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PARALLEL IMPLEMENTATION OF UNIFORMIZATION TO COMPUTE THE

TRANSIENT SOLUTION OF STOCHASTIC AUTOMATA NETWORKS

HAÏSCAM ABDALLAH∗

Abstract. Analysis of Stochastic Automata Networks (SAN) is a well established approach for modeling the behaviour of
computing networks and systems, particularly parallel systems. The transient study of performance measures leads us to time and
space complexity problems as well as error control of the numerical results. The SAN theory presents some advantages such as
avoiding to build the entire infinitesimal generator and facing the time complexity problem thanks to the tensor algebra properties.

The aim of this study is the computation of the transient state probability vector of SAN models. We first select and modify
the (stable) uniformization method in order to compute that vector in a sequential way. We also propose a new efficient algorithm
to compute a product of a vector by a tensor sum of matrices. Then, we study the contribution of parallelism in front of the
increasing execution time for stiff models by developing a parallel algorithm of the uniformization. The latter algorithm is efficient
and allows to process, within a fair computing time, systems with more than one million states and large mission time values.
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1. Introduction. This paper presents a parallel version of the transient analysis for Continuous Time
Markov Chains (CTMCs) via Stochastic Automata Networks (SANs). The computation of the transient dis-
tribution of CTMC gives the main performance measures such as reliability and availability. Generally, we are
facing the problem of computation time due to the explosive growth of the state space and the stiffness. SANs,
introduced by Brigitte Plateau [1], may be a good solution to that problem.

The use of SANs is becoming important in performance modeling issues related to parallel and distributed
computer systems [2]. Those systems are often viewed as collections of components that operate more or less
independently. They require only infrequent interaction such as synchronizing their actions or operating at
different rates depending on the state of parts of the overall system. The components are modeled as individual
stochastic automata that interacts with each other. A module (automaton) is modeled by a set of states, and the
event or action of the module is modeled by a transition from a state to another. A single automaton represents
only the state of one module; additional information is used to express interactions among the modules. On each
transition, a label gives information about the timing and the probability of events occurrence. The transitions
and the events are described by some matrices, for each automaton. We focus on synchronizing dependence,
i. e., local and events matrices are constant. Under appropriate Markovian assumptions, the behaviour of the set
of automata may be modeled by a CTMC, which state space is the cartesian product of the all the space states
of the automata. It has been shown that the infinitesimal generator of the resulting CTMC, also known as the
descriptor, can be obtained automatically into a compact formula, by means of Kronecker (tensor) algebra [3].
The consequence is that the state transition matrix is not stored, not even generated.

We are interested in the computation of the transient solution of SANs while they are very often analyzed
in the stationary or quasi-stationary cases [4, 5]. The challenge is to choose a method that, at the same time,
bounds the global error and deals with the time complexity. Moreover, the algorithms of that method must be
parallelizable. Some studies have been done in the transient case, when the state space is reasonable. Among
them, IRK3 (Implicit Runge-Kutta method of order 3) has been used [6, 7]. This method deals efficiently with
stiff models, for large mission time t. But unfortunately, its time complexity is unpredictable and the global
error is difficult to bound. A consequence of this latter drawback is that an accuracy cannot be chosen a priori.
The Uniformized Power technique (UP) has also been proposed [8]. This method is very fast for systems with
large values of t, but only usable in the case of moderate state spaces. The Standard Uniformization method
(SU) has proved its efficiency for reasonable values of t, even when the state space size is important [9, 10].
This efficiency is altered when t increases. The main advantage of this technique is the possibility of bounding
the global error and predicting the time complexity. The most part of the algorithms are sequential.

In this study, we first adapt the SU method to compute the transient solution of SANs. Next, we make a
parallel implementation of the SU method in order to deal with the case of large values of t. We also derive a
new parallel algorithm which computes the multiplication of a vector by a Kronecker tensor sum of matrices.
This implementation uses an efficient parallel multiplication of a vector by a tensor product of matrices [11].
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The resulting global algorithm has a speedup which remains in average greater than 80%. It allows us to deal
efficiently with problems that has not been solved yet. The structure of the paper is as follows. Section 2 sets
the problem and includes a detailed sequential analysis. Section 3 is dedicated to the parallel algorithms. The
numerical results on an Asynchronous Transfer Mode (ATM) network are presented in Section 4. The paper is
concluded with Section 5.

2. Problem formulation. We consider a SAN that consists of N individual automata, A(k), k =
1, . . . , N . The number of states in the kth automaton is denoted by nk for k = 1, 2, . . . , N . Let X(k),
for k = 1, . . . , N , be the unidimensional CTMC associated with the automaton A(k), Q(k) the infinitesimal
generator of X(k) and Π(k)(0) its initial distribution vector. Let us denote by Π(k)(t) the state probability vector
of X(k) at time t. The overall model (the SAN) is described by a multidimensional CTMC X = {Xt, t ≥ 0},

which state space and size are respectively E =
∏N

k=1 E(k) and M =
∏N

k=1 nk. Its infinitesimal generator
(descriptor) and its initial distribution are denoted by Q and Π(0). At time t, the transient distribution of the
CTMC X is given by the vector Π(t). Our goal is the computation of Π(t) for a given value of the system’s
mission time t. The vector Π(t) is solution of the first homogenous linear differential equations, known as
Chapman-Kolmogorov equations:

∂

∂t
Π(t) = Π(t)Q; Π(0) given. (2.1)

When the automata are independent, the descriptor Q is the tensor sum of the N infinitesimal generators
Q(k), k = 1, . . . , N , resulting from the local transitions:

Q =

N
⊕

k=1

Q(k).

It follows that:

Π(t) =
N
⊗

k=1

Π(k)(t). (2.2)

Relation (2.2) leads us to the computation of vector Π(k)(t), k = 1, . . . , N , for CTMCs with moderate state
space size nk. An efficient method, like SU or UP, can be selected according to the problem’s size and mission
time t.

2.1. Dependent automata. Let T be the total number of the system’s synchronizing events and for all

i = 1, . . . , T , E
(k)
i+ the matrix of event i over automaton A(k), k = 1, . . . , N ; E

(k)
i− is the regularisation matrix.

The descriptor Q is then expressed as an ordinary sum of a local part and a synchronizing part [3, 4]:

Q =

N
⊕

k=1

Q(k) +

2T
∑

i=1

N
⊗

k=1

E
(k)
i where E

(k)
i ∈

{

E
(k)
i+ , E

(k)
i−

}

. (2.3)

It is important to note that
⊕N

k=1 Q(k) can be transformed into ordinary sum of tensor products of matrices as
follows

N
⊕

k=1

Q(k) =

N
∑

k=1

In1 ⊗ · · · ⊗ Ink−1
⊗Q(k) ⊗ Ink+1

⊗ · · · ⊗ InN
, (2.4)

where Ink
, k = 1, . . . , N , is the nk order identity matrix. Consequently, the descriptor Q can be written under

the form:

Q =

N+2T
∑

i=1

N
⊗

k=1

Q
(k)
i , with Q

(k)
i ∈ {Ini

, Q(k), E
(k)
i }. (2.5)

Most of the time, expression (2.5) is used to solve the overall model (the CTMC X), in order to transform
the problem into the computation of a product vector-matrix, where the matrix is a tensor product of several
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matrices. We adopt expression (2.3) to compute the transient distribution. Indeed, we develop, at the end of
this section, a specific algorithm that computes the product of a vector by a tensor sum of matrices. This
algorithm has the same time complexity as that which computes the product of a vector by a tensor product of
matrices. Consequently, compared to (2.5), the form (2.3) allows an important saving in time complexity.

Let us remind that the major problem is the choice of methods that solve (2.1) taking into account the
global error. An efficient error control mechanism is used by UP and SU methods. The UP technique performs
well for CTMCs with large values of t and moderate state spaces while the SU method works better for CTMCs
with moderate values of t and large state spaces. The basic idea is, first of all, to implement the SU method for
the SAN and next, analyze the contribution of parallelism when t increases.

For Q = (qij)i,j=1, ..., M given, the expression of Π(t) obtained by the SU method is [6, 12]:

Π(t) =

∞
∑

n=0

p(n, qt)Π(0)P̃n, (2.6)

where q ≥ max1≤i≤M | qii |, p(n, qt) = e−qt (qt)n

n! , and P̃ = I + Q/q; I is the M order identity matrix.
The previous infinite sum can be truncated at a step NT such that

1−

NT
∑

n=0

p(n, qt) ≤ ε, (2.7)

where ε is a tolerance, given a priori by the user. That tolerance also bounds the global error on Π(t) by SU.
Let us note that for a given value of ε, NT is always greater than qt.

Let Π̃(n), n = 1, . . . , NT , be the vector Π(0)P̃ (n). These NT vectors are computed by the following recurrence
relation:

Π̃(n) = Π̃(n−1)P̃ , n ≥ 1 ; Π̃(0) = Π(0). (2.8)

From a time complexity point of view, the computation of Π(t) requires one vector-matrix product by iteration
(relation (2.8)). Using a compact storage for Q, the time complexity may be reduced to O(NT η) where η is the
number of non zero elements in Q.

The SAN methodology has a first advantage of avoiding to build the whole generator Q. Using relations
(2.3) and (2.8), we have:

Π̃(n) = Π̃(n−1) +
1

q

[

Π̃(n−1) ⊕N
k=1 Q(k)

]

+
1

q

2T
∑

i=1

[

Π̃(n−1) ⊗N
k=1 E

(k)
i

]

, n ≥ 1, (2.9)

with Π̃(0) = Π(0) = ⊗N
k=1Π

(k)(0) given.
Another advantage of the SAN is the possibility of developing specific sequential and parallel algorithms to

compute a vector-tensor product or sum of matrices. Those algorithms are often faster than the classical ones
for which Q is entirely given (cf. 2.2.2 and 3).

2.2. Sequential approach.

2.2.1. Product of a vector by a tensor product of matrices. The computation of the vector y =
x
⊗N

k=1 A(k) given the vector x and the N (small) matrices A(k), can be done by expressing each element

of
⊗N

k=1 A(k) as a product of N elements of A(k), k = 1, ..., N . The time complexity of the algorithm is

O(N
∏N

k=1 η(A(k))), where η(A(k)) is the number of non-zero elements in the matrix A(k).
Because this time complexity is generally very large and the matrix A(k) (here Q(k)) have a small value of
η(A(k)), an algorithm based on the perfect shuffle is used [1, 13]. Such an algorithm, called TENS, has the
following time complexity

O

(

M

N
∑

k=1

η
(

A(k)
)

nk

)

(2.10)
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Let αk = η(A(k))
nk

be the mean number of non-zero terms in rows or columns of A(k) and let us set it to α. It

is clear that an algorithm based on the perfect shuffle is better than a classical one if α > N
1

N−1 . The SANs
satisfy very often the case.

2.2.2. Product of a vector by a tensor sum of matrices. For computing the vector z = x
⊕N

k=1 A(k),

we transform
⊕N

k=1 A(k) into an ordinary sum of tensor product of matrices using relation (2.4). More precisely,
if we define

Mu
l =

l
∏

k=u

nk (2.11)

and n̄k = M/nk, we have

x

N
⊕

k=1

A(k) =

N
∑

k=1

x
(

I
M

k−1
1
⊗A(k) ⊗ IMN

k+1

)

. (2.12)

The computation of the vector z is based on the product

x
(

I
M

k−1
1
⊗A(k) ⊗ IMN

k+1

)

. (2.13)

At each iteration k, all the matrices, except A(k), are set to identity matrix. Algorithm 1, called TENSk (kth

iteration of TENS), is a particular case of a perfect shuffle to compute (2.13). In this algorithm, we consider
nleft = Mk−1

1 and nright = MN
k+1. The time complexity of the algorithm TENSk is O

(

n̄k . η
(

A(k)
))

. Lines 5-8

Input : nk, A(k), x, nleft, nright

Output : Y = x
(

I
M

k−1
1
⊗A(k) ⊗ IMK

k+1

)

1: base← 0 ; jump← nk.nright

2: for block = 0, . . . , nleft − 1 do

3: for offset = 0, . . . , nright − 1 do

4: index← base + offset
5: for h = 0, . . . , nk − 1 do

6: Zh ← xindex

7: index← index + nright

8: end for

9: Z ′ = Z.A(k)

10: index← base + jump
11: for h = 0, . . . , nk − 1 do

12: Yindex ← Yindex + Z ′
h

13: index← index + jump
14: end for

15: end for

16: base← base + jump
17: end for

Algorithm 1: Algorithm TENSk for computing Y = x
(

I
M

k−1
1
⊗A(k) ⊗ IMN

k+1

)

and 11-16 describe the permutations required by this algorithm. If TENS+ is the algorithm which computes
z by calling N times TENSk, the time complexity of such an algorithm is

O

(

N
∑

k=1

n̄k . η
(

A(k)
)

)

= O

(

M

N
∑

k=1

η
(

A(k)
)

nk

)

(2.14)

It is important to note that this time complexity is identical to that of the computation of x
⊗N

k=1 A(k) given
by relation (2.10). In the following section, we give a parallel version of this algorithm.
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3. Parallel implementation. Our goal is the parallelization of the computation algorithm of the vector
Π(t) based on relation (2.9). Taking into account the quantity of data (matrices and vectors) to be processed, it
is quite necessary to choose a program scheme in which each processor owns some data, to which it applies some
instruction streams. These instruction streams can be chosen identical for all the processors (SPMD: Single
Program, Multiple Data). This scheme is easier to implement than the case where several algorithms are built,
one for each processor (MIMD: Multiple Instruction streams, Multiple Data). We place ourselves in the SPMD
mode. A crucial problem in this kind of implementation is the load balancing. Each node must have the
same amount of work in order to assure a certain equilibrium and efficiency. It is therefore important to use a
good decomposition and task repartition technique. This repartition must minimize a function, relative to the
execution time of the program over P processors.

In order to make a parallel implementation in SPMD mode over P processors, we need a data decomposition
into P subsets, determining each processor’s task. This task is mainly composed with computation phases ended
by synchronization phases.

The first part of our work consists in implementing relation (2.9) over P processors. At each step, this
relation is essentially made with matrix-vector products, where the matrix is a tensor product or a tensor sum
of matrices. First, we are going to deal with the tensor product case. Next, we shall proceed with the tensor
sum. We shall end by the global algorithm.

3.1. Product of a vector by a tensor product of matrices. In order to compute y = x
⊗N

k=1 A(k)

over P processors, we are going to use the algorithm proposed in [11]. The data are distributed according to
the following scheme:

— Decomposition of P in N integers d1, d2, . . . , dN such that dk divides nk. Let us notice that this
decomposition is not unique, but all the possible decompositions are equivalent from a time complexity
point of view. Nevertheless, a good criterium of choosing a decomposition instead of another is that
the sum of the terms must be minimum.

— For each k ∈ {1, . . . , N}, build a partition of Gk = {1, . . . , nk} in dk subsets Gkl, l = 1, . . . , dk, i. e.,

dk
⋃

l=1

Gkl = Gk.

That partition must be made respecting the load balancing between the P processors.
Let us consider the following indexation scheme.

(l1, l2, . . . , lN−1, lN ) = l[1,N ] ⇋ (. . . ((l1)n2 + l2)n3 . . .) =

N
∑

k=1

lkMN
k+1, (3.1)

where Mu
l is given by relation (2.11). For any processor p, considering relation (3.1), we have the following

correspondence:

p ⇋ w[1,N ]

and thus the vector allocation is done the following way:

w[1,N ] ←− y(l1, l2,..., lN ), with lk ∈ Gkwk
, k = 1, . . . , N.

The proposed algorithm is recursive with N steps. It is based on the canonical factorization of the tensor
product, such that at each step, only one matrix of the product is used. Each processor uses its own data for its
computations, then sends the results to the processors that will need them in the following step. In the same
time, it receives the data it will need for the next step. The communications between processors are expressed
using simple primitives:

send: a processor send a message to a single processor.
receive: a processor receives a message from a single processor.
broadcast: a processor send a message to several processors.

These primitives are efficiently implemented over almost all the existing architectures [14]. The described
algorithm uses an overlapping of communications and computations, avoiding bufferization. Another advantage
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of that algorithm is a message is sent to a processor if and only if it needs it. The number of communications
is therefore reduced to the minimum.

The execution time of a parallel program depends essentially on the communications. The transmission
time of a message ofM bytes between two processors p1 and p2 over a distance d = dist(p1, p2) is represented
by the linear model [15]:

t(d,M) =M.tc(d,M) + τ(d,M),

where tc(d,M) is the transmission time of one byte and τ(d,M) is the start-up time. It depends on d, but both
of the parameter may be function of M if the computer uses different protocols of communication according
message size (e. g. Intel iPSC/860). Finally, the execution time is the product of one communication time (the
above linear function) by the number of communications.

The algorithm of a product vector-tensor product of matrices, that we shall refer to as PARATENS, executes
at most Γ(P ) communication steps, Γ(P ) being the number of communication steps necessary to broadcast a
message to P processors. This number depends on the topology, for example Γ(P ) = log(P ), for hypercube
topology. Let us note that the arguments of PARATENS are the vector and the matrices of the tensor product.

3.2. Product of a vector by a tensor sum of matrices. Let us remind that (relation (2.4)):

N
⊕

k=1

A(k) =

N
∑

k=1

(

I
M

k−1
1
⊗A(k) ⊗ IMN

k+1

)

. (3.2)

The obvious way of computing z = x
⊕N

k=1 A(k) is as follows: at each iteration k, all the matrices arguments,
except one, are set to identity. Then, PARATENS is used to complete the step. This results in executing
PARATENS N times. But, we notice that at any iteration k, the expression

V
(

I
M

k−1
1
⊗A(k) ⊗ IMN

k+1

)

is computed, where V is the vector resulting from the iteration k − 1. Therefore, the result may be obtained
by executing an algorithm such that the execution time is equal to that of PARATENS. That algorithm, called
PARATENS+, is presented below (Algorithm 2). In this algorithm, PARATENSk denotes the procedure
that carries out the kth iteration of PARATENS.

Input: x, nk, A(k), k = 1, . . . , N
Output: z = x

⊕N
k=1 A(k)

Y = 0
for k = 1, . . . , N do

Y ← Y + PARATENSk(nk, A(k), Y )
end for

Algorithm 2: Parallel algorithm of the product vector-tensor sum of matrices

3.3. Implementation of the global algorithm. Algorithm 3 computes the vector Π(t) over P pro-
cessors. The first step of this algorithm consists in computing the uniformized rate q by following way. By
definition,

q ≥ max
i
| qii |, i = 1, . . . , MN

1 ,

where qii are the diagonal elements of the descriptor Q (relation (2.3)). Because the square matrix Q is an
infinitesimal generator, then we have

qii =

M
∑

j=1

qij , j 6= i,
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Input: Q(k), E
(k)
i , Π(0), t, ε

Output: Π(t)

Compute q and NT \* Relation (2.7)*\
Compute Q/q
e0 ← 1 ; Π̃p(0)← Πp

0 ; Πp(t)← Πp
0

for j = 1, . . . , NT do

ej ←
qt
j
ej−1

PARATENS+(Q(1), . . . , Q(N), Π̃(j−1)) \* Π̃(j−1) ⊕N
k=1 Q(k) *\

for k=1,. . . ,2T do

PARATENS(E
(1)
k , . . . , E

(N)
k , Π̃(j−1)) \* Π̃(j−1) ⊗N

k=1 E
(k)
i *\

end for \* Results in Π̃(j)p

for each processor p *\

Πp(t)← Πp(t) + ejΠ̃
(j)p

end for

Algorithm 3: Parallel algorithm of the computation of Π(t) over P processors

where M = MN
1 is the size of the matrix Q. Finally,

q ≥ max
i
|

M
∑

j=1

qij |, i = 1, . . . , M.

The rate q is obtained by computation of the vector

Y = Q×







1
...
1






,

where all the diagonal elements of Q are substituted by zero. Next, we choose q such that

q = max
i
| Yi |, i = 1, . . . , M.

The computation of Π(t) requires, at each step, one execution of PARATENS+ and 2T executions of
PARATENS. The time complexity of the global algorithm is minimum due to the fact that all the algorithms
are optimum in communications number.

4. Numerical results.

4.1. The ATM example. In this example, we describe a congestion control of an ATM (Asynchronous
Transfer Mode) network. The ATM [16] was conceived to face the transmission of new types of data (voice,
video, etc.). It is a specific packet oriented transfer mode based on fixed length cells of 53 bytes. These cells
result from the splitting of the input streams. A source connected to the network inserts its cells into free spaces
not used by the other sources. High speed connections of this kind may exceed 600Mbits/s.

A crucial problem in such networks is the congestion control. Moreover, this problem must be treated with
integration of quick adaptation and reaction to high speed connections. This problem is responsible for loss
of information (buffers saturation) and transmission time increase. Solving this problem consists in reducing
the congestion with a preventive and adaptive method. The classical techniques are not always applicable,
on account of the high speed in the ATM networks. It is therefore necessary to establish adapted control
mechanisms. The congestion control in ATM network may be executed at different level according to the kind
of information carried and the traffic’s characteristics. Three levels are possible:

— Admission level
— Burst level
— Cell level.

At admission level, the system determines whether a connection can be progressed or should be rejected based
on the resource availability in the network: it is an access control. At burst level, a control mechanism (such as
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the leaky bucket) checks, permanently, that the input flow respects the negotiated traffic contract: it is a flow
control. At cell level, the control is done using the CLP bit (Cell Loss Priority) contained in the header of each
cell. This bit makes the difference between cells according to their priority. In congestion case, low priority cells
are destroyed. Only high priority cells are kept in the network.

The Leaky Bucket (LB) [17] is an access control mechanism in the ATM network. This control is performed
using tokens. These tokens are given to each cell when it enters the network. This mechanism may be im-
plemented in several ways. We focus on the one called the Virtual Leaky Bucket (VLB) [18]. In this kind of
LB, three buffers are needed. The first one welcomes the user’s cells, and the others are respectively used for
green and red tokens. When a cell arrives in the first buffer Bc, if that one is not full, it is kept there waiting
to be served. A service to a cell consists in giving it a green token coming from the buffer Bg. This token
represents its permission to access into the network. Otherwise, if Bc is full, the cell may be lost (rejected),
even if the network has sufficient resources to accept it, without altering the quality of service. In order to avoid
this situation, red tokens are generated by the buffer Br. A threshold S is fixed. If Bg is empty while there
are less than S cells in Bc, those cells should wait for new green tokens to be generated, before they enter the
network. On the contrary, if there are more than S cells in Bc when Bg is empty, they should be able to access
the network with red tokens if, of course, Br is not empty. This mechanism is described by figure 4.1.

λc

λr λg

µ 1 Cell + 1 tokenCells

Red tokens Green tokens

Br Bg

Bc

Fig. 4.1. The Virtual Leaky Bucket

The ATM mechanism is modeled by a SAN composed with three automata A(1), A(2) and A(3). These
automata represent respectively the content of buffers Bc, Bg and Br. Each automaton A(k) is supposed to
haves nk states, k = 1, 2, 3. These states are numbered from 0 to nk − 1. The threshold of buffer Bc is set to
S. The events that occur in the system are as follows:

• Local events
— arrival of a cell with rate λc, a local event to A(1)

— arrival of a green token with rate λg, a local event to A(2)

— arrival of a red token with rate λr, a local event to A(3).
• Synchronizing events

— s1: departure of a cell with a green token (rate µ), acting on both A(1) and A(2)

— s2: departure of a cell with a red token (rate µ), acting on both A(1) and A(3).

Figure 4.2 shows the behaviour of each automaton for the case where n1 = 4, n2 = n3 = 3 and S = 1.

The transitions in A(1) are either cells arrivals (with rate λc) or cells departures (service). A departure is
also synchronization transition because a cell leaves Bc with a token (green if the number of cells in Bc is less



Parallel Implementation of Uniformization to Compute the Transient Solution of Stochastic Automata Networks 61

A(1)

A(2)

A(3)

0 1 2 3

(s1, µ, 1)× (s2, µ, 1) (s1, µ, 1)× (s2, µ, 1)

λc λc λc

(s1, µ, 1)

0 1 2

(s1, µ, 1) (s1, µ, 1)

(s2, µ, 1)
λg λg

0 1 2

(s2, µ, 1) (s2, µ, 1)

λr λr

Fig. 4.2. The automata transitions diagram of the SAN associated to the Virtual Leaky Bucket

than S and red if not). The service rate is always µ and the occurrence probability (routing probability) is 1,
only one choice being possible. The transitions in A(2) and A(3) are arrivals (with rates λg or λr) of green or
red tokens or their departures. A token departure means that a cell has been served, therefore synchronization
events s1 and s2 stand. These transitions have rate µ and also an occurrence probability equals to 1. The fact
that a red token is usable only when Bg is empty is modeled by the loop around state 0 of automaton A(2).

The SAN modeling the VLB is determined by the descriptor Q and the initial distribution Π(0) as follows.
Let be, for k = 1, 2, 3,

Q(k) the infinitesimal generator associated to automaton A(k),

E
(k)
1 the positive event matrix of event s1 over automaton A(k), and

E
(k)
2 the positive event matrix of event s2 over automaton A(k).

The descriptor is given by

Q = Q(1) ⊕Q(2) ⊕Q(3) + E
(1)
1 ⊗ E

(2)
1 ⊗ E

(3)
1 + E

(1)
2 ⊗ E

(2)
2 ⊗ E

(3)
2 .

If Π(k)(0), k = 1, 2, 3, denotes the initial distribution of the kth automaton A(k), we have Π
(k)
1 (0) = 1 and for

i ≥ 2, Π
(k)
i (0) = 0. The global initial distribution (of the SAN) is Π(0) such that Π(0) = ⊗3

k=1Π
(k)(0).
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4.2. Performance analysis. In order to compute the vector Π(t) for our SAN model, we consider n1 =
256, n2 = 128 and n3 = 32. This situation means that buffers Bc, Bg and Br have a limited capacity of 255, 127
et 31 respectively. The threshold S is fixed to 200. Thus, the descriptor Q has an order M = 220 and the system

has 1.048.576 states. It is important to note that only the matrices Q(k) and E
(k)
i , k = 1, 2, 3 and i = 1, 2,

are stored by using a compact storage scheme. The rates values are such that λb = λc = λ = 0.5 and µ = 1.
For evaluating the performance of our global algorithm, we execute it on a cray t3e, a distributed memory
parallel machine. It possesses up to 256 processing elements, each running at 300 MHZ. The computations of
the program (written in Fortran) are done in numerical arithmetic double precision.

We first focus on the CPU time of our algorithm as function of the mission time t and the number of
processors P . We consider t = 10i, i = 0, . . . , 5 and P = 32, 64, 128. Next, we compute the speedup SP and the
efficiency EP as function of P . For the SU method, the value of ε is fixed to 10−10 (cf. relation (2.7)).

Table 4.1

CPU time (s) for computing Π(t) as function of t and P

t 1 10 102 103 104 105

P=32 61.72 222.17 1745.45 14599.34 137696.21 (e) 1350907.9 (e)
P=64 30.55 137.76 912 7628.15 71945 (e) 705842.6 (e)
P=128 1.6 7.96 48.16 427.93 3791.89 37201.16

Table 4.1 includes the CPU time values for computing Π(t) as function of t and P . In this table, the
notation (e) means that corresponding CPU time values are estimated taking advantage of the SU method for
estimating a priori the time complexity. A lecture of this table shows that even when t = 105, the vector Π(t)
can be evaluated with 128 processors in about 10 CPU hours. This table also shows the feasibility limits of
some problems as function of the state space size M , mission time t, and number of processors P . Speedup

Table 4.2

Speedup and efficiency as function of P

P 32 64 128
SP 29 54 100
EP 0.90 0.84 0.78

and efficiency, as function of P , are given in Table 4.2. The values of SP increases with P ; the CPU times is
then inversely proportional to P . Table 4.2 shows that the value of EP remains in average greater than 80%,
meaning a good use of processors and a low communication time.

It is important to note that the given numerical results depend on the SAN model. The speedup SP

decreases when N increases [19]. It is then possible to aggregate some automata [20] in order to obtain the
same value of N . The mean number α of non-zero terms in rows or columns of matrices used in the tensor
sums and products increases without modifying significantly the efficiency EP . If we consider complex SANs for
which N is large (N increases), it is difficult to predict the expected speedup starting from the given application.
More complex applications constitute the goal of our future work.

5. Conclusion. In this study, we addressed the problem of transient solution of SAN. This modelisation
methodology allows to treat complex parallel systems by avoiding the built of the entire infinitesimal generator.
In the computation of the transient state probability vector, we faced the problem of computation time, espe-
cially, for large mission time values. We first adapted the SU method to compute this vector and developed an
new sequential algorithm which computes a product of a vector by a tensor sum of matrices. Next, we imple-
mented a parallel algorithm of the SU method in order to deal with the increasing of the time complexity with
the mission time. The parallel version of this implementation uses an efficient algorithm computing a product of
a vector by a tensor product of matrices and a parallel version of the presented algorithm. The interest of used
algorithms is the minimization of communication time between processors. We presented numerical results of a
SAN modeling an ATM network with 1048000 states and large mission time values. Some CPU time values are
given as function of mission time and number of processors. We also given speedup and efficiency as function
of number of processors. Even a decreasing of the efficiency when the number of processors increases, the value
of this efficiency remains, in average, greater than 80%.
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