupies one HDFS
block of size 64MB. Initially, one core in the cluster is used to execute the proposed model, and subsequently,
the experiment was conducted with a dataset size of 2.05 million, 4.1 million, 8.2 million, 16.4 million, and
million 32.8 million instances on 2, 4, 8,16, and 32 cores respectively. From this experiment, it is observed that
the scalability of both MR-SDkNN and MR-DWkNN decreases slowly when the size of the dataset increases,
and it maintains a value of scale-up higher than 89.76% and 84.7% respectively.

Fig. 7.3 shows the scalability performance results of MR-SDkNN and MR-DWkNN models on year predic-
tion MSD datasets. Initially, the experiment was conducted with 0.515 million instances and the dataset size
is 433MB. The dataset is split into 7 HDFS blocks and for each block, one map task is created. Hence, a total



140 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Fig. 7.3: Scalability of MR-SDkNN and MR-DWkNN [Year Prediction MSDDataset]

Fig. 7.4: Scalability of MR-SDkNN and MR-DWkNN [Wave Energy Converters Dataset]

of 7 map tasks are created and a cluster of size 7 cores are used for its execution. Afterward, the size of the
dataset and the number of cores in the cluster has been increased proportionately. The results show that both
MR-SDkNN and MR-DWkNN scale up to higher than 94.78% and 91.87% respectively.

Fig. 7.4 shows the scalability performances of our proposed MapReduce-based kNN versions on the Wave
energy converters dataset. The initial size of the dataset is 123 MB with 0.288 million instances occupies one
HDFS block of size 128 MB. For this experiment, the HDFS block size is configured as 128 MB. Initially, one
core in the cluster is used to execute the proposed model, and subsequently, the experiment was conducted with
a dataset size of 0.576 million, 1.152 million, 2.304 million, 4.608 million, and 9.216 million instances on 2, 4, 8,
16 and 32 cores respectively. From this experiment, it is observed that the scalability of both MR-SDkNN and
MR-DWkNN decreases gradually when the size of the dataset and number of cores for its execution increases,
and it maintains a value of scale-up higher than 87.69% and 85.67% respectively. From these experiments, we
can conclude that,



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 141

Table 7.4: Speedup performance of MR-SDkNN and MR-DWkNN

Dataset #instances
#cores

used
#Dataset

Splits

Speedup
(x times)

MR-
SDkNN

MR-
DWkNN

Higgs 1,100,000

5 5 3.66 3.56
10 10 7.22 6.92
15 15 10.55 10.31
20 20 13.64 13.42

Poker Hand 2,050,000

1 1 1.00 1.00
2 2 1.56 1.50
4 4 3.01 2.97
8 8 5.86 5.54
16 16 10.91 10.59
32 32 21.70 20.54

Year Prediction
MSD

515,345

5 5 3.66 3.56
10 10 7.12 6.62
15 15 10.35 9.86
20 20 13.24 12.82

Wave Energy
Converters

576,000

1 1 1.00 1.00
2 2 1.56 1.48
4 4 2.97 2.89
8 8 5.78 5.38
16 16 10.59 10.11
32 32 20.22 19.58

• Hadoop clusters can handle large volumes of datasets and provide as many processor cores as required
for the execution of our proposed algorithm.
• Both MR-SDkNN and MR-DWkNN able to scale up when the size of the dataset and computing

processor cores increases.

7.3. Speedup. To measure the speedup performance of both the MR-SDkNN and MR-DWkNN algo-
rithms, two datasets under each category were chosen. The speedup experiments were performed where the
number of dataset splits was increased in proportion to the number of computing cores in the cluster with
a fixed size of the dataset. Table 7.4 summarizes the datasets used for the speedup experiments, number of
instances, computing processor cores, the number of map tasks, and the speedup (x times) results obtained
for both MR-SDkNN and MR-DWkNN algorithms. It is observed that the speedup of both MR-SDkNN and
MR-DWkNN increases in proportion to the number of computing processor cores enabled in the cluster. From
these experiments, we can conclude that,

• Both MR-SDkNN and MR-DWkNN able to speedup when the computing processor cores increases for
a fixed size dataset
• The execution efficiency of the proposed algorithms in the cluster improves proportionally with the size

of the cluster

7.4. Influence of neighborhood size k on performance metrics and comparison. To investigate
the influence of neighborhood size k on performance metrics, we have chosen all the six datasets under two
different categories. The performance of the proposed distributed algorithms is measured in a cluster with an
HDFS block size of 64MB and the interval of neighborhood size k ranges from 3 to 31. Table 7.5 shows the
influences of neighborhood size k on the classification accuracies on three benchmark classification datasets. It
is observed that the classification performance of the MR-DWkNN classifier is better than the MR-SDkNN
classifier with increasing neighborhood size k. However, after a certain value of k, the classification accuracy
starts decreasing on all three datasets. The best classification accuracy of each classifier on the benchmark
data sets is shown in bold-faces against the corresponding k-value. The values in the parenthesis represent the
corresponding dataset. Table 7.6 shows the influences of neighborhood size k on the regression task and its
performance metric determination coefficient (R2). The Determination coefficient (R2) shows that how close



142 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Table 7.5: Influence of neighborhood size k on the classification task

K-Value
Accuracy
(Higgs)

Accuracy
(Susy)

Accuracy
(Poker Hand)

MR-
SDkNN

MR-
DWkNN

MR-
SDkNN

MR-
DWkNN

MR-
SDkNN

MR-
DWkNN

3 0.67382 0.69782 0.76361 0.79416 0.54784 0.55329
7 0.68688 0.71065 0.78754 0.80965 0.55064 0.56548
11 0.70214 0.74654 0.82435 0.83324 0.56462 0.57900
15 0.71124 0.76428 0.85864 0.87987 0.57886 0.59809
19 0.70892 0.76002 0.87425 0.90231 0.57031 0.58971
23 0.69745 0.75462 0.86548 0.89489 0.56112 0.57602
27 0.69126 0.74532 0.84387 0.87002 0.54387 0.56043
31 0.68542 0.73457 0.80563 0.85743 0.52301 0.54387

Table 7.6: Influence of neighborhood size k on the regression task

K-Value

Determination
Coefficient -R2

(Superconductivity
Data)

Determination
Coefficient -R2

(Year Prediction
MSD)

Determination
Coefficient -R2
(Wave Energy

Converters)
MR-

SDkNN
MR-

DWkNN
MR-

SDkNN
MR-

DWkNN
MR-

SDkNN
MR-

DWkNN
3 0.89327 0.90676 0.86213 0.88126 0.90234 0.91452
7 0.89878 0.91564 0.86899 0.89675 0.90768 0.92456
11 0.91004 0.92764 0.88034 0.91502 0.91241 0.92650
15 0.91678 0.93013 0.89764 0.93013 0.92134 0.93613
19 0.90452 0.92648 0.91245 0.94065 0.92876 0.94261
23 0.88099 0.91438 0.90657 0.92344 0.91834 0.93744
27 0.87239 0.89723 0.89542 0.90723 0.90878 0.92372
31 0.86573 0.87564 0.87421 0.89756 0.89743 0.91076

the data instances fit with the regression line and also it measures the strength of the relationship between the
distributed machine learning model constructed in the training and the response variable. The three benchmark
datasets Superconductivity, Year prediction MSD, and Wave Energy converters dataset under the regression
category are chosen. From the results, it is observed that the prediction performance of the MR-DWkNN
method is better than the MR-SDkNN method with increasing neighborhood size k. However, after a certain
value of k, the R2 value starts decreasing on all three datasets. The best R2 value of each classifier on the
benchmark data sets is shown in bold-faces against the corresponding k-value. The values in the parenthesis
represent the corresponding dataset.

Table 7.7 shows the classification accuracy of our proposed methods and compared with MR-kNN ((Maillo
et al.) and MRPR – FCNN ((Triguero et al.)) methods. It is concluded that our model MR-DWkNN classifies
instances with good accuracy rate for k = 1, 3, 5 and 7 as compared other models on Poker hand dataset.

8. Conclusions and further work. In this research work, we have developed a MapReduce based on
two different versions of the kNN algorithm called MR-SDkNN based on standard k-NN algorithm and MR-
DWkNN based on distance weighted k-NN algorithm. The distributed learning model is constructed with 80%
of training instances and the remaining 20% instances are used as test (query) instances. Various experiments
are carried out on recently published six benchmark large volume datasets from the UCI repository. The
predictive and classification performance of MR-DWkNN is evaluated in terms of three metrics as Root Mean
Squared Error (RMSE), Determination Coefficient (R2), and Accuracy. In addition to these, the scalability
performance of the proposed algorithm was also tested on Hadoop Multi-node cluster. The results obtained
from these experiments have shown that the main accomplishments of MR-DWkNN are the following:

1. There is an increase in performance such as classification accuracy and determination coefficient (R2)
of the proposed MR-DWkNN as compared to the MR-SDkNN



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 143

Table 7.7: Comparison of classification accuracy

k-Value
Accuracy (Poker Hand)

MR-
SDkNN

MR-
DWkNN

MR-
kNN

(Maillo et al.)

MRPR –
FCNN

(Triguero et al.)
1 0.52318 0.53786 0.5019 0.5013
3 0.54784 0.55329 0.4959 0.5171
5 0.55098 0.55971 0.5280 -
7 0.55064 0.56548 0.5386 -

2. MR-DWkNN is a scalable approach in a multi-node cluster environment and a proven parallel approach
with promising performance metrics achievement in Big Data applications.

The future work considered is the improvement of runtime execution of Map and Reduce tasks through the use
of other big data handling frameworks such as Spark and Flink. In addition, the kNN may be integrated with
various deep learning architectures for image analytics of multi-class classification.

REFERENCES

[1] T. Cover, P. Hart nearest neighbor pattern classification, IEEE Trans. Inf. Theory 13(1) (1967) 21–27.
[2] A. Mucherino, P.J. Papajorgji, P.M. Pardalos, K-nearest neighbor classification, Data Mining in Agriculture, Springer, 2009,

pp.83–106.
[3] B. Yang, M. Xiang, Y. Zhang, Multi-manifold discriminant ISO map for visualization and classification, Pattern Recognit.

55 (2016) 215–230.
[4] J. Zou, W. Li, Q. Du, Sparse representation-based nearest neighbor classifiers for hyperspectral imagery, IEEE Geosci. Remote

Sens. Lett. 12 (12) (2015) 2418–2422.
[5] W. Yang, C. Sun, L. Zhang, A multi-manifold discriminant analysis method for image feature extraction, Pattern Recognit.

44 (8) (2011) 1649–1657.
[6] J. Maillo, I. Triguero, F. Herrera, A MapReduce-based k-nearest neighbor approach for big data classification, IEEE Trust-

Com/BigDataSE/ISPA, Helsinki, Finland, Volume 2, 2015, pp. 167–172.
[7] D. Adeniyi, Z. Wei, Y. Yongquan, Automated web usage data mining, and recommendation system using k-nearest neighbor

(KNN) classification method, Appl. Comput. Inform. 12 (1) (2016) 90–108.
[8] Bijalwan, V., Kumar, V., Kumari, P. & Pascual, J. (2014). KNN based machine learning approach for text and document

mining. International Journal of Database Theory and Application, 7(1): 61-70.
[9] Zhang, W., Yoshida, T. & Tang, X.J. (2008). Text classification is based on multi-word with support vector machine.

Knowledge-Based Systems, 21(8): 879-886.
[10] Zhang, W., Yoshida, T. & Tang, X.J. (2011). A comparative study of TF* IDF, LSI, and multi-words for text classification.

Expert Systems with Applications, 38(3): 2758-2765.
[11] Chen, J.D. & Tang, X.J. (2017). The distributed representation for societal risk classification toward BBS posts. Journal of

Systems Science & Complexity. DOI: 10.1007/s11424-016-5099-z.
[12] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. & Kuksa, P. (2011). Natural language processing (almost)

from scratch. Journal of Machine Learning Research, 12:2461-2505.
[13] M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybern. 4 (1985) 580–585.
[14] T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Syst. Man Cybern. 25(5)

(1995) 804–813.
[15] L.I. Kucnehva, An intuitionistic fuzzy k-nearest neighbors rule, Notes IFS 1 (1995) 56–60.
[16] M.-S. Yang, C.-H. Chen, on the edited fuzzy k-nearest neighbor rule, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 28(3)

(1998) 461–466.
[17] J. Huang, Y. Wei, J. Yi, and M. Liu, ”An Improved kNN Based on Class Contribution and Feature Weighting,” 2018

10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, 2018, pp.
313-316, DOI: 10.1109/ICMTMA.2018.00083.

[18] H. Liu, X. Li, S. Zhang, Learning instance correlation functions for multi-label classification, IEEE Trans. Cybern. 47 (2)
(2016) 499–510.

[19] H. Liu, S. Zhang, Noisy data elimination using mutual k-nearest neighbor for classification mining, J. Syst. Softw. 85 (2012)
(2012) 1067–1074.

[20] S. Zhang, KNN-CF approach: incorporating certainty factor to KNN classification, IEEE Intell. Inf. Bull. 11 (1) (2010) 24–33.
[21] Shichao Zhang, Debo Cheng, Ming Zong, Lianli Gao, Self-representation nearest neighbor search for classification, Neuro-

computing, Volume 195, 2016, Pages 137-142, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2015.08.115.
[22] Hadoop. in: http://Hadoop.apache.org (Accessed on 13.01.16).
[23] Jimmy Lin, Alek Kolcz, Large-scale machine learning at Twitter, Proceedings of the 2012 ACM SIGMOD International



144 E. Gotha, V. Muthukumaran, K. Valarmathi, V.E. Sathishkumar, N. Thillaiarasu. P. Karthikeyan

Conference on Management of Data, Scottsdale, AZ, USA, 2012, pp. 793–804.
[24] Fan Zhang, Junwei Cao, Samee U. Khan, Keqin. Li, Kai Hwang, A task-level adaptive MapReduce framework for real-time

streaming data in healthcare applications, Future Gener. Comput. Syst. 43–44 (2015) 149–160.
[25] Panagiotis Moutafis, George Mavrommatis, Michael Vassilakopoulos, Spyros Sioutas, Efficient processing of all-k-nearest-

neighbor queries in the MapReduce programming framework,Data & Knowledge Engineering, Volume 121,2019,Pages
42-70,ISSN 0169-023X,https://doi.org/10. 1016/j.datak. 2019.04.003.

[26] Jianping Gou, Wenmo Qiu, Zhang Yi, Xiangjun Shen, Yongzhao Zhan, Weihua Ou, Locality constrained representation-
based K-nearest neighbor classification, Knowledge-Based Systems,Volume 167,2019,Pages 38-52,ISSN 0950-7051,
https://doi.org/10.1016 /j.knosys.2019.01.016.

[27] Niloofar Rastin, Mansoor Zolghadri Jahromi, Mohammad Taheri,A Generalized Weighted Distance k-Nearest Neighbor for
Multi-label Problems, Pattern Recognition,2020, 107526,ISSN 0031-3203,https://doi.org/10.1016/j.patcog.2020.107526.

[28] Ching-Hsue Cheng, Chia-Pang Chan, Yu-Jheng Sheu, A novel purity-based k nearest neighbors imputation method and
its application in financial distress prediction, Engineering Applications of Artificial Intelligence, Volume 81,2019,Pages
283-299, ISSN 0952-1976,https://doi.org/ 10.1016/j.engappai.2019.03.003.

[29] Sarah M. Ayyad, Ahmed I. Saleh, Labib M. Labib,Gene expression cancer classification using modified K-Nearest Neighbors
technique,Biosystems,Volume 176,2019,Pages 41-51, ISSN 0303-2647,https://doi.org/10.1016/j.biosystems.2018.12.009.

[30] Yanhui Guo, Siming Han, Ying Li, Cuifen Zhang, Yu Bai,K-Nearest Neighbor combined with guided filter for
hyperspectral image classification,Procedia Computer Science, Volume 129,2018,Pages 159-165,ISSN 1877-0509,
https://doi.org/10.1016/j.procs.2018.03.066.

[31] Aparicio-Ruiz, P., Barbadilla-Martín, E., Guadix, J. et al. KNN and adaptive comfort applied in decision making for HVAC
systems. Annals of Operations Research (2019). https://doi.org/ 10.1007 /s10479-019-03489-4

[32] Patel, D., Shah, Y., Thakkar, N. et al. Implementation of Artificial Intelligence Techniques for Cancer Detection. Augment
Hum Res 5, 6 (2020). https://doi.org/10.1007/s41133-019-0024-3

[33] Yadav, D.C., Pal, S. Thyroid prediction using ensemble data mining techniques. Int. j. inf. tecnol. (2019).
https://doi.org/10.1007/s41870-019-00395-7

[34] Owen O’Malley, Arun C. Murthy, Yahoo! Winning a 60 Second Dash with a Yellow Elephant.
http://sortbenchmark.org/Yahoo2009.pdf (April 2009) (Accessed on 22.02.16).

[35] Eric Anderson, Joseph Tucek, Efficiency matters!, ACM SIGPOS Oper. Syst. Rev. 44 (1) (2010) 40–45.
[36] F.N. Aftari, J.D. Ullman, Optimizing joins in a MapReduce environment, Proceedings of the 13th International Conference

on Extending DatabaseTechnology, EDBT, 2010, pp. 99–110.
[37] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M, Distributed GraphLab: a framework for

machine learning and data mining in the cloud. Proc. VLDB Endow. 5, 716–727 (2012).
[38] Cormack, G.V., Smucker, M.D., Clarke, C.L., Efficient and effective spam filtering and re-ranking for large web datasets. Inf.

Retr. 14, 441–465 (2011).
[39] Lin, J.: Brute force and indexed approaches to pairwise document similarity comparisons with MapReduce, Proceedings

of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.155–162
(2009).

[40] Zhao, W., Ma, H., He, Q.: Parallel k-means clustering based on MapReduce, Cloud Computing, pp. 674–679. Springer, Berlin
(2009).

[41] Baraglia, R., De Francisci Morales, G., Lucchese, C., Document similarity self-join with MapReduce. In: 2010 IEEE 10th
International Conference on Data Mining (ICDM), pp. 731–736 (2010).

[42] Caruana, G., Li, M., Liu, Y.: An ontology enhanced parallel SVM for scalable spam filter training. Neurocomputing 108,
45–57 (2013).

[43] Liao, R., Zhang, Y., Guan, J., Zhou, S.: CloudNMF: a MapReduce implementation of nonnegative matrix factorization for
large-scale biological datasets. Genomics Proteomics Bioinforma. 12, 48–51 (2014).

[44] Svendsen, M., Tirthapura, S.: Mining maximal cliques from a large graph using MapReduce: tackling highly uneven sub-
problem sizes. J. Parallel Distrib. Comput. 79, 104–114 (2012).

[45] Kolb, L., Thor, A. & Rahm, E. Multi-pass sorted neighborhood blocking with MapReduce. Comput Sci Res Dev 27, 45–63
(2012). https://doi.org/10.1007/s00450-011-0177-x.

[46] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera, MRPR: a mapreduce so- lution for prototype reduction in big data
classification, Neurocomputing 150, Part A (0) (2015) 331–345, doi: 10.1016/j.neucom.2014.04.078.

[47] S. Ding, M. Du, H. Jia, Study on density peaks clustering based on k-nearest neighbors and principal component analysis,
knowledge-based Systems. 99 (2016) 135–145, DOI: 10.1016/j.knosys.2016.02.00.

[48] Z. Deng, X. Zhu, D. Cheng, M. Zong, S. Zhang, Efficient KNN classification algorithm for big data, Neurocomputing 195
(2016) 143–148.

[49] C. Zhang, F. Li, J. Jestes, Efficient parallel KNN joins for large data in MapReduce, Proceedings of the 15th International
Conference on Extending Database Technology, EDBT ’12, ACM, New York, NY, USA, 2012, pp. 38–49, DOI: 10.
1145/2247596.2247602.

[50] J. Maillo, I. Triguero, F. Herrera, A MapReduce-based k-nearest neighbor approach for big data classification, 9th Interna-
tional Conference on Big Data Science and Engineering (IEEE BigDataSE-15), 2015, pp. 167–172.

[51] K. Sun, H. Kang, H.-H. Park, Tagging, and classifying facial images in cloud environments based on kNN using MapReduce,
Optik 126 (21) (2015) 3227–3233, DOI: 10.1016/j.ijleo.2015.07.080.

[52] Chug, A., Bhatia, A., Singh, A.P. et al. A novel framework for image-based plant disease detection using hybrid deep learning
approach. Soft Comput (2022). https://doi.org/10.1007/s00500-022-07177-7

[53] Liu, W., Yuan, J., Lyu, G. et al. Label driven latent subspace learning for multi-view multi-label classification. Appl Intell



Map-Reduce based Distance Weighted k-Nearest Neighbor Machine learning algorithm for Big Data Applications 145

(2022). https://doi.org/10.1007/s10489-022-03600-6
[54] Dobre, C., Xhafa, F. Parallel Programming Paradigms and Frameworks in Big Data Era. Int J Parallel Prog 42, 710–738

(2014). https://doi.org/10.1007/s10766-013-0272-7.
[55] Ahmad, A., Paul, A., Din, S. et al. Multilevel Data Processing Using Parallel Algorithms for Analyzing Big Data in High-

Performance Computing. Int J Parallel Prog 46, 508–527 (2018). https://doi.org/10.1007/s10766-017-0498-x.
[56] Jin Qian, Duoqian Miao, Zehua Zhang, Xiaodong Yue, “Parallel attribute reduction algorithms using MapReduce”, Journal

of Information sciences, Elsevier, Vol. 279, pp. 671–690,2014.
[57] Weaver, Jesse. ”A scalability metric for parallel computations on large, growing datasets (like the web).” In Proceedings of

the Joint Workshop on Scalable and High-Performance Semantic Web Systems. 2012.
[58] Gopi, R., Sathiyamoorthi, V., Selvakumar, S., Manikandan, R., Chatterjee, P., Jhanjhi, N. Z., & Luhach, A. K. (2021).

Enhanced method of ANN based model for detection of DDoS attacks on multimedia internet of things. Multimedia
Tools and Applications, 1-19.

[59] Sahu, S. K., Mohapatra, D. P., Rout, J. K., Sahoo, K. S., & Luhach, A. K. (2021). An Ensemble-Based Scalable Approach
for Intrusion Detection Using Big Data Framework. Big Data, 9(4), 303-321.

[60] Sai, K. B. K., Subbareddy, S. R., & Luhach, A. K. (2019). IOT based Air Quality Monitoring System Using MQ135 and
MQ7 with Machine Learning Analysis. Scalable Computing: Practice and Experience, 20(4), 599-606.

[61] Kumar, M. S., & Prabhu, J. (2021). Recent development in big data analytics: research perspective. Research Anthology on
Artificial Intelligence Applications in Security, 1640-1663.

Edited by: Vinoth Kumar
Received: Mar 11, 2022
Accepted: Jul 14, 2022


