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DESIGN AND DEVELOPMENT OF A LOW-COST SENSOR IOT COMPUTING DEVICE

FOR GREENHOUSE GAS MOMITOR FROM SELECTED INDUSTRY LOCATIONS

IBRAHIM HAMIDU ∗, BENJAMIN AFOTEY †, AND ZAKARIA AYATUL-LAHI‡

Abstract. The objective of the study is to develop low-cost IoT based sensor to monitor real-time greenhouse gases (GHG)
emissions data from selected industry locations (city blocks) in a top-down approach. Three (3) industry locations were selected
within the Suame Industrial complex (the largest single cluster of artisanal engineering and light manufacturing in Sub Saharan
Africa and even Africa) which has no reported GHG emissions data. A GHG monitor was developed using Atmega328 microcon-
troller and a sim800I GSM module was used to collect a 24-hour real-time minute-by-minute emissions data from the selected
industry locations. A MQ-4 (methane/natural gas sensor), MQ-135 (Nitrous Oxide sensors) and DHT22 (temperature and hu-
midity sensor) were used in the GHG monitor design. The GHG of concern were carbon dioxide, methane and nitrous oxide. A
total of 3627 emissions data were collected and analyzed from the three (3) industry locations. Location 3 had the highest average
carbon dioxide emissions of 508.11 ppm, followed by location 2 with 477.31 ppm with the least emissions in location 1 with 472.51
ppm which are above the global carbon dioxide average of 414.7 ppm. The average methane emission was highest in location
1 with 0.1599 ppm (1599 ppb), followed by location 3 with 0.1366 ppm (1366 ppb) with the least average methane emission of
0.1358 ppm (1358 ppb) in location 2 which are slightly below the global methane average of 1895.7 ppb. The MQ-135 nitrous
oxide sensor reported zero emissions data throughout the deployment at the various industry locations which indicated the nitrous
oxides emission in the selected sample site is negligible or below the detectable range of the sensor.
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1. Introduction. Greenhouse gases (GHG) are considered the main contributor to global warming and
climate change [1] but the inefficiencies in methods used in the GHGs estimation has created huge emissions
and sink data gaps.Numerous Sub Saharan African countries such as Ghana lack the capacity to effectively
conduct Air Quality monitoring and meeting the Air Quality standards [10].

An estimated 75% of people in developed countries live in cities as compared to 35 % of people in developing
countries [24]. There is a projected increase in urban (city) dwellers, with an estimated 66% of the total human
population living in cities by 2050 [11]. The movement of majority of the population into urban cities will lead
to significant increase in energy demand [11] and a drastic increase in air population within Sub-Saharan Africa
[25]. Greenhouse Gases which are air pollutants absorb and radiate heat back to the earth surface increasing
the atmospheric temperature [21].

Air pollution which result from the release of harmful solid, liquid or gaseous suspended particles has been
estimated to cause over 28,000 deaths in Ghana in 2018 [25]. Findings suggest that among the impact of climate
change in Ghana, there is a high temperature projection and low rainfall in the years 2020, 2050, and 2080 and
a projected desertification rate of 20,000 hectares per annum [4].

The main estimation approaches of GHG estimation are the bottom-up and top-down approaches.Top-
down approach involves direct ambient or atmospheric emissions concentration measurement whereas bottom-
up approach involves the direct emissions measurement from the individual emissions sources [2].The EPA
in Ghana, responsible for the monitoring and reporting of GHG emissions uses the IPCC 2006 guidelines
and software with National and international GHG inventory system [5]. The IPCC 2006 guidance is based on
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bottom-up models (activity and impact factor based) which requires several assumptions and yields uncertainties
in the results.

Low Cost Sensors (LCS) over time have experienced tremendous developments and application in green-
house gas accounting and reporting at lower levels (city blocks) [31]. However, the use of low cost sensor
in Ambient Air Quality monitoring is limited to Particulate matter only in Ghana evidenced in the Ghana
Urban Air Quality Project (GHAir) [10, 25]. The use of the low cost sensors in the GHAir project has also
faced limitations in reporting monitored data due to poor Wi-Fi connectivity and power supply in deployed
areas [25].

The objective of this research is to determine ambient greenhouse gases within selected industry locations
within the Suame Industrial Complex using a Top-Down approach. In this research study, a low-cost-sensor
IoT based GHG monitor to report real-time GHG emissions data was designed and developed. The developed
monitor was then deployed within selected industry locations within the Suame Industrial Complex to collect a
24-hour minute-by-minute GHG emissions data. A statistical tool (Minitab Statistical Software 20.3 (64 bit))
was used in analyzing reported/collected GHG emissions data.

2. Literature Survey. The phenomenon of air pollution falls under SDG 3 – Good Health and Wellbeing
and specifically SDG 3.9. SDG 3.9 targets the substantial reduction in illnesses and death associated with the
release of hazardous pollutants. Air pollution also affects SDG 11 – Sustainable Cities and Communities, and
Specifically Target 11.6. Target 11.6 emphasizes the reduction of the environmental impacts of cities on people
to enhance a safe and inclusive human settlement [25]. Greenhouse Gases such as Ozone, Methane, Carbon
Dioxide, Nitrous Oxide, and Water Vapour absorb and emit radiant energy in the earth atmosphere within
the Thermal Infrared Spectrum/region [21]. Greenhouse gases are predominantly made of Carbon Dioxide
and Methane [32] and are emitted/released mostly through human-made (anthropogenic) activities mainly
associated with fossil fuel use [21]. The absorption and emission of radiant energy leads to Greenhouse effect
which in excess can lead to catastrophic effect due to increase in atmospheric temperature to unbearable limits
[21]. Anthropogenic methane sources account for 60% whereas Natural gas sources account for 40% of the
global methane emissions [18].

The uncertainty of CO2 emissions from Land Use according to the 4th Assessment Report is estimated
at ± 2933 MtCO2 at the 1990 global level [33] with an average temperature increase over land by 1.320.04oC

[34]. The average temperature increase of the ocean is also estimated as 0.590.006oC [34]. The increase in
atmospheric temperature poses a threat to aquatic and human survival [32]. There has been an estimated
atmospheric temperature increase of 0.7oC from 1961 to 1990 [34].

Carbon Dioxide is the highest contributor to Global Warming and the most significant greenhouse gas [13].
The concentration of Carbon Dioxide increased from 280 ppm at a pre-industrial level value to 410 ppm in 2020
[35]. Although the methane increase within the atmosphere which constitute 16% of GHG emissions is not as
high as carbon dioxide, it however contributes as much as carbon dioxide due to its Global Warming Potential
[18]. Without the Greenhouse effect, the earth atmospheric temperature will be at an unbearable −18

oC [21],
and in excess (due to the drastic increase in GHG concentration) will also lead to unbearable high atmospheric
temperature. Although the global GHG emissions slowed after 2014, the emissions generally increased from
2010 to 2018 and peaked at 58 GtCO2eq in 2018, 11% above 2010 levels [36, 37].

In order to mitigate the effects of greenhouse gases due to sustained increase in GHG emissions, several
international agreements have been formed. Among them is the Paris agreement which seek to limit the global
atmospheric temperature increase to 2

oC and possibly 1.5oC above preindustrial era levels [36]. Among the
estimation techniques used in GHG accounting are the top-down and bottom-up approaches.

Top-down estimates uses meteorological data like wind speeds and directions to obtain emissions data
through inverse modeling by projecting atmospheric transportation. Inverse modelling is based on source-
receptor relationship atmospheric data based [38]. The Top-down approach which monitors the atmospheric
emissions provides an emissions aggregate from a location but does not identify emissions sources unless tracers
are identified for specific emissions [2].

Bottom-up analysis includes life-cycle analysis [39]. Bottom up estimation is from emissions inventory
which are heterogeneous from one location to another and prone to uncertainties, errors and manipulations.
An example of the bottom-up approach is the emissions factor approach as used in the IPCC guidelines [38].
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The emissions data on the global scale reported by countries using the bottom-up approach is approximately
less than half of the emissions data from the top-down approach [38]. Omissions of emissions sources account
for the weakness of the bottom up approach [2].

The effectiveness of the GHG accounting and reporting methodologies rely on drivers and motives which are
characterized by the level of development of a country - whether a country is develop or developing. Developed
country have much obligations to gather, validate, model data and used in estimating and reporting whereas
developing countries have voluntary obligation and most lack the required data. The outcome of GHG account-
ing and reporting in developing countries is characterized by the lack of necessary data, expertise, resources to
enhance the effective evaluation of GHG. Lack of the up to date generation data also makes the results from
the various models used in GHG accounting and reporting incoherent [40].

Among the four main GHG (bottom-up) accounting methodologies are the IPCC method for national
accounting, corporate level accounting (municipalities), Life Cycle Analysis/Assessment and Carbon Trading
methodologies. The results from these methods varies significantly when applied to the same activity and
geographies based on the assumption made [40].

Model based GHG estimation (GHG accounting and Reporting) such as the IPCC method is widely ac-
cepted. The Tier-1 of the IPCC model is used for national inventory reporting [5] whereas the Tier-2 can be
applied to various sub sectors such as emissions from waste sources [41]. Other models such as the LandGEM
method and the Triangular method were applied by [41] in estimated landfill gas (methane).

The authors of [31] assessed in their research the adaptation of the IPCC model for small cities in carbon
monitoring. In their research, the use of the IPCC model was asserted as ineffective in estimating carbon
emissions on small cities level due to lack of timely real time monitoring data. Lack of intelligent energy
monitoring system (due to high cost) to monitor and report carbon inventory data was identified among
the limitation of adapting the IPCC model for small cities. The last identified limitation is the inability to
universally adapt the IPCC model for different levels in small cities due to the differences in estimation method
of monitoring data and long term data [31].

Among the development in the monitoring of GHG within the earth atmosphere in recent times involved
the use of Satellites. Satellites are used to fill the spatial GHG monitoring gaps within the earth’s atmosphere.
The Thermal And Near infrared Sensor for Carbon Observation (TANSO) launched by Japan in 2009 which
aboard Greenhouse gases Observing SATellite (GOSAT) was the first satellite instrument designed specifically
to record methane and Carbon Dioxide concentrations [13]. Other satellites such as the Orbiting Carbon
Observatory - 2 (OCO-2) launched by NASA in 2014 and the TanSat (also known as CarbonSat) launched by
the Chinese Space Program in 2016 are dedicated to monitor GHG (carbon dioxide) in the Earth’s atmosphere
[35]. Other instruments such as the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) launched in 2002 and lost in 2012 by the European Space Agency (ESA) which aboard the
ENVIronmental SATellite (ENVISAT) could retrieve GHG concentrations [13].

Low Cost Sensors (LCS) are characterized by their low purchase pricing and operation cost as compared
to the purchase and operating cost of other sensors/analyzers [17]. Among the LCS are the electrochemical gas
sensors, semiconducting gas sensors, and the optical particle monitors [17, 21].

One of the main advantages and motivations for using Low Cost Sensors is in spatial resolution increase
of Ambient air quality. This enhances the detection of variability below a regional/city level, to lower levels
such as city-block or below. The size and low cost of sensors provides the opportunity for deploying in small
footprint locations and in mobile/semi-mobile sampling schemes. Current models techniques cannot compete
at lower levels of spatial resolutions due to high dynamic variability of the pollutants, and external hindrances
such as wind, humidity etc… which is overcome by the use of LCS. Mostly Low Cost Sensors marketed as a
single pollutant sensor exhibit cross-sensitivity to other pollutants [8].

Among the various approach used in sensor selectivity are temperature, filters, catalyst and specific ad-
sorption. Temperature changes affects the spontaneity/rate of a reaction (the activity of a reducing agent)
thereby affecting the selectivity of the sensor. Methane burns at high temperature compared to the low tem-
perature (room temperature) at which CO and hydrogen burns. Hence at elevated temperatures (high above
room temperature) at which the gases burn rapidly, it is likely gases such as hydrogen and CO will not be
detected [42].
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Specific materials that allow specific gases to react can be used to enhance sensor selectivity. Hygroscopic
salts are used to attract/concentrate water for humidity sensors. Another example is the use of sulfanilic acid
to enhance the selectivity of NO2 [42].

Metal Oxides as used in sensor development varies the surface conductance in a gaseous atmosphere. Various
metal oxides are used as catalyst or dopants to enhance to response to some specific gases. Tin oxide (which is
the most studied material) modifies the response spectrum of the sensor to gases by enhancing suitable changes
of the catalyst or dopant deposited. Among the dopants/catalyst are palladium, platinum and cadmium [43].

3. Materials and Methods.

3.1. Selected Sample Site. The selected sample site for this project is the Suame Industrial Complex.
The Suame Industrial Complex mainly known as Suame Magazine comprises over 12,000 enterprises and over
200,000 artisans involved in operations such as equipment and machinery manufacturing, foundries, vehicle
repairs, materials workings etc. The Suame Magazine spans 900,000 square meters, 1.8 km long and 0.32 km
wide with an estimated cluster nucleus perimeter of 7 km. [3, 14, 20, 29].

Three (3) industry locations were selected within the selected sample site. The selected location 1(Lat:
6.7211, Long: -1.6291) is the Abu-Dia Company Limited with operations in metal foundry. Location 2 (Lat:
6.7113, Long: -1.6306) is KOSAMO Limited with operations in HVAC operations and duct fabrication. Location
3 (Lat: 6.7117, Long: -1.6422) is Presank Company Limited with operations in waste handling and recycling.

3.2. Selected pollutants of concern. This project is limited to Carbon Dioxide, Methane and Nitrous
Oxide due to the quantities release and their potency in trapping heat within the earth atmosphere

Carbon dioxide can potentially be produced from methane oxidation [22] and is the most oxidized state of
Carbon, which is used as a chemical reagent and a phosgene substitute [44]. The average global carbon dioxide
emissions level in 2021 was 414.7 ppm, a 2.66 ppm increase from the 2020 average. A 35 billion tons of carbon
dioxide were emitted into the atmosphere in 2021, and these carbon dioxide emissions have the potential of
trapping heat within the atmosphere for thousands of years [23].

Methane is a stable gas which starts decomposing into elements at 785
oC [45]. A graph of the average

global methane emissions per year is shown. As observed by [23], the global average methane emissions in 2021
was 1895.7 ppb, a 15% higher than the 1984 – 2006 period and a 162% higher than the pre-industrial level.
The methane atmospheric residence time is about 9 years but is 25 times more potent in trapping heat in the
atmosphere, and a short-term climate change influencer as compared to carbon dioxide [23].

Nitrous Oxide is a colourless, slightly pleasant sweet odour and taste and non-flammable gas which is
acknowledged as an undesired by-product in exhaust gases from lean NOx trapping [15]. Agriculture dominates
the global anthropogenic sources of N2O [22]. Among the sources of Nitrous Oxide are industries, fertilizer
production, and wastewater treatment plant [15, 28]. Nitrous Oxide is currently the largest destroyer of ozone
in the stratosphere than any other reactive chemical [28]. The Global Warming Potential of Nitrous Oxide is
between 265 to 298 over a 150 years’ time series [15].

3.3. Development of an IoT GHG monitor. The block diagram of the monitor design is shown in
figure 3.1. The various components including the sensors used in the monitor design and development are
shown in figure 3.2. The sensors used in this project are MQ-135 (nitrous oxide sensor), MQ-4 (methane
sensor), SCD-30 (carbon dioxide, temperature and humidity sensor), and DHT22 (temperature and humidity
sensor).

MQ-135 is a Tin Dioxide (SnO2) semiconductor based gas sensor effective in detecting Nitrous Oxide, Am-
monia, Benzene, Smoke, alcohol and Carbon Monoxide [1, 21]. MQ-4 is composed of Al2O3 ceramic tube, Tin
Dioxide (SnO2) sensitive layer, measuring electrode and heater that detects the concentration methane/natural
gas between 0 ppm - 10000 ppm [6].

Sensiron SCD-30 operates on the non-dispersive infrared(NDIR) principle which measures CO2 between 0 -
40000 ppm (± 30 ppm + 3 % accuracy for range between 400 ppm – 10000 ppm), temperature between - 40 to
120 oC, and relative humidity between 0 % - 100 % [19]. NDIR sensors measure the CO2 levels by measuring
the amount of infrared light reflected by the CO2 [9].

DHT22 contains a thermistor for dry bulb temperature measurement and a capacitive sensor for mois-
ture/humidity measurement. The DHT22 measures temperature between -40 to +80 o C (0.5 o C accuracy)
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Fig. 3.1: Block diagram of the various units of the GHG monitor

Fig. 3.2: Various components in the developed monitor

and relative humidity from 0% to 100% (2% accuracy) [46, 47].

The DHT22 sensors measure 4% more accurate temperature readings and 18% more accurate humidity
readings than its DHT11 [48]. The various sensors were calibrated using libraries from the sensor manufacturers
designated for the working conditions of the sensors based on the various location. The calibration of the sensor
was to enhance better performance and to enhance the accuracy of the monitored emissions.

Among the other various components incudes;

1. Battery pack (19.6 Ah)
2. A battery Management System
3. A 50 W solar panel
4. An Atmega 328 microcontroller unit
5. A sim800I GSM module
6. Im2596 buck converter
7. A 28 pin IC socket
8. 1N5408
9. A 2.54 male and female pin headers

10. 16 MHz crystal
11. A 22 Pico farad, 100 Nano farad capacitors
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Fig. 3.3: Various components in the developed monitor

Fig. 3.4: Images of the deployment at a. location 1 (lat: 6.7211, long: -1.6291); b. Location 2 Images of the
deployment at a. location 1 (lat: 6.7211, long: -1.6291); b. Location 2

12. 10 k ohms, 20 k ohms, and a 1 k ohm resistors
13. A Vh3.96 connector
The sim800I GSM module was integrated into the monitor to enhance the transmission of the monitored

emissions data onto a Thing Speak cloud platform. The Thing Speak (by Mathworks) IoT analytic platform
was selected for this project due to the easiness in data download from the platform, easy monitoring and
visualization of live reported data on the platform. A private access was created. Screenshots of the mobile
view interface of the ThingSpeak cloud platform is shown in figure 3.3.

3.4. GHG monitor deployment. The developed monitor was deployed in location 1(Lat: 6.7113, Long:
-1.6306) from 2022-07-19 (18:00:10 GMT) to 2022-07-20 (17:59:42 GMT) and a total of 1286 data collected
within the 24 hours’ deployment. The monitor was then deployed in location 2 (Lat: 6.7211, Long: -1.6291)
with 1246 total data collected within 24 hours deployed period. The developed was lastly deployed at location
3 (Lat: 6.7117, Long: -1.6422) with 1095 data collected in the 24 hours deployed period. Imaged of the monitor
deployed in location 1,2 and 3 is shown in figure 3.4.

3.5. Statistical analysis of collected GHG emissions data. Among the statistical analysis performed
on the collected data are descriptive statistics analysis, Time series plots, Surface plots, Correlation and Re-
gression analysis of the data.

A correlation coefficient (r) as used in correlation analysis is the measure of the linear relationship between
two (2) variables. The Pearson product-moment correlation coefficient (r) is a parametric measure of the linear
association of normal distribution between two (2) variables. Conversely to the Pearson coefficient. [26].

Monitored environmental factors (temperature and humidity) are correlated with the monitored greenhouse
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Table 4.1: Summary of descriptive statistics of reported pollutant emissions data by the various selected sensors
in various locations.

Location

(Lat, Long)

Descriptive Statistics
Pollutant/Analyte (ppm)

CO2
(SCD-30)

CH4
(MQ-4)

N20
(MQ-135)

Location 1

(Lat, Long)

Mean 472.51 0.1599 0
Min 421.00 0.0800 0
Max 513.00 0.5100 0
Standard Deviation 11.59 0.08542 0

Location 2

(Lat, Long)

Mean 477.31 0.1358 0
Min 435.00 0.0800 0
Max 515.00 0.3700 0
Standard Deviation 12.44 0.05857 0

Location 3

(Lat, Long)

Mean 508.11 0.1366 0
Min 439.00 0.0800 0
Max 585.00 04800 0
Standard Deviation 11.43 0.05602 0

gases in this research study. Temperature and relative humidity were selected in the correlation investigation
with the various emissions data due their influence in sensor performance and greenhouse gases concentration
and pollutant chemistry as outlined in literature [8, 12, 16, 27, 30].

Regression Analysis is modeling of a set of numerical data using a set of methods and relates a dependent
(response) variable to one or more independent (explanatory) variables [26].

Minitab Statistical Software 20.3 (64 bit) was the only statistical software used for all the data analysis.
The listed analysis was done on the 3627 data collected in the final deployment.

The time-stamped minute-by-minute reported emissions data made it necessary to conduct time series plots
of the reported emissions data from the various locations. The time series plot was also used to investigate
performance of DHT22 and SCD-30 sensor.

4. Findings and Results.

4.1. Descriptive statistics of reported data. The descriptive statistics (mean, minimum value (min),
maximum value (max) and the standard deviation) of the reported carbon dioxide, methane and nitrous oxide
emissions data are shown in table 4.1. The descriptive statistics of the temperature and humidity reported
values by the DHT22 and SCD-30 sensors are shown in table 4.2.

4.2. Correlation analysis. The effects of temperature and humidity was investigated on the monitoring
of the greenhouse gases. As indicated in by [8] that these factors (temperature and humidity) affect sensor
performance. The examination of temperature and humidity effects was also investigated on the dispersion
or production/emission of carbon dioxide and methane as investigated in correlation analysis by [27] and [12].
The correlation analysis of carbon dioxide, and methane with temperature and humidity is shown in table 4.3.

4.3. Regression Analysis. Based on the correlation analysis as shown in table 4.2, regression analysis of
carbon dioxide and methane (as response variable) against temperature and humidity (as independent) variable
was investigated, with the corresponding coefficient of determination (R2) as shown in table 4.4 and 4.5. The
DHT22 sensors temperature and humidity data was used in all the regression analysis.

The regression analysis of temperature against humidity was investigated as shown in table 4.6.

4.4. Time Series Plots. Time series plot was used to visualize the reported emissions data. The time
series plot of carbon dioxide and methane emissions data, and environmental factors (temperature and humidity)
data for the various deployed locations are shown in figure 4.1 to 4.6 below.

Time series plot of reported data in location 1 (lat: 6.7211,-1.6291)
Time series plot of reported data in location 2 (lat: 6.7113, -1.6306)
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Table 4.2: Summary of descriptive statistics of reported environmental factors data by the various selected
sensors in various locations

Location

(Lat, Long)
Descriptive Statistics

Environmental Factors
Temperature (o C) Humidity (%)

(SCD-30) (DHT22) (SCD-30) (DHT22)

Location 1

(Lat, Long)

Mean 28.20 26.47 62.91 70.57
Min 24.40 22.90 37.79 36.50
Max 36.48 33.90 75.97 87.50
Standard Deviation 3.14 3.11 10.97 14.94

Location 2

(Lat, Long)

Mean 27.95 26.77 65.00 70.24
Min 23.04 23.40 48.20 51.00
Max 34.62 32.30 80.56 84.50
Standard Deviation 3.34 2.56 10.07 9.99

Location 3

(Lat, Long)

Mean 30.69 28.20 62.51 72.62
Min 27.65 25.30 39.58 46.00
Max 40.01 35.40 71.77 85.80
Standard Deviation 2.43 2.47 7.51 11.03

Table 4.3: Summary of correlation details from the various locations

95 % Confidence Interval Pearson Correlation

Location Details Temperature Humidity

Location 1
(lat: 6.7211, long: -1.6291)

1286 Data

CO2 -0.258 0.252
CH4 0.146 -0.144

Temperature -0.996

Location 2
(lat: 6.7113, long: -1.6306)

1246 Data

CO2 -0.704 0.696
CH4 -0.097 0.113

Temperature -0.991

Location 3
(lat: 6.7117, long: -1.6422)

1095 Data

CO2 -0.234 0.258
CH4 0.096 -0.074

Temperature -0.993

Table 4.4: Summary of regression analysis of carbon dioxide against temperature and humidity from the various
deployed locations

Location details Regression equation R2 (%)

Location 1
(lat: 6.7211, long: -1.6291)

1286 Data
CO2 = 607.0 - 3.61×Temperature - 0.552× Humidity 7.02

Location 2
(lat: 6.7113, long: -1.6306)

1246 Data
CO2 = 586.1 - 3.802×Temperature - 0.100× Humidity 49.55

Location 3
(lat: 6.7117, long: -1.6422)

1095 Data
CO2 = 177.2 + 7.03×Temperature + 1.828× Humidity 10.00

Time series plot of reported data in location 3 (lat: 6.7117, -1.6422)

5. Discussion. Carbon dioxide emissions were averagely the highest in location 3 with 508.11 ppm concen-
tration followed by location 2 with 477.31 ppm concentration and lastly location 1 with 472.51 ppm. Location 3
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Table 4.5: Summary of regression analysis of methane against temperature and humidity from the various
deployed locations

Location details Regression equation R2 (%)

Location 1
(lat: 6.7211, long: -1.6291)

1286 Data
CH4 = -0.124 + 0.00833×Temperature + 0.00090× Humidity 2.15

Location 2
(lat: 6.7113, long: -1.6306)

1246 Data
CH4 = -0.769 + 0.01922×Temperature -+0.00555× Humidity 2.57

Location 3
(lat: 6.7117, long: -1.6422)

1095 Data
CH4 = -1.414 + 0.03560×Temperature -+0.00753× Humidity 4.14

Table 4.6: Summary of regression analysis of temperature against humidity from the various deployed locations

Location details Regression equation R2 (%)

Location 1
(lat: 6.7211, long: -1.6291)

1286 Data
Temperature = 41.0898 - 0.207153× Humidity 99.26

Location 2
(lat: 6.7113, long: -1.6306)

1246 Data
Temperature = 44.6179 - 0.254177× Humidity 98.19

Location 3
(lat: 6.7117, long: -1.6422)

1095 Data
Temperature = 44.3276 - 0.222073× Humidity 98.54

also recorded the highest minimum carbon dioxide concentration (439 ppm), followed by location 2 (435.00 ppm)
and the least in location 1 (421 ppm) which are all above the 2021 global carbon dioxide concentrationaverage
in the atmosphere of 414.7 ppm as observed by [23].

The average methane concentration was highest in location 1 (0.1599 ppm equivalent to 1599 ppb) followed
by location 3 (0.1366 ppm equivalent to 1366 ppb) and lastly location 2 (0.1358 ppm equivalent to 1358 ppb)
as shown in table 5.1. An average methane concentration recorded in all locations are slightly below the global
atmospheric methane average. However, the maximum recorded methane emissions of 0.5100 ppm (5100 ppb),
0.3700 ppm (3700 ppb) and 0.4800 ppm (4800 ppb) in location 1, 2 and 3 respectively are above the 2021 global
atmospheric methane average (1895.7 ppb) as observed by NOAA, (2022). A 0.08 ppm minimum methane
concentration in all deployed industry locations indicates a methane background concentration of 0.08 ppm (80
ppb) within all the selected industry location and the sample site as a whole.

The reported emissions values of the MQ-135 nitrous oxide sensor were zero (0) throughout the entire
deployments as shown in all the reported data as summarized also in table 4.1. This indicates that the nitrous
oxide emissions are not at detectable levels to be detected by the MQ-135 nitrous oxide sensor. It is also evident
according to [15]; [22]; [28] that nitrous oxide sources are mainly agriculture activity related, and was logical
that the nitrous oxide emissions within all deployed industry locations within the sample site Suame Industrial
Complex are zero (0).

The difference in the average temperature data reported by the DHT22 sensor and SCD-30 sensor are less
than 2 o C for location 1 and 2, and less than 2.5 o C for location 3 as shown in table 4.2. The SCD-30 sensor
reported the higher temperature values in all locations. This shows the accuracy of reported temperature data
by the sensors. However, the difference in reported humidity data by DHT22 and SCD-30 sensors was less than
8 % for location 1 and 2, and approximately 10 % in location 3. The DHT22 sensor reported the much higher
values of humidity in all locations. This shows the precision in the reported data by the SCD-30 and DHT22
sensors.
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Fig. 4.1: Time series plot of reported carbon dioxide and methane emissions data from location 1 (lat: 6.7211,
long: -1.6291)

Fig. 4.2: Comparison of temperature and humidity data from location 1 (lat: 6.7211, long: -1.6291) by SCD-30
sensor and DHT22 sensor using time series plot.

Fig. 4.3: Time series plot of reported carbon dioxide and methane emissions data from location 2 (lat: 6.7113,
long: -1.6306)

As shown in table 4.3, carbon dioxide has a weaker negative correlation and weaker positive correlation with
temperature and humidity respectively in location 1 and 3. However, the correlation of carbon dioxide with
temperature and humidity in location 2 was moderately negative and positive of -0.704 and 0.696 respectively.
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Fig. 4.4: Comparison of temperature and humidity data from location 2 (lat: 6.7113, long: -1.6306) by SCD-30
sensor and DHT22 sensor using time series plot.

Fig. 4.5: Time series plot of reported carbon dioxide and methane emissions data from location 3 (lat: 6.7117,
long: -1.6422)

Fig. 4.6: Comparison of temperature and humidity data from location 3 (lat: 6.7117, long: -1.6422) by SCD-30
sensor and DHT22 sensor using time series plot.

This shows that either the dispersion/emissions of carbon dioxide decreases with rise in temperature and
increases with increase in relative humidity. This deviate from the positive correlation of carbon dioxide and
humidity as observed by [30] in their carbon dioxide emissions correlation with temperature and humidity
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investigation. This also shows that the dispersion/emission of carbon dioxide is affected differently in various
localities and hence much studies has to be done in various environments.

The correlation of methane with temperature and humidity was weaker (almost negligible) in all three (3)
industry locations. Methane showed a negative correlation with temperature and a positive correlation with
humidity in location 1 and 3. The correlation of methane in location 2 was positive with humidity and negative
with temperature as also observed by [27] in their research. The variation of the correlation also suggests that,
the correlation is dependent on the particular environment and much studies has to be done is GHG pollutant
emissions/dispersion.

The correlation between temperature and humidity was very high in all three (3) locations with over 99 %
of all the data completely correlating.

Based on the correlation analysis as shown in table 4.3 above, regression analysis was investigated with
the corresponding coefficient of determination (R2). As shown in table 4.5 above, the regression equation
between methane emissions as the response variable (dependent variable) and temperature and humidity as
the independent variables had the least coefficient of determination (R2) values less than 5 % in all location.
The almost negligible coefficient of determent (R2) can be tallied with the almost negligible Pearson correlation
coefficient less than 0.2 in all locations.

The coefficient of determination (R2) of the regression equations with carbon dioxide emissions as the
response variable (dependent variable), and temperature and humidity as the independent variable was less
than or equal to 10 % for location 1 and 2 and approximately moderate (49.55 %) for location 2 as shown
in table 4.4 above. This shows that temperature and humidity have an effect on carbon dioxide dispersion as
observed in correlation research by [30, 12] in an indoor environment.

Much higher coefficient of determination (R2) above 98 % was observed for the regression equation be-
tween temperature and humidity for all three (3) location as shown in table 4.6 as also observed by [30]. The
temperature-humidity regression equation can be used in heat transfer analysis (temperature-humidity equa-
tions) as a calibration equation for temperature and humidity measurements/sensors.

The Sensiron SCD-30 carbon dioxide sensor, the DHT22 (AM2302) temperature and humidity sensor, and
the MQ-4 methane sensor had a stable performance throughout its deployment.The MQ-135 nitrous oxide
sensor reported zero emissions data which shows the nitrous oxide emissions are not in the detectable range of
the sensor.

6. Conclusion. All the carbon dioxide emissions data collected from the various locations are above the
global carbon dioxide emissions average of 414.7 ppm, hence the need for policy consideration to significantly
reduce carbon dioxide emissions within the selected industrial hubs. The average methane emissions were 0.1599
ppm (1599 ppb), 0.1358 ppm (1358 ppb) and 0.1366 ppm (1366 ppb) from location 1, 2 and 3 respectively slightly
below the global average of 1895.7 ppb. The maximum recorded methane emissions was 0.5100 ppm (5100 ppb),
0.3700 ppm (3700 ppb) and 0.4800 ppm (4800 ppb) which are above the global methane emissions average of
1895.7 ppb.

The use of sim800I GSM module instead of Wi-Fi provided a reliable data transmission during the deploy-
ment and solves the data transmission problem faced by the Ghana Ambient Air Quality Project (GHAir).
The use of a 50 W solar panel and 19.6 Ah battery pack provided a reliable electrical power for the monitor
without power blackout/outages.The selected sensors Sensiron SCD-30, MQ-4, DHT22 were able to withstand
the ambient condition within the selected industry locations within Suame Industrial Complex and monitored
effectively the carbon dioxide, methane, temperature and humidity.

7. Acknowledgement. The authors are thankful to KNUST Engineering Education Project (KEEPS)
for providing funds for carrying out the research work.
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