
Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 71�81. http://www.spe.org ISSN 1895-1767© 2005 SWPSPETRI NETS AS EXECUTABLE SPECIFICATIONS OF HIGH-LEVEL TIMED PARALLELSYSTEMSFRANCK POMMEREAU∗Abstrat. We propose to use high-level Petri nets as a model for the semantis of high-level parallel systems. This modelis known to be useful for the purpose of veri�ation and we show that it is also exeutable in a parallel way. Exeuting a Petrinet is not di�ult in general but more ompliated in a timed ontext, whih makes neessary to synhronise the internal time ofthe Petri net with the real time of its environment. Another problem is to relate the exeution of a Petri net, whih has its ownsemantis, to that of its environment; i. e., to properly handle input/output.This paper presents a parallel algorithm to exeute Petri nets with time, enforing the even progression of internal time withrespet to that of the real time and allowing the exhange of information with the environment. We de�ne a lass of Petri netssuitable for a parallel exeution mahine whih preserves the step sequene semantis of the nets and ensures time onsistentexeutions while taking into aount the soliitation of its environment. The question of the e�ient veri�ation of suh nets hasbeen addressed in a separate paper [14℄, the present one is more foused on the pratial aspets involved in the exeution of somodelled systems.Key words. Petri nets, parallelism, real-time, exeution mahines.1. Introdution. Petri nets are widely used as a model of onurreny, whih allows to represent theourrene of independent events. They an be as well a model of parallelism, where the simultaneity of theevents is more important. Indeed, when we onsider their step sequene semantis, an exeution is representedby a sequene of steps, eah of them being the simultaneous ourrenes of some transitions. Within thissemantis, the exeution of a step may be replaed by that of any of its linearisation (total or partial). This anbe viewed as possible exeutions of the same program on parallel mahines with di�erent numbers of proessors.In this ontext, the hoie of exeuting one step or another beomes a question of sheduling (this is usuallysolved non-deterministially by the Petri net semantis). Petri nets are thus suitable for speifying and verifyingsystems in models for whih the portability is an important onern.Our main goal in this paper is to show that Petri nets are also suitable for the exeution of the modelledsystems. We thus onsider high-level Petri nets for modelling high-level parallel systems, with the aim to allowboth veri�ation and exeution of the spei�ation. The question of the e�ient veri�ation of suh nets hasbeen addressed in a separate paper [14℄, the present one is more foused on the pratial aspets involved inthe exeution of so modelled systems.There are at least two reasons for having exeutable spei�ations. First, it allows for prototyping andtesting at early stage of the design: there may be no need to have an implementation in order to see howthe program behaves when its model an already be exeuted. Seond, if the exeution of the spei�a-tion an be made (or happens to be) e�ient enough, there is no need to onsider any further implemen-tation. This ompletely saves from the risk of introduing errors on the way from spei�ation to imple-mentation: the veri�ed model and the exeuted program are exatly the same objet. It may be objetedthat Petri nets are suitable for modelling but really not for programming. This is true. However, Petrinets like those used in this paper are widely used has a semantial domain for parallel programming lan-guages or proess algebra with onurrent semantis. For instane, the semantis of the parallel languageB(PN)2 [3℄ is de�ned in terms of Petri nets similar to those used in this paper. It features most usuallyexpeted high-level onstruts for programming languages, in partiular: nested delaration of typed vari-ables and FIFO ommuniation hannels; ommuniation through shared variables or hannels; atomi a-tions; ontrol �ow onstruts inluding parallelism; proedures with parameters passed by value or by refereneand allowing reursive and parallel alls [10℄; exeptions whose propagation an arry arbitrary value [11℄;or Ada-like tasking with suspend/resume or abort apability [12℄. Moreover, it an be easily extended withreal-time onstruts using the same approah to timed system as presented in the following, see [13, � 7.3℄.Another example is the Causal Time Calulus de�ned in [14℄ whih is a proess algebra with timing fea-tures having a step based semantis. Both these formalisms ould be applied to massively parallel problems,allowing to leave Petri nets in the bakground while working with muh more pleasant and onvenient nota-tions.
∗LACL, université Paris 12 � 61, avenue du général de Gaulle � 94010 Créteil, Frane �pommereau�univ-paris12.fr71



72 F. PommereauExeuting a Petri net is not di�ult when we onsider it alone, i. e., in a losed world. But as soon as thenet is embedded in an environment, the question beomes more ompliated. The �rst problem omes when thenet is timed: we have to ensure that its time referene mathes that of the environment. The seond problem isto allow an exhange of information between the net and its environment. Both these questions are addressedin this paper.The ausal time approah is a way to introdue timing features in an otherwise untimed model [7℄, inpartiular Petri nets. The idea behind ausal time is to use the expressive power of the model in order to givean expliit representation of loks in the modelled systems. In the ase of high-level Petri nets, it is possible tointrodue ounters and a distinguished tik transition whose role is to simultaneously inrement them. Theseounters thus beome the timing referene and an be used as lok-wathes by the proesses as in [15, 6, 13, 14℄.It was shown in [6, 14℄ that the ausal time approah is highly relevant sine it is simple to put into pratie andallows for e�ient veri�ation through model heking. This paper shows that this approah is also relevantwhen onrete exeution are onsidered. For the purpose of veri�ation, the hypothesis of the losed world isassumed: the Petri net whih models a system is onsidered alone, without any referene to something externalto it. The situation di�ers if we onsider the exeution of suh a Petri net in an environment whih has itsown time referene. Indeed, the tik transition of a Petri net may ausally depend on the progression of othertransitions in the net, whih results in the so alled deadline paradox [7℄: �tik is disabled until the systemprogresses�. In a losed world, this statement is logially equivalent to �the system is fored to progress beforethe next tik�, whih solves the deadline paradox. But, in the ase of an open world, one may wonder how evenis the progression of the ausal time with respet to that of the real time, whih is the time imposed by theenvironment.Moreover, if the Petri net has to ommuniate with its environment, one may ask how the net an reeiveinformation from the environment and send bak appropriate responses. Produing output is rather simplesine the net is not disturbed; but reading input (i. e., hanging the behaviour of the net in reation to thehanges in the environment) is more di�ult and may not be always possible.In this paper, we de�ne a parallel exeution mahine whose role is to run a Petri net with a tik transitionin suh a way that the tiks our evenly with respet to the real time. We show that this an be ensuredunder reasonable assumptions about the Petri net. The other role of the mahine is to allow the ommuniationbetween the Petri net and the environment and we will identify favourable situations, very easy to obtain inpratie, in whih the reation to a message is ensured within a short delay. An important property of ourexeution mahine will be that it will preserve the step sequene semantis of the Petri net: this mahine anbe seen as an implementation of the Petri net exeution rule inluding additional onstraints related to theenvironment (real time and ommuniation).In the perspetive of diret exeution of the modelled systems, it beomes natural to provide parallelexeutions of the model of a parallel system. So, our goal in proposing a parallel exeution mahine is morerelated to a question of onsisteny than to that of speedup. The question of the speed of our exeution mahinewill thus be intentionally left out of the topis of this paper. However, our de�nitions will leave enough freespae to investigate in this diretion and we will ome bak to this disussion at the end of the paper.1.1. Exeution mahines. De�ning an exeution mahine is the usual way to show that an abstratmodel, de�ned under assumptions whih may be onsidered as unrealisti, an be used for onrete exeutions.For instane, the family of synhronous languages (e. g., Esterel [2℄), relies on the synhronous hypothesis whihstates that the reation to a signal is instantaneous. This leads to onsider an in�nitely fast omputer in theabstrat model. Several exeution mahines for these languages have been de�ned (see, e. g., [1, 5℄); in allases, the solution to remove the synhronous hypothesis makes use of a ompilation stage whih produes�nite automata in whih a whole hain of ation/reation is ollapsed on a single transition. This allows aorret implementation of the instantaneous reation assuming a omputer fast enough with respet to thedelays that the environment an observe. However, this breaks the ausality relation between events andleads to rejet some systems whih may be onsidered on the abstrat level but are onretely impossible toimplement.Similar onerns arise in the ase of Petri nets with ausal time; in partiular, we have to rejet systemswhih allow runs of unbounded length between two onseutive tiks. (Suh behaviours are often alled Zenoruns.) Conerning the question of reating to the soliitation of the environment, it is easy to introdue spei�onstruts in a Petri net in order to ensure that a signal will be always taken into aount very e�iently,



Petri Nets As Exeutable Spei�ations 73provided that the environment is not �too demanding�. This is to say that we will need a omputer fast enoughwith respet to its environment, exatly like for synhronous languages.1.2. Organisation of the paper. The sequel is organised as follows. The setion 2 introdues the basinotions related to Petri nets and their semantis. The setion 3 then de�nes the lass of Petri nets we areinterested in and gives the assumptions whih must be onsidered in order to allow their real-time exeution.The setion 4 shows how suh nets an be ompiled into a form suitable for their exeution. Then, the setion 5de�nes the exeution mahine itself. We �nally onlude in the setion 6, introduing disussions about thee�ieny of an implementation.2. Basi de�nitions about Petri nets. This setion brie�y introdues the lass of Petri nets and therelated notions that will be used in the following.2.1. Multisets. A multiset over a set X is a funtion µ : X → N. We denote by mult(X) the set of all�nite multisets µ over X , i. e., suh that ∑
x∈X µ(x) <∞. We write µ ≤ µ′ if the domain X of µ is inluded inthat of µ′, and if µ(x) ≤ µ′(x), for all x ∈ X . An element x ∈ X belongs to µ, denoted x ∈ µ, if µ(x) > 0. Thesum and di�erene of multisets, and the multipliation by a non-negative integer are respetively denoted by +,

− and ∗ (the di�erene is de�ned only when the seond argument is smaller or equal to the �rst one). A subsetof X may be treated as a multiset over X , by identifying it with its harateristi funtion, and a singletonset an be identi�ed with its sole element. A �nite multiset µ over X may be written as ∑
x∈X µ(x) ∗ x or∑

x∈X µ(x)∗{x}, as well as in extended set notation, e. g., {a1, a1, a2} denotes a multiset µ suh that µ(a1) = 2,
µ(a2) = 1 and µ(x) = 0 for all x ∈ X \ {a1, a2}.2.2. Labelled Petri nets. Let S be a set of ations symbols, D a �nite set of data values (or just values)and V a set of variables. For A ⊆ S and X ⊆ D ∪ V, we denote by A⊗X the set {a(x) | a ∈ A, x ∈ X}. Then,we de�ne A

df

= S⊗(D∪V) as the set of ations (with parameters). These four sets are assumed pairwise disjoint.Definition 2.1. A labelled marked Petri net is a tuple N = (S, T, ℓ, M) where:
• S is a nonempty �nite set of plaes;
• T is a nonempty �nite set of transitions, disjoint from S;
• ℓ de�nes the labelling of plaes, transitions and ars, i. e., elements of (S × T ) ∪ (T × S), as follows:� for s ∈ S, the labelling is ℓ(s) ⊆ D whih de�nes the tokens that the plae is allowed to arry (oftenalled the type of s),� for t ∈ T , the labelling is ℓ(t)

df

= α(t)γ(t) where α(t) ∈ A and γ(t) is a boolean expression alledthe guard of t,� for (x, y) ∈ (S × T ) ∪ (T × S), the labelling is ℓ(x, y) ∈ mult(D ∪ V) whih denotes the tokens�owing on the ar during the exeution of the attahed transition. The empty multiset ∅ denotesthe absene of ar;
• M is a marking funtion whih assoiates to eah plae s ∈ S a multiset in mult(ℓ(s)) representing thetokens held by s.Notie that α(t) ould be a �nite multiset of ations. This would be a trivial extension but would leadto more ompliated de�nitions; we hoose to restrit ourselves to single ations in order to streamline thepresentation.We adopt the standard rules about representing Petri nets as direted graphs with the following simpli�a-tions: the names of some nodes (espeially plaes) may not be given; the two omponents of transition labels aredepited separately; true guards are omitted as well as brakets around sets; ars may be labelled by expressionsas a shorthand (see the example given in the �gure 2.1).

0 0,...,η

t τ(x)

x + 1 x

0 0,...,η

t τ(x)
y = x + 1

y xFig. 2.1. On the left, a Petri net whih atually denotes that given on the right, with η ≥ 0, {0, . . . , η} ⊆ D, {x, y} ⊆ V and
τ ∈ S.



74 F. Pommereau2.3. Step sequene semantis. A binding is a funtion σ : V → D whih assoiates onrete values tothe variables appearing in a transition and its ars. We denote by σ(E) the evaluation of the expression Ebound by σ.Let (S, T, ℓ, M) be a Petri net, and t ∈ T one of its transitions. A binding σ is enabling for t at M if theguard evaluates to true, i. e., σ(γ(t)) = ⊤, and if the evaluation of the annotations on the adjaent ars respetsthe types of the plaes, i. e., for all s ∈ S, σ(ℓ(s, t)) ∈ mult(ℓ(s)) and σ(ℓ(t, s)) ∈ mult(ℓ(s)).A step orresponds to the simultaneous exeution of some transitions, it is a multiset
U = {(t1, σ1), . . . , (tk, σk)}suh that ti ∈ T and σi is an enabling binding of ti, for 1 ≤ i ≤ k. U is enabled if the marking is su�ient toallow the �ow of tokens required by the exeution of the step, i. e., for all s ∈ S

M(s) ≥
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)).It is worth noting that if a step U is enabled at a marking, then so is any sub-step U ′ ≤ U . A step U enabledby M may be exeuted, leading to the new marking M ′ de�ned for all s ∈ S by
M ′(s)

df

= M(s) −
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(s, t)) +
∑

(t,σ)∈U

U((t, σ)) ∗ σ(ℓ(t, s)).This is denoted by M [U〉M ′ and this notation naturally extends to sequenes of steps. The empty step, denotedby ∅, is always enabled and we have M [∅〉M . A marking M ′ is reahable from a marking M if their exists asequene of steps ω suh that M [ω〉M ′; we will say in this ase that M enables ω. Notie that M is reahablefrom itself through a sequene of empty steps.The step sequene semantis is de�ned as the set ontaining all the sequenes of steps enabled by a net. Thissemantis is based on transitions identities but the relevant information is generally the labels of the exeutedtransitions. The labelled step assoiated to a step U is de�ned as ∑
(t,σ)∈U U((t, σ)) ∗ σ(α(t)), whih allows tonaturally de�ne the labelled step sequene semantis of a Petri net. In the sequel we will onsider only thissemantis and omit the word �labelled�.2.4. Safety. A Petri net (S, T, ℓ, M) is safe if any marking M ′ reahable from M is suh that, for all s ∈ Sand all d ∈ ℓ(s), M ′(s)(d) ≤ 1, i. e., any plae holds at most one token of eah value. The lass of safe Petrinets (inluding models abbreviating them) is very interesting:

• from a theoretial point of view, safe Petri nets never have auto-onurreny of transitions, whih allowsfor e�ient veri�ation tehniques [8℄;
• from a pragmatial point of view, safe Petri nets orresponds to the lass of �nite state Petri nets (asshown in [4℄, bounded Petri nets an be redued to safe Petri nets while preserving their onurrentsemantis), whih orrespond to realisti systems, i. e., those that an be implemented on a onreteomputer;
• from a pratial point of view, this lass was shown expressive enough to model most interestingproblems from the real world. For instane, the semantis proedures, exeptions or tasks preemptionin the language B(PN)2 do not require more than safe Petri net.Another nie property of safe Petri nets, diretly related to our purpose, is that they have �nitely manyreahable markings, eah of whih enabling �nitely many steps whose sizes are bounded by the number oftransitions in the net. For all these reasons, as in the previous works about ausal time [15, 6, 13, 14℄, werestrit ourselves to safe Petri nets.3. Petri nets with ausal time: CT-nets. We are now in position to de�ne the lass of Petri nets weare atually interested in; it onsists in safe Petri nets, with several restritions, for whih we will de�ne somespei� voabulary related to the ourrene of tiks. We assume that there exists τ ∈ S, used in the labellingof the tik transition.Definition 3.1. A Petri net with ausal time (CT-net) is a safe labelled Petri net N

df

= (S, T, ℓ, M) inwhih there exists a unique tτ ∈ T , alled the tik transition of N , suh that:
• α(tτ ) ∈ {τ} ⊗ (D ∪ V);



Petri Nets As Exeutable Spei�ations 75
• α(t) /∈ {τ} ⊗ (D ∪V) for all t ∈ T \ {tτ};
• tτ has at least one inoming ar labelled by a singleton.A tik-step is a step U of N whih involves the tik transition, i. e., suh that τ(d) ∈ U for a d ∈ D.Thanks to the safety and the last restrition on tτ , any tik-step ontains exatly one ourrene of thetik transition. On the other hand, one may notie that this de�nition is very liberal and allows to de�ne netsin whih the tik transition is not tight to inrement ounters but may produe any other e�et not relatedto time. Fortunately, we do not need a more restritive de�nition, whih lets us free to experiment di�erentapproahes in the future.The �gure 3.1 shows a toy CT-net that will be used as a running example. In this net, the role of thetik transition tτ is to inrement a ounter loated in the top-right plae. When the transition t1 is exeuted,it resets this ounter and piks in the top-left plae a value whih is bound to the variable m. This value istransmitted to the transition t2 whih will be allowed to exeute when at least m tiks will have ourred. Thus,

m spei�es the minimum number of tiks between the exeution of t1 and that of t2. At any time, the transition
t3 may randomly hange the value of this minimum while emitting a visible ation u(x) where x is the newvalue. Notie that the maximum number of tiks between the exeution of t1 and that of t2 is enfored by thetype of the plae onneted to tτ whih spei�es that only tokens in {0, . . . , η} are allowed (given η > 0).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

••
•

m

m

0
y c

c

xy n + 1n

m mFig. 3.1. An example of a CT-net, where η > 0, {a1, a2, u, τ} ⊆ S, {c, n, m, x, y} ⊆ V and {0, . . . , η} ∪ {•} ⊆ D.Assuming η ≥ 5, a possible exeution of this CT-net is:
{τ(0)} {u(2)} {a1(2)} {τ(0), u(1)} {τ(1)} {u(5)} {τ(2)} {τ(3)} {a2(4), u(0)} {τ(4)} .3.1. Tratability. A CT-net (S, T, ℓ, M) is tratable if there exists an integer δ ≥ 2 suh that, for allmarking M ′ reahable from M , any sequene of at least δ nonempty steps enabled by M ′ ontains at least twotik-steps. In other words, the length of an exeution between two onseutive tiks is bounded by δ whosesmallest possible value is alled the maximal distane between tiks.This notion of tratable nets is important beause it allows to distinguish those nets whih an be exeutedon a realisti mahine: indeed, an intratable net may have potentially in�nite runs between two tiks (soalled Zeno runs), whih annot be exeuted on a �nitely fast omputer without breaking the evenness of tiksourrenes.For example, the CT-net of our running example is intratable beause the transition t3 an be exeutedin�nitely often between two tiks: in the exeution given above, the step {u(5)} ould be repeated an arbitrarynumber of times. In the rest of this paper, we restrit ourselves to tratable CT-nets.3.2. Input and output. The ommuniation between a CT-net and its environment is modelled usingsome of the ations in transitions labels. We distinguish for this purpose two �nite disjoint subsets of S: Siis the set of input ation symbols and So is that of output ations symbols. We assume that τ /∈ Si ∪ So. Wealso distinguish a nonempty set Dio ⊆ D representing the values allowed for input and output. Intuitively, thedistinguished symbols orrespond to ommuniation ports on whih values from Dio may be exhanged betweenthe exeution mahine and its environment. Thus the exeution of a transition labelled by ao(do) ∈ So ⊗Dio isseen as the sending of the value do on the output port ao. Conversely, if the environment sends a value di ∈ Dioon the input port ai ∈ Si, the net is expeted to exeute a step ontaining the ation ai(di). In general, weannot ensure that suh a step is enabled, in the worst ase, it may happen that no transition has ai in its label.Fortunately, we show now that a net an easily be designed in order to ensure that suh an input message isalways orretly handled.



76 F. PommereauA naive way to ahieve this result is to use self-loops, like the transition t3 in the �gure 3.1. In this example,if we assume u ∈ Si and {0, . . . , η} ⊇ Dio , any requested ommuniation on u an always be handled. Unfor-tunately, self-loops lead to intratable nets sine suh transitions an always be arbitrarily repeated (rememberthe step {u(5)} above). Atually, a self-loop indiates that the CT-net is expeted to be able to respond in-stantaneously to all the messages that the environment would send on the orresponding port, whih is not arealisti assumption. Indeed, if the number of suh messages sent in a given amount of real time is not bounded,then a �nitely fast omputer annot avoid to miss some of them. So, in the following, we assume that theenvironment may not produe more than one message on eah input port between two tiks, whih will lead tothe notion of tik-reativeness. This assumption is equivalent to say that we require the CT-net to be exeutedon a omputer fast enough with respet to its environment; so, this is atually one of the lassial onditionsthat must be assumed while de�ning an exeution mahine.Let A ⊆ Si be a nonempty set of input ation symbols, we denote by req(A) the set of potential requests on
A, whih ontains all the sets of the form {a1(d1), . . . , ak(dk)} where {a1, . . . , ak} ⊆ A and (d1, . . . , dk) ∈ Dio

kfor all k ≥ 1. Eah element of req(A) is potentially a step of a CT-net.A CT-net (S, T, ℓ, M) is one-reative to A ⊆ Si i�: either, it enables only the empty step; or, there existsa step U ′ /∈ req(A) suh that M [U ′〉M ′′ and, for all U ∈ req(A), we have M [U〉M ′ and the CT-net (S, T, ℓ, M ′)is one-reative to A \ {a ∈ A | ∃d ∈ Dio , a(d) ∈ U}. Intuitively, this indutive de�nition states that, for allinput port ai ∈ Si, the CT-net an reat to any request on a as soon as it omes, after what it may miss them.On the other hand, the CT-net is never fored to exeute an ation involving an input port in A (thanks to thestep U ′). At any time, the CT-net may terminate its exeution with a deadlok.A CT-net (S, T, ℓ, M) is tik-reative to A ⊆ Si i� it is one-reative to A and, for all sequene of steps
U1 · · ·Uk suh that Uk is a tik-step and M [U1 · · ·Uk〉M ′, then the CT-net (S, T, ℓ, M ′) is tik-reative to A.This de�nition is also indutive and states that a tik-reative CT-net is almost like a one-reative net exeptthat its apability to reat is fully restored after eah tik. This guarantees that one message on a may alwaysbe handled between two tiks, whih exatly mathes our assumption. It turns out that it is easy to transform areative CT-net with self-loops into a tik-reative one. It is enough to add one plae for eah self-loop with thetype {◦, •} and marked with •, and ars suh that eah ourrene of the self-loop onsumes the • and replaeit with a ◦, so it annot our twie; on the other hand, eah ourrene of the tik-transition must reset to •the token in the added plaes. This way, self-loops annot be repeated with at least one tik in between. Aswe an see, it is easy to onstrut a tik-reative net; for instane, the �gure 3.2 shows a modi�ed version ofour running example whih is tik-reative to {u} and tratable (now, the step {u(5)} ould not be repeated atwill).

00,...,η

t1
a1(m)

t2 c ≥ m
a2(c)

0 0,...,η

t3u(x) tτ τ(n)

0,...,η

•
◦,•

••
•

m

m

0
y c

c

z

•◦

•
xy n + 1n

m mFig. 3.2. The tik-reative version of the running example, where z ∈ V and {◦, •} ⊂ D.3.3. Consisteny. We denote by U [a] the number of ourrenes of the ation symbol a in a step U , i. e.,
U [a]

df

=
∑

a(x)∈U U(a(x)). A step U is onsistent if U [a] ≤ 1 for all a ∈ Si ∪ So. A CT-net is onsistent ifits step sequene semantis only involve onsistent steps. Inonsistent steps are those during the exeution ofwhih several ommuniations take plae on the same port. Sine the transitions exeuted by a single step oursimultaneously, this means that several values may be sent or reeived on the same port at the same time. Thisis ertainly something whih is not realisti and so, we restrit ourselves to onsistent CT-nets in the following.The nets given in the �gures 3.1 and 3.2 are both onsistent. But, assuming a2 ∈ Si ∪ So, it would not bethe ase if we would replae u(x) by a2(x) in the label of the transition t3 sine we ould have and exeutionwith the step {a2(4), a2(0)} whih is not onsistent.



Petri Nets As Exeutable Spei�ations 774. Compilation of CT-nets: CT-automata. The aim of this setion is to show how to transform atratable and onsistent CT-net into a form more suitable for the exeution mahine. This orresponds to aompilation produing an automaton (non-deterministi in general), alled a CT-automaton, whose states arethe reahable markings of the net and whose transitions orrespond to the steps allowing to reah one markingfrom another. It should be remarked that this ompilation is not stritly required but allows to simplify thingsa lot, in partiular in an implementation of the mahine: with respet to its orresponding CT-net, a CT-automaton has no notion of markings, bindings, enabling, et., whih results in a muh simpler model. Anotherreason to introdue this ompilation stage is that it an be used to hek if the net of interest is really a safe,tratable and onsistent CT-net; moreover, it is an almost neessary step to ompute the value of δ (the maximaldistane between tiks) whih will be used during the exeution. So, as we annot avoid a omputation at leastequivalent to this ompilation stage, we turn it into an advantage for the exeution whih an be made muhsimpler and more e�ient.In order to reord only the input and output ations in a step U of a CT-net, we de�ne the set of the visibleations in U by ⌊U⌋ df

= U ∩ (((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)). Beause of the onsisteny, ⌊U⌋ ould not be amultiset.Definition 4.1. Let N = (S, T, ℓ, M) be a tratable and onsistent CT-net, the CT-automaton of N is the�nite automaton A(N)
df

= (SA, TA, sA) where:
• SA is the set of states de�ned as the set of all the reahable markings of N ;
• the set of transitions is TA ⊆ SA × LA × SA, where LA

df

= {A ⊆ ((Si ∪ So) ⊗ Dio) ∪ ({τ} ⊗ D)}, andis de�ned as the set of all the triples (M ′, A, M ′′) suh that M ′, M ′′ ∈ SA and there exists a nonemptystep U of N suh that M [U〉M ′ and A = ⌊U⌋;
• sA

df

= M ∈ SA is the initial state of A(N), i. e., the initial marking of N .The following holds by de�nition but should be stressed sine it states that a CT-net and the orrespondingCT-automaton have exatly the same exeutions.Proposition 4.2. Let N
df

= (S, T, ℓ, M) be a tratable and onsistent CT-net, M ′ be a reahable markingof N and (SA, TA, M)
df

= A(N).1. If M ′[U〉M ′′ for a nonempty step U then (M ′, ⌊U⌋, M ′′) ∈ TA.2. Conversely, if (M ′′, A, M ′′′) ∈ TA then there exists a nonempty step U suh that M ′′[U〉M ′′′ and
⌊U⌋ = A.As an example, the �gure 4.1 shows the CT-automaton whih orresponds to the tratable version of ourrunning example (given in the �gure 3.2). For the sake of ompatness, we assumed η

df

= 1 (the automaton for
η = 2 has 105 states and this number grows to 277 for η = 3). Moreover, we assumed {a1, a2, u} ⊆ Si ∪ So.5. The exeution mahine. We now desribe the exeution mahine. In order to ommuniate with theenvironment, a symbol ao ∈ So is onsidered as a port on whih a value d ∈ Dio may be written, whih is denotedby a← d (more generally, this is used for any assignment). Similarly, a symbol ai ∈ Si is onsidered as a porton whih suh a value, denoted by ai?, may be read; we assume that ai? = ∅ /∈ Dio when no ommuniationis requested on ai. Moreover, in order to indiate to the environment if a ommuniation have been properlyhandled, we also assume that eah a ∈ Si may be marked �aepted� (denoting that the ommuniation has beenorretly handled), �refused� (denoting that the ommuniation ould not been handled), �erroneous� (denotingthat a ommuniation on this port was possible but with another value, or that a ommuniation was expetedbut not requested) or not marked, whih is represented by �no mark�. We also use the notation ai ← markwhen an input port is being marked.Let (SA, TA, sA) be a CT-automaton and let ∆ be a onstant amount of time; we will see later on how ∆is de�ned sine it depends on the de�nition of the exeution mahine. We will use three variables:

• Θ is a time orresponding to the ourrenes of tiks;
• s ∈ SA is the urrent state;
• I ⊆ Si is the set of ports on whih the environment asks a ommuniation.The behaviour of the mahine is desribed by the algorithm given on the left of the �gure 4.2 where theexeution of a step (line 13) is detailed on the right of the �gure. Several aspets of this algorithm should beommented:
• the statement �now� evaluates to the urrent time when it is exeuted;
• the �for all� loops are parallel loops;
• the exeution of the line 8 an be parallelised also (see below);



78 F. Pommereau
0

1

2 3

4 56

7 8

9

1011 1213

14 15 16

17

1819 20 21

22

23 24

25 26

27

u(0) u(1)

a1(0) τ(0)

a1(0)

τ(0)

a1(1)

a1(0)
u(0) u(1) u(0)

u(1)
a1(1)

u(1) a2(0) u(0)
a1(0) a1(1) u(1) u(0)

a2(0)
τ(0) u(1) u(0) τ(0)

a2(0) τ(0) τ(0)

τ(0) a2(1) u(0)

u(1) u(0)

u(1)

a2(1) τ(0)

a2(1)

u(0) u(1)a2(1)
u(0)

u(1)

u(0) u(1)a2(1)
a2(1)

u(0)

u(1)

a2(1)

a2(1)

u(0),a2(1)
u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)

u(1),a2(1)

u(0),a2(1)
u(1),a2(1)

Fig. 4.1. The CT-automaton of the CT-net given in the �gure 3.2 (with η
df

= 1), the initial state is numbered 0 and �lled inblak.1: s← sA2: Θ← now3: while s has suessors do4: for all a ∈ Si do5: a← �no mark�6: end for7: I ← {a ∈ Si | a? 6= ∅}8: hoose a transition (s, A, s′)9: if A is a tik-step then10: wait until now = Θ + ∆11: Θ← now12: end if13: exeute(A, I)14: s← s′15: end while

proedure exeute(A, I) :17: for all a(d) ∈ A (a 6= τ) do18: if a ∈ So then19: a← d20: else if a ∈ Si and a? = d then21: a← �aepted�22: else23: a← �erroneous�24: end if25: I ← I \ {a}26: end for27: for all a ∈ I do28: a← �refused�29: end forFig. 4.2. The main loop of the exeution mahine (on the left) and the exeution of a step A with respet to requested inputsgiven by I (on the right).
• eah exeution of the �while� loop performs a bounded amount of work, in partiular the followingnumbers are bounded: the number of ports; the number of transitions outgoing from a state; thenumber of ations in eah step. Assuming that hoosing a transition requires a �xed amount of time(see below), ∆ is the maximum amount of time required to exeute the �while� loop δ − 1 times;
• no tik is expliitly exeuted but its ourrene atually orresponds to the exeution of the line 11.



Petri Nets As Exeutable Spei�ations 79Proposition 5.1. The algorithm presented in the �gure 4.2 ensures an even ourrene of the tiks.Proof. Let θ be the value assigned to Θ when the line 2 is exeuted. A number of transitions (at most
δ − 2) is exeuted until a tik transition is hosen. All together, the duration of these exeutions requires is
D ≤ ∆ so the line 10 waits during ∆−D. Thus, the line 11, whih orresponds to the tik, is exeuted at time
θ + D + (∆−D) = θ + ∆. By indution, we obtain that tiks are exeuted at times θ + k∆ for k ≥ 1.5.1. Choosing a transition. We still have to de�ne how a transition may be hosen, in a �xed amountof time, in order to mark �aepted� as muh as possible input ports in the set I of requested ommuniations.In order to de�ne a riterion of maximality, we assume that there exists a total order on Si. This orrespondsto a priority between the ports: when several ommuniations are requested but not all are possible, we �rsthoose to serve those on the ports with the highest priorities. Then, given I, we de�ne a partial order ≺ onthe transitions outgoing from a state and the mahine hooses one of the smallest transitions aording to ≺.This hoie may be random or driven by a sheduler. For instane, we may hoose to exeute steps as large aspossible, or steps no larger than the number of proessors, et. The de�nition of a sheduling strategy is out ofthe sope of this paper; we just need to assume that the time needed to hoose a transition is bounded (whihshould hold in the reasonable ases).For eah step A appearing on a transition outgoing from the urrent state, we de�ne a vetor VA ∈ {0, 1, 2}Siwhih represents the marks on the input ports after A would be exeuted: the value 0 stands for �aepted�or �no mark�, the value 1 for �refused� and the value 2 for �erroneous�. Thus, the value of VA(a) an be foundusing the following table, where d and d′ are distint values in Dio :

A[a] = 0 a(d) ∈ A a(d′) ∈ A

a? = d 1 0 2

a? = ∅ 0 2 2Then, A1 ≺ A2 if VA1
< VA2

aording to the lexiographi order on these vetors.Again, it is lear that building these vetors and hoosing the smallest one is feasible in a �xed amount oftime sine the number of transitions outgoing from a state is bounded. This is also feasible in parallel: all the
VA's an be omputed in parallel (as well as all their omponents) and the seletion of the smallest one is alogarithmi redution.Notie that if ≺ allows to de�ne a total order on steps, it is not the ase for the transitions sine severaltransitions may be labelled by the same step. For instane, assuming u /∈ Si ∪ So, the running example wouldgive a CT-automaton similar to that of the �gure 4.1 but in whih all the ations u(0) or u(1) would have beendeleted. In this ase, the state 13 would have two outgoing transitions labelled by ∅ and three labelled by a2(1).Proposition 5.2. Let a ∈ Si be an input ation symbol and N be a CT-net whih is tik-reative to R ∋ a.Then, the exeution of A(N) will never mark a as �erroneous� nor �refused�.Proof. Let s be the urrent state of A(N) and (s, A, s′) be the transition hosen by the exeution mahine.There are three ases.(1) If a? = ∅, then it may be marked �erroneous� or not marked. In the former ase, this means that
a(d) ∈ A for a d ∈ Dio . Then, if A = {a(d)}, beause of the tik-reativeness, there must exist a transition
(s, U ′, s′′) whih does not involve a (tik-reativeness never fores the ourrene of an input ation), otherwise,the transition (s, A′, s′′) with A′ df

= A \ {a(d)} must exists (sine it orresponds to a sub-step). In both ases,we have (s, U ′, s′′) ≺ (s, A, s′) or (s, A′, s′′) ≺ (s, A, s′) hene a ontradition with the fat that (s, A, s′) washosen. So, a must be not marked in this ase.(2) If a? = d 6= ∅ and the ommuniation on a is marked �refused�, this means that A[a] = 0. The tik-reativeness ensures that there must exist a transition (s, A ∪ {a(d)}, s′′) (by assumption, a annot have beenrequested before sine the previous tik), hene again a ontradition. So, a must be marked �aepted� in thisase.(3) If a? = d 6= ∅ and the ommuniation on a is marked �erroneous�, this means that a(d′) ∈ A for a
d′ ∈ Dio \ {d}. But there must exist a transition (s, (A ∪ {a(d)}) \ {a(d′)}, s′′) (tik-reativeness allows theourrene for any value in Dio), hene again a ontradition. So, a is also marked �aepted� here.Then, the next result shows that a ommuniation requested on a port to whih the CT-net is tik-reativeis always orretly handled (i. e., aepted) within the urrent �while� loop, whih is the best response timethat one an expet from the presented algorithm.



80 F. PommereauProposition 5.3. Let a ∈ Si be an input ation symbol and N be a CT-net whih is tik-reative to R ∋ a.If a? = d 6= ∅ before the exeution of the line 7 in the �gure 4.2, then a is marked �aepted� after the line 13has exeuted.Proof. Diretly follows from how the mahine hooses a transition and from the proposition 5.2.6. Conluding remarks. We de�ned a parallel exeution mahine whih shows the adequay of ausaland real time by allowing time-onsistent exeutions of ausally timed Petri nets (CT-nets) in a real-timeenvironment. We also shown that it was possible to ensure that the mahine e�iently reats to the soliitationof its environment by designing CT-nets having the property of tik-reativeness, whih is easy to onstrut. Inorder to obtain these results, several restritions have been adopted:
• only safe Petri nets are onsidered;
• the nets must be tratable, i. e., they are not allowed to have unbounded runs between two tiks;
• the nets must be onsistent, i. e., they annot perform several simultaneous ommuniations on thesame port;
• the exeution mahine must be run on a omputer fast enough to ensure that the environment annotattempt more than one ommuniation on a given port between two tiks.We do not onsider the tratability and onsisteny requirements as true restritions sine they atually orre-spond to what an be performed on a realisti mahine. The last restrition is atually a presription: in orderto ensure a orret ommuniation, one has to run the exeution mahine on a omputer fast enough to exeutetiks more often than the environment an produe input. Moreover, it should be notied that the frequenyof tiks is arbitrary. So, if the tiks of a CT-net are too muh sparse with respet to the requested inputs, itis easy to multiply by a onstant k all its timing onstraints in the net so tiks will our k times more often.Using non-safe Petri nets may be onsidered in the future, however, this would lead to the lass of in�nite statesystems whih does not seem realisti for the purpose of exeution.6.1. Future work. Petri nets like CT-nets have been used for a long time as a semantial domain forhigh-level programming languages and proess algebras with step based semantis (see, e. g., [3, 14℄) and thesetehniques ould be diretly applied to massively parallel languages or formalisms. In this diretion, we envisageto ombine a n-ary parallel omposition operation with symmetry redutions [9℄ allowing to the veri�ation ofvery large systems while giving modelling support for kinds of SPMD systems.6.2. Implementation issues. A preliminary version of this work proposed a sequential exeution mahineand a prototype has been suessfully implemented in Ada; this allowed to show that the evenness of tiks wasnot only possible in the theory but also easy to ahieve in an implementation. (The only �di�ulty� was toobtains ∆ using test runs at the starting of the mahine.) A parallel implementation of the version presented herehad been started but had to be delayed sine it turned out that there were still need for a ground study. Indeed,several open questions are atually ritial ones. Notie that if our goal is to perform testing or simulation,an implementation an be naive and may even be sequential. But in the perspetive of diret exeution ofthe modelled systems, the speedup beomes ruial and atually depends on the interation between severalparameters: the model of omputation, the family of parallel mahine targeted and the sheduling strategy(as disussed in the setion 5.1). All these questions were left out of the urrent paper; we thus envisagefurther researh on this subjet with the goal to identify good ombinations allowing to produe high-qualityimplementations of our exeution mahine. In partiular: how to exploit the parallelism in the presentedalgorithm strongly depends on the omputational model envisaged (whih may itself depend on the targetarhiteture); the question of storing the CT-automaton is also important if one targets a distributed memoryarhiteture. Taking all these parameters into aount may lead to several very di�erent re�nements of thealgorithm proposed above, eah speially dediated to a partiular lass of parallel omputer and parallelprogramming language or model.Related to the goal of e�ient exeutions, another interesting problem is to onnet the input/output ofthe mahine to the onrete omputer in order to delegate some omputation. Indeed, output ations may beonsidered as alls to omputational primitives, while input ations ould orrespond to the reeiving of theomputed values. This introdues delays, externals to the model, whih must be taken into aount. This anbe made by introduing further timing onstraints in the model in order to re�et the exeution times obtainedfrom benhmarks or from real-time guarantees in the ase of alls to real-time primitives. In this perspetive,onsidering Petri nets with time beomes neessary.



Petri Nets As Exeutable Spei�ations 816.3. Conlusion. We believe that the framework proposed in this paper an be used to build onreteparallel appliations in whih the ontrol �ow ould be ensured by Petri nets while a large part of the omputationwould be delegated to dediated primitives with known performanes. Using Petri nets for both the modellingand the exeution allows to verify and run the same objet, saving from the risk to introdue errors on the wayfrom a model to its implementation, while allowing exeutions even during the early stages of the design.REFERENCES[1℄ C. André F. Boulanger, A. Girault, Software Implementation of Synhronous Programs, ICACSD'2001, IEEE ComputerSoiety, 2001.[2℄ G. Berry, The foundations of Esterel, Language and Interation: Essays in Honour of Robin Milner. MIT Press, 1998.[3℄ E. Best and R. P. Hopkins, B(PN)2 � A basi Petri net programming notation. PARLE'93. LNCS 694, Springer, 1993.[4℄ E. Best and H. Wimmel, Reduing k-safe Petri nets to pomset-equivalent 1-safe Petri nets, ICATPN'00. LNCS 1825,Springer, 2000.[5℄ E. Boufaïd, Mahines d'ex'eution pour langages synhrones, PhD Thesis, University of Nie-Sophia Antipolis, 1998.[6℄ C. Bui Thanh, H. Klaudel and F. Pommereau, Petri nets with ausal time for system veri�ation, MTCS'02. ENTCS,Elsevier, 2002.[7℄ R. Durhholz, Causality, time, and deadlines, Data & Knowledge Engineering, 6. North-Holland, 1991.[8℄ J. Esparza, Model heking using net unfoldings, Siene of Computer Programming, Elsevier, 1994.[9℄ T. Junttila, On the Symmetry Redution Method for Petri Nets and Similar Formalisms, PhD Thesis, Helsinki Universityof Tehnology, 2003[10℄ H. Klaudel, Compositional High-Level Petri nets Semantis of a Parallel Programming Language with Proedures, Sienesof Computer Programming 41, Elsevier, 2001.[11℄ H. Klaudel and F. Pommereau, A onurrent semantis of stati exeptions in a parallel programming language,ICATPN'01. LNCS 2075, Springer, 2001.[12℄ H. Klaudel and F. Pommereau, A lass of omposable and preemptible high-level Petri nets with an appliation to multi-tasking systems, Fundamenta Informatiae, 50(1):33�55. IOS Press, 2002.[13℄ F. Pommereau, Modèles omposables et onurrents pour le temps-re'el, PhD. Thesis, University Paris 12, Frane, 2002.[14℄ F. Pommereau, Causal Time Calulus, FORMATS'03. LNCS 2791, Springer, 2004.[15℄ G. Rihter, Counting interfaes for disrete time modeling, Tehnial report 26, GMD. September 1998.Edited by: Frédéri LoulergueReeived: June 8, 2004Aepted: June 9, 2005


