
Salable Computing: Pratie and ExperieneVolume 6, Number 3, pp. 33�43. http://www.spe.org ISSN 1895-1767© 2005 SWPSRUN-TIME ADAPTATION OF GRID DATA PLACEMENT JOBSG. KOLA∗, T. KOSAR∗ & M. LIVNY∗Abstrat. Grid presents a ontinuously hanging environment. It also introdues a new set of failures. The data grid initiativehas made it possible to run data-intensive appliations on the grid. Data-intensive grid appliations onsist of two parts: a dataplaement part and a omputation part. The data plaement part is responsible for transferring the input data to the omputenode and the result of the omputation to the appropriate storage system. While work has been done on making omputationadapt to hanging onditions, little work has been done on making the data plaement adapt to hanging onditions. In this work,we have developed an infrastruture whih observes the environment and enables run-time adaptation of data plaement jobs. Wehave enabled Stork, a sheduler for data plaement jobs in heterogeneous environments like the grid, to use this infrastrutureand adapt the data plaement job to the environment just before exeution. We have also added dynami protool seletion andalternate protool fall-bak apability to Stork to provide superior performane and fault tolerane.Key words. Grid, data plaement, run-time adaptation, sheduling, data intensive appliations, dynami protool seletion,stork, ondor.1. Introdution. The grid [10℄ [11℄ [19℄ presents a ontinuously hanging environment. The data gridinitiative has inreased the underlying network apaity and enabled running of data-intensive appliations onthe grid. Data-intensive appliations onsist of two parts: a data plaement part and a omputation part.The data plaement part is responsible for transferring the input data to the ompute node and the result ofthe omputation to the appropriate storage system. Data plaement enompasses all data movement relatedativities suh as transfer, staging, repliation, data positioning, spae alloation and dealloation. While workhas been done on making omputation adapt to hanging onditions, little work has been done on making thedata plaement adapt to hanging onditions.Sophistiated protools developed for grid data transfers like GridFTP [1℄ allow tuning depending on theenvironment to ahieve the best performane. While tuning by itself is di�ult, it is further ompliated bythe hanging environment. The parameters whih are optimal at the time of job submission, may no longer beoptimal at the time of exeution. The best time to tune the parameters is just before exeution of the dataplaement job. Determining the environment harateristis and performing tuning for eah job may imposea signi�ant overhead. Ideally, we need an infrastruture that detets environmental hanges and performsappropriate tuning and uses the tuned parameters for subsequent data plaement jobs.Many times, we have the ability to use di�erent protools for data transfers, with eah having di�erentnetwork, CPU and disk harateristis. The new fast protools do not work all the time. The main reason is thepresene of bugs in the implementation of the new protools. The more robust protools work for most of thetime but do not perform as well. This presents a dilemma to the users who submit data plaement jobs to dataplaement shedulers. If they hoose the fast protool, some of their transfers may never omplete and if theyhoose the slower protool, their transfer would take a very long time. Ideally users would want to use the fasterprotool when it works and swith to the slower more reliable protool when the fast one fails. Unfortunately,when the fast protool would fail is not known apriori. The deision on whih protool to use is best done justbefore starting the transfer.Some users simply want data transferred and do not are about the protool being used. Others have somepreferene suh as: as fast as possible, as low a CPU load as possible, as minimal memory usage as possible. Themahines where the jobs are being exeuted may have some harateristis whih might favor some protool.Further the mahine harateristis may hange over time due to hardware and software upgrades. Most usersdo not understand the performane harateristis of the di�erent protools and inevitably end up using aprotool that is known to work. In ase of failures, they just wait for the failure to be �xed, even though otherprotools may be working.An ideal system is one that allows normal users to speify their preferene and hooses the appropriate pro-tool based on their preferene and mahine harateristis. It should also swith to the next most appropriateprotool in ase the urrent one stops working. It should also allow sophistiated users to speify the protoolto use and the alternate protools in ase of failure. Suh a system would not only redue the omplexity of
∗Department of Computer Sienes, University of Wisonsin-Madison, 1210 W. Dayton St. Madison, WI 53706, USA. ({kola,kosart, miron}�s.wis.edu). 33

34 G. Kola, T. Kosar and M. Livnyprogramming the data transfer but also provide superior failure reovery strategy. The system may also be ableto improve performane beause it an perform on-the-�y optimization.In this work, we have developed a monitoring infrastruture whih determines the environment harateris-tis and detets any subsequent hange. The environment harateristis are used by the tuning infrastrutureto generate tuned parameters for the various protools. These tuned parameters are fed to a data plaementsheduler. The data plaement sheduler uses the tuned parameters while exeuting the data plaement jobssubmitted to it, essentially performing run-time adaptation of data plaement jobs. We have also added dy-nami protool seletion and alternate protool fall-bak apability to our prototype data plaement sheduler.Dynami protool seletion determines the protools that are available on a partiular host and uses an appro-priate protool for data transfer between any two hosts. Alternate protool fall-bak allows the data plaementsheduler to swith to a di�erent protool if the protool being used for a transfer stops working.2. RelatedWork. NetworkWeather Servie (NWS) [25℄ is a distributed system whih periodially gathersreadings from network and CPU resoures, and uses numerial models to generate foreasts for a given timeframe. Vazhkudai [24℄ found that the network throughput predited by NWS was muh less than the atualthroughput ahieved by GridFTP. He attributed the reason for it being that NWS by default was using 64KBdata transfer probes with normal TCP window size to measure throughput. We wanted our network monitoringinfrastruture to be as aurate as possible and wanted to use it to tune protools like GridFTP.Semke [20℄ introdues automati TCP bu�er tuning. Here the reeiver is expeted to advertise largeenough windows. Fisk [9℄ points out the problems assoiated with [20℄ and introdues dynami right sizingwhih hanges the reeiver window advertisement aording to estimated sender ongestion window. 16-bit TCPwindow size �eld and 14-bit window sale option whih needs to be spei�ed during onnetion setup, introduemore ompliations. While a higher value of the window-sale option allows a larger window, it inreases thegranularity of window inrements and derements. While large data transfers bene�t from large window size,web and other tra� are adversely a�eted by the larger granularity of window-size hanges.Linux 2.4 kernel used in our mahines implements dynami right-sizing, but the reeiver window size needsto be set expliitly if a window size large than 64 KB is to be used. Autobuf [15℄ attempts to tune TCPwindow size automatially by performing bandwidth estimation before the transfer. Unfortunately there isno negotiation of TCP window size between server and lient whih is needed for optimal performane. Alsoperforming a bandwidth estimation before every transfer introdues too muh of an overhead.Fearman et. al [8℄ introdue the Adaptive Regression Modeling (ARM) tehnique to foreast data transfertimes for network-bound distributed data-intensive appliations. Ogura et. al [17℄ try to ahieve optimalbandwidth even when the network is under heavy ontention, by dynamially adjusting transfer parametersbetween two lusters, suh as the number of soket stripes and the number of network nodes involved intransfer.In [5℄, Carter et. al. introdue tools to estimate the maximum possible bandwidth along a given path,and to alulate the urrent ongestion along a path. Using these tools, they demonstrate how dynami serverseletion an be performed to ahieve appliation-level ongestion avoidane.Thain et. al. propose the Ethernet approah [21℄ to Grid Computing, in whih they introdue a simplesripting language whih an handle failures in a manner similar to exeptions in some languages. The Ethernetapproah is not aware of the semantis of the jobs it is running, its duty is retrying any given job for a numberof times in a fault tolerant manner. Kangaroo [22℄ tries to ahieve high throughput by making opportunistiuse of disk and network resoures.Appliation Level Shedulers (AppLeS) [4℄ have been developed to ahieve e�ient sheduling by takinginto aount both appliation-spei� and dynami system information. AppLeS agents use dynami systeminformation provided by the NWS.Bek et. al. introdue Logistial Networking [2℄ whih performs global sheduling and optimization of datamovement, storage and omputation based on a model that takes into aount all the network's underlyingphysial resoures.3. Methodology. The environment in whih data plaement jobs exeute keeps hanging all the time.The network bandwidth keeps �utuating. The network route hanges one in a while. The opti �ber mayget upgraded inreasing the bandwidth. New disks and raid-arrays may be added to the system. The monitor-ing and tuning infrastruture monitors the environment and tunes the di�erent parameters aordingly. Thedata plaement sheduler then uses these tuned parameters to intelligently shedule and exeute the transfers.

Run-time Adaptation of Grid Data Plaement Jobs 35Figure 3.1 shows the omponents of the monitoring and tuning infrastruture and the interation with the dataplaement sheduler.3.1. Monitoring Infrastruture. The monitoring infrastruture monitors the disk, memory and networkharateristis. The infrastruture takes into aount that the disk and memory harateristis hange lessfrequently and the network harateristis hange more frequently. The disk and memory harateristis aremeasured one after the mahine is started. If a new disk is added on the �y (hot-plugin), there is an option toinform the infrastruture to determine the harateristis of that disk. The network harateristis are measuredperiodially. The period is tunable. If the infrastruture �nds that the network harateristis are onstant fora ertain number of measurements, it redues the frequeny of measurement till a spei�ed minimum is reahed.The objetive of this is to keep the overhead of measurement as low as possible.

Fig. 3.1. Monitoring and Tuning Infrastruture. This �gure shows an overview of the monitoring and tuning infrastruture.The di�erent pro�lers determine the various environment onditions and the tuning infrastruture uses that information to generateoptimal parameter values.The disk and memory harateristis are determined by intrusive tehniques, and the network harateristisare determined by a ombination of intrusive and non-intrusive tehniques. The memory harateristi ofinterest to us is the optimal memory blok size to be used for memory-to-memory opy. The disk harateristismeasured inlude the optimal read and write blok sizes and the inremental blok size that an be added tothe optimal value to get the same performane.The network harateristis measured are the following: end-to-end bandwidth, end-to-end lateny, numberof hops, the lateny of eah hop and kernel TCP parameters. Sine end-to-end measurement requires two hosts,this measurement is done between every pair of hosts that may transfer data between eah other. The end-to-end bandwidth measurement uses both intrusive and non-intrusive tehniques. The non-intrusive tehniqueuses paket dispersion tehnique to measure the bandwidth. The intrusive tehnique performs atual transfers.First, the non-intrusive tehnique is used and the bandwidth is determined. Then atual transfer is performed tomeasure the end-to-end bandwidth. If the numbers widely di�er, the infrastruture performs a ertain number

36 G. Kola, T. Kosar and M. Livnyof both of the network measurements and �nds the orrelation between the two. After this initial setup, alight-weight network pro�ler is run whih uses only non-intrusive measuring tehnique. While we perform alonger initial measurement for higher auray, the subsequent periodi measurements are very light-weight anddo not perturb the system.3.2. Tuning Infrastruture. The tuning infrastruture uses the information olleted by monitoringinfrastruture and tries to determine the optimal I/O blok size, TCP bu�er size and the number of TCPstreams for the data transfer from a given node X to a given node Y. The tuning infrastruture has theknowledge to perform protool-spei� tuning. For instane, GridFTP takes as input only a single I/O bloksize, but the soure and destination mahines may have di�erent optimal I/O blok sizes. For suh ases, thetuning �nds the I/O blok size whih is optimal for both of them. The inremental blok size measured by thedisk pro�ler is used for this. The tuning infrastruture feeds the data transfer parameters to the data plaementsheduler.3.3. Sheduling Data Transfers. The data plaement sheduler uses the information provided by thetuning infrastruture to make intelligent deisions for sheduling and exeuting the data plaement jobs.In our study, we used the Stork [13℄ data plaement sheduler to monitor, manage, and shedule thedata transfers over the wide area network. Stork is a speialized sheduler for data plaement ativities inheterogeneous environments. Stork an queue, shedule, monitor and manage data plaement jobs, and itensures that the jobs omplete.Stork is aware of the semantis of the data plaement requests submitted to it, so it an make intelligentsheduling deisions with regard to eah individual request. For example, if a transfer of a large �le fails, Storkan transfer only parts of the �le not already transferred. We have made some enhanements to Stork that enableit to adaptively shedule data transfers at run-time using the information provided by monitoring and tuninginfrastruture. These enhanements inlude dynami protool seletion and run-time protool auto-tuning. Thedetails of these enhanements are disussed in setion 5.4. Implementation. We have developed a set of tools to determine disk, memory and network harater-istis and using those values determine the optimal parameter values to be used for data transfers. We exeutedthese tools in a ertain order and fed the results to Stork data plaement sheduler whih then performedrun-time adaptation of the wide-area data plaement jobs submitted to it.4.1. Disk and Memory Pro�lers. The disk pro�ler determines the optimal read and write blok sizesand the inrement that an be added to the optimal blok size to get the same performane. A list of pathnamesand the average �le size is fed to the disk pro�ler. So, in a multi-disk system, the mount point of the di�erentdisks are passed to the disk pro�ler. In the ase of a raid-array, the mount point of the raid array is spei�ed.For eah of the spei�ed paths, the disk pro�ler �nds the optimal read and write blok size and the optimalinrement that an be applied to these blok sizes to get the same performane. It also lists the read and writedisk bandwidths ahieved by the optimal blok sizes.For determining the optimal write blok size, the pro�ler reates a �le in the spei�ed path and writes theaverage �le size of data in blok-size hunks and �ushes the data to disk at the end. It repeats the experiment fordi�erent blok sizes and �nds the optimal. For determining the read blok size, it uses the same tehnique exeptthat it �ushes the kernel bu�er ahe to prevent ahe e�ets before repeating the measurement for a di�erentblok size. Sine normal kernels do not allow easy �ushing of the kernel bu�er ahe, the miro-benhmarkreads in a large dummy �le of size greater than the bu�er ahe size essentially �ushing it. The memory pro�ler�nds the maximum memory-to-memory opy bandwidth and the blok size to be used to ahieve it.4.2. Network Pro�ler. The network pro�ler gets the kernel TCP parameters from /pro. It runsPathrate [7℄ between given pair of nodes and gets the estimated bottlenek bandwidth and the average round-trip time. It then runs traeroute between the nodes to determine the number of hops between the nodes and thehop-to-hop lateny. The bandwidth estimated by Pathrate is veri�ed by performing atual transfers by a datatransfer tool developed as part of the DiskRouter projet [12℄. If the two numbers di�er widely, then a spei�ednumber of atual transfers and Pathrate bandwidth estimations are done to �nd the orrelation between thetwo. Tools like Iperf [16℄ an also be used instead of the DiskRouter data transfer tool to perform the atualtransfer. From experiene, we found Pathrate to the most reliable of all the network bandwidth estimation toolsthat use paket dispersion tehnique and we always found a orrelation between the value returned by Pathrate

Run-time Adaptation of Grid Data Plaement Jobs 37and that observed by performing atual transfer. After the initial network pro�ling, we run a light-weightnetwork pro�ler periodially. The light-weight pro�ler runs only Pathrate and traeroute.4.3. Parameter Tuner. The parameter tuner gets the information generated by the di�erent tools and�nds the optimal value of the parameters to be used for data transfer from a node X to a node Y.To determine the optimal number of streams to use, the parameter tuner uses a simple heuristi. It �ndsthe number of hops between the two nodes that have a lateny greater than 10 ms. For eah suh hop, it addsan extra stream. Finally, if there are multiple streams and the number of streams is odd, the parameter tunerrounds it to an even number by adding one. The reason for doing this is that some protools do not work wellwith odd number of streams. The parameter tuner alulates the bandwidth-delay produt and uses that asthe TCP bu�er size. If it �nds that it has to use more than one stream, it divides the TCP bu�er size bythe number of streams. The reason for adding a stream for every 10 ms hop is as follows: In a high-latenymulti-hop network path, eah of the hops may experiene ongestion independently. If a bulk data transferusing a single TCP stream ours over suh a high-lateny multi-hop path, eah ongestion event would shrinkthe TCP window size by half. Sine this is a high-lateny path, it would take a long time for the window togrow, with the net result being that a single TCP stream would be unable to utilize the full available bandwidth.Having multiple streams redues the bandwidth redution of a single ongestion event. Most probably only asingle stream would be a�eted by the ongestion event and halving the window size of that stream alone wouldbe su�ient to eliminate ongestion. The probability of independent ongestion events ourring inreases withthe number of hops. Sine only the high-lateny hops have a signi�ant impat beause of the time taken toinrease the window size, we added a stream for all high-lateny hops and empirially found that hops withlateny greater than 10 ms fell into the high-lateny ategory. Note that we set the total TCP bu�er size to beequal to the bandwidth delay produt, so in steady state ase with multiple streams, we would not be ausingongestion.The Parameter Tuner understands kernel TCP limitations. Some mahines may have a maximum TCPbu�er size limit less than the optimal needed for the transfer. In suh a ase, the parameter tuner uses morestreams so that their aggregate bu�er size is equal to that of the optimal TCP bu�er size.The Parameter Tuner gets the di�erent optimal values and generates overall optimal values. It makes surethat the disk I/O blok size is at least equal to the TCP bu�er size. For instane, the optimal disk blok sizemay be 1024 KB and the inrement value may be 512 KB (performane of optimal + inrement is same asoptimal) and the optimal TCP bu�er size may be 1536KB. In this ase, the parameter tuner will make theprotool use a disk blok size of 1536 KB and a TCP bu�er size of 1536 KB. This is a plae where the inrementvalue generated by the disk pro�ler is useful.The Parameter Tuner understands di�erent protools and performs protool spei� tuning. For example,globus-url-opy, a tool used to move data between GridFTP servers, allows users to speify only a single diskblok size. The read disk blok size of the soure mahine may be di�erent from the write disk blok size of thedestination mahine. In this ase, the parameter tuner understands this and hooses an optimal value that isoptimal for both the mahines.4.4. Coordinating the Monitoring and Tuning Infrastruture. The disk, memory and networkpro�lers need to be run one at startup and the light-weight network pro�ler needs to be run periodially. Wemay also want to re-run the other pro�lers in ase a new disk is added or any other hardware or operatingsystem kernel upgrade. We have used the Direted Ayli Graph Manager (DAGMan) [6℄ [23℄ to oordinatethe monitoring and tuning proess. DAGMan is servie for exeuting multiple jobs with dependenies betweenthem. The monitoring tools are run as Condor [14℄ jobs on respetive mahines. Condor provides a job queuingmehanism and resoure monitoring apabilities for omputational jobs. It also allows the users to speifysheduling poliies and enfore priorities.We exeuted the Parameter Tuner on the management site. Sine the Parameter Tuner is a Condor job,we an exeute it anywhere we have a omputation resoure. It piks up the information generated by themonitoring tools using Condor and produes the di�erent tuned parameter values for data transfer betweeneah pair of nodes. For example, if there are two nodes X and Y, then the parameter tuner generates two setsof parameters - one for transfer from node X to node Y and another for data transfer from node Y to node X.This information is fed to Stork whih uses it to tune the parameters of data plaement jobs submitted to it.The DAG oordinating the monitoring and tuning infrastruture is shown in Figure 4.1.We an run an instane of parameter tuner for every pair of nodes or a ertain number of pairs of nodes.

38 G. Kola, T. Kosar and M. Livny

Fig. 4.1. The DAG Coordinating the Monitoring and Tuning infrastruture. This DAG shows the order in whih themonitors(pro�lers) and tuner are run. Initially all the pro�lers are run and the information is logged to persistent storage and alsopassed to the parameter tuner whih generates the optimal parameter values. After that, the light-weight network pro�ler andparameter tuner are run periodially. The parameter tuner uses the values of the earlier pro�ler runs and the urrent light-weightnetwork pro�ler run to generate the optimal parameter values.For every pair of nodes, the data fed to the parameter tuner is in the order of hundreds of bytes. Sine all toolsare run as Condor jobs, depending on the number of nodes involved in the transfers, we an have a ertainnumber of parameter tuners, and they an be exeuted wherever there is available yles and this arhitetureis not entralized with respet to the parameter tuner. In our infrastruture, we an also have multiple dataplaement shedulers and have the parameters for data transfers handled by a partiular sheduler fed to it.In a very large system, we would have multiple data plaement shedulers with eah handling data movementbetween a ertain subset of nodes.4.5. Dynami Protool Seletion. We have enhaned the Stork sheduler so that it an deide whihdata transfer protool to use for eah orresponding transfer dynamially and automatially at the run-time.Before performing eah transfer, Stork makes a quik hek to identify whih protools are available for boththe soure and destination hosts involved in the transfer. Stork �rst heks its own host-protool library to seewhether all of the hosts involved the transfer are already in the library or not. If not, Stork tries to onnetto those partiular hosts using di�erent data transfer protools, to determine the availability of eah spei�protool on that partiular host. Then Stork reates the list of protools available on eah host, and storesthese lists as a library in ClassAd [18℄ format whih is a very �exible and extensible data model that an beused to represent arbitrary servies and onstraints.[host_name = "quest2.nsa.uiu.edu";supported_protools = "diskrouter, gridftp, ftp";℄[host_name = "nostos.s.wis.edu";supported_protools = "gridftp, ftp, http";℄

Run-time Adaptation of Grid Data Plaement Jobs 39If the protools spei�ed in the soure and destination URLs of the request fail to perform the transfer,Stork will start trying the protools in its host-protool library to arry out the transfer. Stork detets avariety of protool failures. In the simple ase, onnetion establishment would fail and the tool would reportan appropriate error ode and Stork uses the error ode to detet failure. In other ase where there is a bugin protool implementation, the tool may report suess of a transfer, but stork would �nd that soure anddestination �les have di�erent sizes. If the same problem repeats, Stork swithes to another protool. The usersalso have the option to not speify any partiular protool in the request, letting Stork to deide whih protoolto use at run-time.[dap_type = "transfer";sr_url = "any://sli04.sds.edu/tmp/foo.dat";dest_url = "any://quest2.nsa.uiu.edu/tmp/foo.dat";℄ In the above example, Stork will selet any of the available protools on both soure and destination hoststo perform the transfer. So, the users do not need to are about whih hosts support whih protools. Theyjust send a request to Stork to transfer a �le from one host to another, and Stork will take are of deidingwhih protool to use.The users an also provide their preferred list of alternative protools for any transfer. In this ase, theprotools in this list will be used instead of the protools in the host-protool library of Stork.[dap_type = "transfer";sr_url = "drouter://sli04.sds.edu/tmp/foo.dat";dest_url = "drouter://quest2.nsa.uiu.edu/tmp/foo.dat";alt_protools = "nest-nest, gsiftp-gsiftp";℄ In this example, the user asks Stork to perform a transfer from sli04.sds.edu to quest2.nsa.uiu.eduusing the DiskRouter protool primarily. The user also instruts Stork to use any of the NeST [3℄ or GridFTPprotools in ase the DiskRouter protool does not work. Stork will try to perform the transfer using theDiskRouter protool �rst. In ase of a failure, it will drop to the alternative protools and will try to ompletethe transfer suessfully. If the primary protool beomes available again, Stork will swith to it again. So,whihever protool available will be used to suessfully omplete the user's request. In ase all the protoolsfail, Stork will keep trying till one of them beomes available.4.6. Run-time Protool Auto-tuning. Statistis for eah link involved in the transfers are olletedregularly and written into a �le, reating a library of network links, protools and auto-tuning parameters.[link = "sli04.sds.edu - quest2.nsa.uiu.edu";protool = "gsiftp";bs = 1024KB; //blok sizetp_bs = 1024KB; //TCP buffer sizep = 4; //parallelism℄ Before performing every transfer, Stork heks its auto-tuning library to see if there are any entries for thepartiular hosts involved in this transfer. If there is an entry for the link to be used in this transfer, Stork usesthese optimized parameters for the transfer. Stork an also be on�gured to ollet performane data beforeevery transfer, but this is not reommended due to the overhead it will bring to the system.5. Experiments and Results. We have performed two di�erent experiments to evaluate the e�etivenessof our dynami protool seletion and run-time protool tuning mehanisms. We also olleted performanedata to show the ontribution of these mehanisms to wide area data transfers.5.1. Experiment 1: Testing the Dynami Protool Seletion. We submitted 500 data trans-fer requests to the Stork server running at University of Wisonsin (skywalker.s.wis.edu). Eah re-quest onsisted of transfer of a 1.1GB image �le (total 550GB) from SDSC (sli04.sds.edu) to NCSA(quest2.nsa.uiu.edu) using the DiskRouter protool. There was a DiskRouter server installed at Starlight

40 G. Kola, T. Kosar and M. Livny(ndm13.sl.startap.net) whih was responsible for routing DiskRouter transfers. There were also GridFTPservers running on both SDSC and NCSA sites, whih enabled us to use third-party GridFTP transfers wheneverneessary. The experiment setup is shown in Figure 5.1.

Fig. 5.1. Experiment Setup. DiskRouter and GridFTP protools are used to transfer data from SDSC to NCSA. Stork wasrunning at the Management site,a nd making sheduling deisions for the transfers.At the beginning of the experiment, both DiskRouter and GridFTP servies were available. Stork startedtransferring �les from SDSC to NCSA using the DiskRouter protool as direted by the user. After a while,we killed the DiskRouter server running at Starlight intentionally. This was done to simulate a DiskRouterserver rash. Stork immediately swithed the protools and ontinued the transfers using GridFTP withoutany interruption. Swithing to GridFTP aused a derease in the performane of the transfers, as shown inFigure 5.2. The reasons of this derease in performane is beause of the fat that GridFTP does not performauto-tuning whereas DiskRouter does. In this experiment, we set the number of parallel streams for GridFTPtransfers to 10, but we did not perform any tuning of disk I/O blok size or TCP bu�er size. DiskRouterperforms auto-tuning for the network parameters inluding the number of TCP-streams in order to fully utilizethe available bandwidth. DiskRouter an also use sophistiated routing to ahieve better performane.After letting Stork use the alternative protool (in this ase GridFTP) to perform the transfers for a while,we restarted the DiskRouter server at the SDSC site. This time, Stork immediately swithed bak to usingDiskRouter for the transfers, sine it was the preferred protool of the user. Swithing bak to the faster protoolresulted in an inrease in the performane. We repeated this a ouple of more times, and observed that thesystem behaved in the same way every time.This experiment shows that with alternate protool fall-over apability, grid data plaement jobs an makeuse of the new high performane protools while they work and swith to more robust lower performaneprotool when the high performane one fails.5.2. Experiment 2: Testing the Run-time Protool Auto-tuning. In the seond experiment, wesubmitted another 500 data transfer requests to the Stork server. Eah request was to transfer a 1.1GB image�le (total 550 GB) using GridFTP as the primary protool. We used third-party globus-url-opy transferswithout any tuning and without hanging any of the default parameters.

Run-time Adaptation of Grid Data Plaement Jobs 41

Fig. 5.2. Dynami Protool Seletion. The DiskRouter server running on the SDSC mahine gets killed twie at points (1)and (3), and it gets restarted at points (2) and (4). In both ases, Stork employed next available protool (GridFTP in this ase)to omplete the transfers. Table 5.1Network parameters for gridFTP before and after auto-tuning feature of Stork being turned on.Parameter Before auto-tuning After auto-tuningparallelism 1 TCP stream 4 TCP streamsblok size 1 MB 1 MBtp bu�er size 64 KB 256 KBWe turned o� the auto-tuning feature of Stork at the beginning of the experiment intentionally. The averagedata transfer rate that globus-url-opy ould get without any tuning was only 0.5 MB/s. The default networkparameters used by globus-url-opy are shown in Table 1. After a while, we turned on the auto-tuning featureof Stork. Stork �rst obtained the optimal values for I/O blok size, TCP bu�er size and the number of parallelTCP streams from the monitoring and tuning infrastruture. Then it applied these values to the subsequenttransfers. Figure 5.3 shows the inrease in the performane after the auto-tuning feature is turned on. We gota speedup of lose to 20 times ompared to transfers without tuning.6. Future Work. We are planning to enhane the dynami protool seletion feature of Stork, so thatit will not only selet any available protool to perform the transfer, but it will selet the best one. Therequirements of `being the best protool' may vary from user to user. Some users may be interested in betterperformane, and others in better seurity or better reliability. Even the de�nition of `better performane' mayvary from user to user. We are looking into the semantis of how to to de�ne `the best' aording to eah user'srequirements.We are also planning to add a feature to Stork to dynamially selet whih route to use in the transfers andthen dynamially deploy DiskRouters at the nodes on that route. This will enable us to use the optimal routesin the transfers, as well as optimal use of the available bandwidth throughout that route.7. Conlusion. In this paper, we have shown a method to dynamially adapt data plaement jobs tothe environment at the exeution time. We have developed a set of disk and memory and network pro�ling,monitoring and tuning tools whih an provide optimal values for I/O blok size, TCP bu�er size, and thenumber of TCP streams for data transfers. These values are generated dynamially and provided to the higherlevel data plaement sheduler, whih an use them in adapting the data transfers at run-time to existing

42 G. Kola, T. Kosar and M. Livny

Fig. 5.3. Run-time Protool Auto-tuning. Stork starts the transfers using the GridFTP protool with auto-tuning turned o�intentionally. Then we turn the auto-tuning on, and the performane inreases drastially.environmental onditions. We also have provided dynami protool seletion and alternate protool fall-bakapabilities to provide superior performane and fault tolerane. With two experiments, we have shown thatour method an be easily applied and it generates better performane results by dynamially swithing toalternative protools in ase of a failure, and by dynamially auto-tuning protool parameters at run-time.Aknowledgements. We would like to thank Robert J. Brunner, Mihelle Butler and Jason Alt fromNCSA; Philip Papadopoulos, Mason J. Katz and George Kremenek from SDSC for the invaluable help inproviding us aess to their resoures, support and feedbak.REFERENCES[1℄ B. Allok, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D.Quesnel and S. Tueke, Seure, E�ient Data Transport and Replia Management for High-Performane Data-Intensive Computing, in Proeedings of IEEE Mass Storage Conferene", April 2001, San Diego, California.[2℄ M. Bek, T. Moore, J. Plank and M. Swany, Logistial Networking, Ative Middleware Servies, S. Hariri and C. Leeand C. Raghavendra, editors. Kluwer Aademi Publishers, 2000.[3℄ J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. C. Arpai-Dusseau, R. H. Arpai-Dusseau andM. Livny, Flexibility, Manageability, and Performane in a Grid Storage Appliane, in Proeedings of the EleventhIEEE Symposium on High Performane Distributed Computing (HPDC11),July 2002, Edinburgh, Sotland.[4℄ F. Berman, R. Wolski, S. Figueira, J. Shopf and G. Shao, Appliation Level Sheduling on Distributed HeterogeneousNetworks, in Proeedings of Superomputing'96, Pittsburgh, Pennsylvenia.[5℄ R. L. Carter and M. E. Crovella, Dynami Server Seletion Using Bandwidth Probing in Wide-Area Networks, TehnialREport TR-96-007, Computer Siene Department, Boston University, 1996.[6℄ Condor, The Direted Ayli Graph Manager, http://www.s.wis.edu/ondor/dagman, 2003.[7℄ C. Dovrolis, P. Ramanathan and D. Moore, What do paket dispersion tehniques measure?, in Proeedings of INFO-COMM, 2001.[8℄ M. Faerman, A. Su, R. Wolski and F. Berman, Adaptive Performane Predition for Distributed Data-Intensive Appli-ations, in Proeedings of the IEE/ACM Conferene on High Performane Networking and Computing, November 1999,Portland, Oregon.[9℄ M. Fisk and W. Weng, Dynami Right-Sizing in TCP, in Proeedings of ICCCN, 2001.[10℄ I. Foster, C. Kesselman and S. Tueke, The Anatomy of the Grid: Enabling Salable Virtual Organizations, InternationalJournal of Superomputing Appliations, 2001.

Run-time Adaptation of Grid Data Plaement Jobs 43[11℄ D. Koester, em Demonstrating the TeraGrid - A Distributed Superomputer Mahine Room, The Edge, The MITREAdvaned Tehnology Newsletter, (2) 2002.[12℄ G. Kola and M. Livny, DiskRouter: A Flexible Infrastruture for High Performane Large Sale Data Transfers, TehnialReport CS-TR-2003-1484, University of Wisonsin, Computer Sienes Department, 2003.[13℄ T. Kosar and M. Livny, Sheduling Data Plaement Ativities in the Grid, Tehnial Report CS-TR-2003-1483, Universityof Wisonsin, Computer Sienes Department, 2003.[14℄ M. J. Litzkow, M. Livny and M. W. Mutka, Condor - A Hunter of Idle Workstations, in Proeedings of the 8thInternational Conferene of Distributed Computing Systems, (1988), pp. 104�111.[15℄ NLANR/DAST, Auto Tuning Enabled FTP Client And Server: Autobuf, http://dast.nlanr.net/Projets/Autobuf, 2003.[16℄ NLANR/DAST, Iperf: The TCP/UDP Bandwidth Measurement Tool, http://dast.nlanr.net/Projets/Iperf/, 2003.[17℄ S. Ogura, H. Nakada and S. Matsuoka, Evaluation of the inter-luster data transfer on Grid environment, in Proeedingsof the Third IEEE/ACM Symposium on Cluster Computing and the Grid (CCGrid), May 2003, Tokyo, Japan.[18℄ R. Raman, M. Livny and M. Solomon,Mathmaking: Distributed Resoure Management for High Throughput Computing,in Proeedings of the Seventh IEEE International Symposium on High Performane Distributed Computing (HPDC7),July 1998, Chiago, Illinois.[19℄ B. Sagal, Grid Computing: The European DataGrid Projet, in Proeedings of IEEE Nulear Siene Symposium andMedial Imaging Conferene, Otober 2000, Lyon, Frane.[20℄ J. Semke, J. Mahdavi and M. Mathis, Automati TCP Bu�er Tuning, in Proeedings of SIGCOMM, pp. 315�323,1998.[21℄ D. Thain and and M. Livny, The Ethernet Approah to Grid Computing, in Proeedings of the Twelfth IEEE Symposiumon High Performane Distributed Computing (HPDC12), June 2003, Seattle, Washington.[22℄ D. Thain, J. Basney and S. Son and M. Livny, The Kangaroo Approah to Data Movement on the Grid, in Proeedingsof the Tenth IEEE Symposium on High Performane Distributed Computing (HPDC10), August 2001, San Franiso,California.[23℄ D. Thain, T. Tannenbaum and M. Livny, Condor and the Grid, Grid Computing: Making the Global Infrastruture aReality., Fran Berman and Geo�rey Fox and Tony Hey, editors. John Wiley and Sons In., 2002.[24℄ S. Vazhkudai, J. Shopf and I. Foster, Prediting the Performane of Wide Area Data Transfers, in Proeedings of the16th Int'l Parallel and Distributed Proessing Symposium (IPDPS), 2002.[25℄ R. Wolski, Dynamially Foreasting Network Performane to Support Dynami Sheduling Using the Network WeatherServie, in Proeedings of the Sixth IEEE Symposium on High Performane Distributed Computing (HPDC6), August1996, Portland, Oregon.Edited by: Wilson Rivera, Jaime Seguel.Reeived: July 9, 2003.Aepted: September 1, 2003.

