
Scalable Computing: Practice and Experience

Volume 7, Number 3, pp. 51–59. http://www.scpe.org
ISSN 1895-1767

c© 2006 SWPS

AN EFFICIENT FAULT-TOLERANT ROUTING STRATEGY FOR TORI AND MESHES∗

M. E. GÓMEZ, P. LÓPEZ AND J. DUATO†

Abstract.

In massively parallel computing system, high performance interconnection networks are decisive to get the maximum perfor-
mance. While routing is one of the most important design issues of interconnection networks, fault-tolerance is another issue of
growing importance in these machines, since the huge amount of hardware increases the probability of failure. This paper proposes a
mechanism that provides both, scalable routing and fault-tolerance, for commercial switches to build direct regular topologies, which
are the topologies used in large machines. The mechanism is very flexible and the hardware required is not complex. Furthermore,
it allows a high number of faults having a minimal effect on performance.

Key words. Fault-tolerance, memory-effective routing, regular topologies, adaptive routing.

1. Introduction. In large parallel computers high-performance interconnection networks are decisive for
reaching the maximum performance. While routing is one of the most important design issues of interconnection
networks, fault-tolerance is another issue of growing importance, since the huge amount of hardware of large
machines increases the probability of failure. Failures in the interconnection network may isolate a large fraction
of the machine. Two fault models have been defined in order to deal with permanent faults: static and dynamic.
In a static fault model, all the faults are known in advance when the machine is (re)booted. It needs to be
combined with checkpointing techniques in order to be effective. In a dynamic fault model, once a new fault
appears, some techiques are applied in order to appropriately avoid the faulty component without stopping
the machine. Several approaches have been used to tolerate faults in the interconnection network. Replicating
components incurs in a high extra cost. Another technique is based on reconfiguring the routing tables. This
technique is extremely flexible but it may kill performance. However, most of the solutions proposed in the
literature are based on fault-tolerant routing algorithms able to find an alternative path when a packet can
encounter a fault. We proposed [5] a fault-tolerant routing mechanism for direct topologies that incurs in a
minimal decrease of performance in the presence of faults, and reaches a reasonably high level of fault-tolerance,
without disabling any healthy node and without requiring too much extra hardware.

As commented, in addition to fault-tolerance, routing is another important issue. The routing strategy
determines the path that each packet follows between a source–destination pair. Routing is deterministic if
only one path is provided, or adaptive, if several paths are possible between a source-destination pair. Routing
strategies can be also classified depending on the place where routing decisions are taken. When using source
routing, the source node calculates the path prior to packet injection and stores it in the packet header. When
using distributed routing, each switch computes the next output port. The packet header only contains the
destination node. Distributed routing has been used in most hardware routers for efficiency reasons.

Distributing routing is implemented following two different approaches. In the first approach, some hardware
in the switches computes the output port as a function of the current and destination nodes and the status of
the output port. With the use of clusters of workstations, routing based on forwarding tables was introduced.
In this approach, there is a table at each switch that contains, for each destination node, the output port that
must be used. The main advantage of table-based routing is that any topology and any routing algorithm can
be implemented with the same commercial switches, but it is not scalable.

High-performance switch-based point-to-point interconnects are used in large cluster-based machines. In
these machines, the topology is regular. Either direct networks (tori and meshes) or indirect multistage networks
are the usual topology. In these large machines, source routing is inefficient due to the increased header size,
and routing based on forwarding tables is also inefficient due to the table size. On the other hand, since general
purpose switches are used, specifically designed routing hardware is not feasible. We proposed [6] a routing
strategy for switch-based networks, Flexible Interval Routing (FIR), based on Interval Routing that allows to
implement the most commonly-used deterministic and adaptive routing algorithms in meshes and tori, with a
total memory requirements O(log N).

∗This work was supported by the Spanish MCYT under Grant TIC2003-08154-C06-01.
†Dept. of Computer Engineering, Universidad Politécnica de Valencia, Camino de Vera, 14, 46071–Valencia, Spain,

megomez@disca.upv.es

51

52 M. E. Gómez, P. López and J. Duato

Header 1 Header 2

di: direction to misroute
hi: number of hops to misroute

A: 1 adaptive routing, 0 deterministic routing
I: 1 with intermediate node (2 headers),

0 without intermediate node (1 header)

Header 2

I Dst2 A Datad1 h1 d2 h2 h3Dst1 d1 h1 h2 d3 h3A d3

Dst1: Intermediate node
Dst2: Destination node

Source

Intermediate Node

Destination

d2

I Dst2 A Datad2 h2d1 h1 d3 h3

Fig. 2.1. Packet info for the fault-tolerant methodology.

In this paper we present an integration proposal, combining the FIR routing strategy [6] and the aforemen-
tioned fault-tolerant mechanism [5] to provide a fault-tolerant and memory-efficient routing strategy for direct
networks (meshes and tori). As a result, we will provide a distributed, fault-tolerant and scalable routing strategy
for general purpose switches. The rest of the paper is organized as follows. To make the paper self-contained,
section 2 briefly presents the fault-tolerant methodology and section 3 describes the FIR scheme. Section 4
presents Fault-Tolerant FIR, the integration proposal. Section 5 evaluates it and finally, some conclusions are
drawn.

2. Fault-Tolerant Methodology. The methodology provides fault-tolerance both in meshes and tori. It
assumes a static fault model. The methodology is focused only at the computation of the new routing info1. The
initial (i. e., without faults) routing algorithm routes packets by using Duato’s fully adaptive routing with at
least two virtual channels (at least one adaptive and one escape) per physical channel. The adaptive channel(s)
enables routing through any minimal path. The escape channel guarantees deadlock freedom based on the
bubble flow control mechanism. The methodology provides a fault-free path for each source-destination pair.
To do that in the presence of faults, it uses intermediate nodes for routing between some source-destination
pairs. Packets are first sent from the source node (S) to an intermediate node (I), and later, from this node
to the final destination node (D)2. In both subpaths, minimal adaptive routing is used. If possible, the I node
is selected inside the minimal adaptive cube defined by S and D. In this way, both subcubes defined by S

and I, and by I and D, are inside this cube, but they are smaller and in this way the failure is avoided. In
both subcubes (S-I and I-D) packets can be adaptively routed. In order to avoid deadlocks between both
subpaths at the I node, we propose the use of two different escape channels. One of them will be used as escape
channel for the S-I subpath and the second one for the I-D subpath. With an I node, the methodology is
the 1-fault tolerant. In order to tolerate more than one failure we use two additional mechanisms: misrouting
and switching off adaptive routing. Misrouting forces routing packets several hops along different directions
(up to three directions in our methodology). Once misrouting is consumed, then minimal routing (adaptive or
deterministic if adaptive routing is switched off) is applied. To guarantee deadlock-freedom, misrouting must
use the directions according to the order established by the deterministic routing. The methodology uses the
X + Y + Z + X − Y −Z− direction-order routing, which is deadlock-free and provides routing flexibility since
it allows routing packets in both directions of the same dimension providing non-minimal paths.

A packet routed through an I node requires two subheaders (see Figure 2.1). The first one is used in the
subpath towards the I node, and the second one in the one towards the final destination. At the I node, the
first subheader is removed. Packet subheaders also include control info about misrouting (direction and hops,
up to three misroutings are allowed) and switching off adaptive routing (one bit). The routing info must also
be stored at each source node, but not at the switches. For every destination, the possible I node (if required)
and info about misrouting and switching off adaptive routing must be stored. The amount of required memory
is low.

3. FIR: Flexible Interval Routing. Interval routing (IR) was proposed in [7]. IR groups those desti-
nation nodes reachable from the same output port into an interval. The intervals corresponding to different
output ports of a switch are non-overlapping. Each packet is forwarded through the output port whose interval
includes the destination of the packet. It is sufficient to store the bounds of each interval and to perform a
paralell comparision to implement it, thus, memory space required is 2 × d × log(N) bits per switch3. In a

1Detection of faults, checkpointing, and distribution of routing info is out of the scope of the methodology.
2Packets are not ejected from the network at the I node.
3d being the number of switch ports or switch degree and N the network size.

An Efficient Fault-Tolerant Routing Strategy for Tori and Meshes 53

previous paper[6], we proposed an extension of the IR scheme, the Flexible Interval Routing (FIR), which can
implement deterministic and adaptive routing on meshes and tori. Each output port has an associated interval,
indicated by two registers, First Interval (FI) and Last Interval (LI). But, in order to add flexibility, we asso-
ciate additional registers to the output ports. In regular topologies, each node is identified by its coordinates in
each network dimension, to check if a given dimension can be used for routing, the coordinates of the current
and destination nodes are compared. So in FIR, with each output port is associated a Mask Register (MR).
This register has the size of n bits4 and selects the bits of the packet destination address corresponding to the
dimension of the output port. These bits are set to 1 in the MR and are the ones that will be compared with
FI and LI. This is showun in Figure 3.1 taking into account cyclic intervals. If the masked destination address
is inside the interval, then the hardware returns 1. This operation is done in parallel in all the output ports
and the results of the comparisons for all the output ports can be stored in the Allowed Register (AR), unique
for the switch, with a size of d bits.

Packet
Destination
Address

(port i)
Mask Register

+
−

+

n bits

n bits

n

n

n

n

n

n

n

−

Dm
(masked

destination)

−
+ FI>LI?

LI>=md?

md>=FI?

d bits
Allowed Register

Allowed port i

FI

LI

Configuration register

Inside Interval

Fig. 3.1. Hardware to generate the Allowed bit for each output port.

Unlike IR, our proposal permits that the different intervals associated to the different output ports of a
given switch overlap and, therefore, more than one output port can be allowed5. However, to guarantee deadlock
freedom, some routing restrictions must usually be applied. In regular topologies, this is usually ensured by
traversing network dimensions following some order. These routing restrictions are implemented in FIR by
means of an additional register associated to each output port, the Routing Restrictions Register (RRR). It
establishes, for each output port, which other output ports of the switch should be chosen prior to this one if
they are allowed. This register has one bit per each output port. In a given output port i, the j bit in its RRR
indicates if the output port j has highest preference (bit set to 1) or not (0) than output port i. Thus, the
routing decision for a given output port i is obtained taking into account the Allowed bits of the other output
ports and the bits in its RRR. If there is other output port with highest preference (bit set to 1 in the RRR)
that also has its Allowed bit set to 1, this output port will not be returned to route the packet. Figure 3.2
presents the required hardware for output port i. This is done in paralell in all the output ports of the switch.
The results can be stored in a Routing Register (RR), unique per switch, with a size of d bits. The RR indicates
the result of the routing function. In case of adaptive routing, it may contain more than one 1.

If virtual channel multiplexing [2] is used, the configuration registers (LI, FI, MR and RRR) will be as-
sociated to virtual channels. Moreover, the RRR will have one bit per virtual channel and it will define the
preferences among virtual channels. This is also the case for the registers associated to the whole switch (the
Allowed and Routing Registers), that will represent virtual channels. Therefore, FIR requires, at each switch,
d × v FI, LI, MR and RRR configuration registers, and one RR and AR registers of size d × v, where v is the
number of virtual channels per output port. The configuration of the configuration FIR registers establishes the
routing algorithm. In [6] we present how to set them for the most popular routing algorithms used in meshes
and tori networks. Following, we present some illustrative examples for this paper.

3.1. Illustrative Examples. To begin, a simple example explaining the register configuration for a 16-
node 2-D mesh (4 × 4) and deterministic routing is presented. The destination addresses use 4 bits, and also
the LI, FI and MR. Assuming no virtual channel multiplexing, the RRR requires one bit per each output port,
so for a 2-D mesh, 4 bits are needed. Figure 3.3.(a) shows the configuration of the FIR registers when XY

4n = log(N), N being the network size
5This can be used to provide adaptive routing.

54 M. E. Gómez, P. López and J. Duato

d bits

Register

Routing
Restrictions
Register port i

d

d

d bits
Routing Register

1d

Allowed i

Allowed

0

Routing bit i
(port i)

i

d bits

Configuration register

Fig. 3.2. Routing bit for port i.

1100,0101
0100..1100

FI..LI
MR,RRR

2
X− X+Y+Y−

0

4 bits
RRR, AR, RR

3 1

0000..(j−1)00
1100,01X1

00(i+1)..0011
0011,0X00

(j+1)00..1100
1100,X101

0000..00(i−1)
0011,000X

0011,0000

0001..0011

0011,0000

0001..0011

0001..0011
0011,0000

0 1 2 3

7654

98 10 11

15141312
0011,0X00

Y+

0011,0000

0011,000X
0000..0000

0010..0011
0011,0X00

0000..0000
1100,01X1

0100..1100
1100,0101

0000..0000
1100..01X1

1100,0100
0100..1100

0000..0000
1100,01X0

0001..0011 0010..0011
0011,0X00

0011,0X00
0011..0011

0011..0011

0011..0011
0011,0X00

0000..0000
0011,000X

0000..0000
1100,00X1

0000..0001
0011,000X

0000..0010
0011,0000

0011,000X
0000..0001 0000..0010

0000..0001
0011,000X

0000..0010
0011,0000

1000..1100
1100,X001

0000..0100

1000..1100

1100,00X1

1100,X101
0000..0100
1100,01X1

1000..1100
1100,X101

0000..0100
1100,01X1

1000..1100
1100,X100

0000..0100
1100,01X0

0010..0011
0011,0X00

0011..0011
0011,0X00

1100,X101
1100..1100

0000..0000
0011,000X

0000..0001
0011,000X

0000..0010
0011,0000

1100..1100
1100,X001

0100..1000
1100,0001

0000..1000
1100,0101

1100..1100
1100,X101

0000..1000
1100,0101

1100..1100
1100,X100

0100..1000
1100,0100

0010..0011
0011,0X00

0000..0000
0011,000X 0011,0000

0100..1100
1100,0001

(a)

X+

Prototyped configuration

(b)

ji

Fig. 3.3. FIR registers configuration in a 2-D mesh with XY routing.

routing is used. Figure 3.3.(b) shows the prototyped configuration for a central switch ji, i being the two least
significant bits of the switch address and j the two most significant bits. The MR chooses the dimension bits in
the destination address. This is, the two most significant bits of the destination address for the Y output ports,
and the two least significant bits for the X links. Finally, the RRRs implement the XY routing. To do that,
the RRR in the Y output port has the bits corresponding to the X output ports set to 1 to give preference to
these output ports.

There are mainly two alternatives to prevent deadlocks in the rings of each dimension in torus networks.
An alternative is the use of two virtual channels6. Another alternative that does not require the use of virtual
channels is the bubble flow control [1]. With the bubble mechanism, when a packet is injected into the network or
moves from one dimension to another dimension, two free buffers are necesary to guarantee deadlock freedom.
In our proposal, an additional register associated with each output port is required to support the bubble
mechanism (the Bubble Register -BR-), with one bit per input port (including the injection ports). The input
ports that only need one free buffer to send through the current output port will have its associated bit set to 1.
If two buffers are required by the input port in the output port, then the corresponding bit must be set to 0.
Figure 3.4 shows the hardware that implements the bubble condition in the routing decision. So, the Routing
bit corresponding to output port i will be obtained from the AR, its RRR, the bit associated to the input port
in its BR and the space available at the output port.

FIR can implement adaptive routing. In this case, more than one bit in the RR can be set to 1. We
consider fully adaptive routing based on Duato’s protocol [4]. In this routing algorithm, each physical link is

6See [6] for a detailed FIR registers configuration.

An Efficient Fault-Tolerant Routing Strategy for Tori and Meshes 55

d bits

d

d

0

i

d bits

Allowed
Register

Allowed i

Routing bit i
(port i)

Routing Register

d bits
Register port i
Restrictions
Routing

d

Yes
1

i

1

Input port j

Bubble Register
(port i)

buffers at port i?
Two free

Configuration register

Fig. 3.4. Bubble condition hardware in output port i.

X+DX+A+DY+AYX−DX−AY−DY−A

8 bits

013567 24

RRR, AR, RR, BR

A D
A

D

DA

D

A

((j+(K+1)/2) mod K)00..((j+K−1) mod K)00
1100,00010001,00000100

X+

00((i+1) mod K)..00((i+K/2) mod K)
0011,00000000,11111111

0011,00000000,00010000

1100,00010001,01000000

00((i+1) mod K)..00((i+K/2) mod K)00
Y+

((j+1) mod K)00..((j+K/2) mod K)00

0011,00000000,11111111

00((i+(K+1)/2) mod K)..00((i+K−1) mod K)
0011,00000000,00000001

00((i+(K+1)/2) mod K)..00((i+K−1) mod K)

((j+(K+1)/2) mod K)00..((j+K−1) mod K)00
1100,00000000,11111111

((j+1) mod K)00..((j+K/2) mod K)00
1100,00000000,11111111

FI..LI
MR,RRR,BR

ji

Fig. 3.5. LI, FI, MR, RRR and BR for a 4 × 4 Torus with adaptive routing and the bubble flow control mechanism.

split into several virtual channels, the adaptive and the escape ones. Figure 3.5 shows the prototyped register
configuration for a 4×4 torus using a dimension order routing as deterministic subfunction in the escape channels.
The escape channels must meet the bubble condition, so the BR must be configured. RRRs associated to the
adaptive channels do not establish any order among VCs. Thefore, the routing function returns the adaptive
channels that provide minimal routing and the deterministic channel returned by the deterministic subfunction.

4. FT-FIR: Fault-Tolerant FIR. In this section, we show how FIR can provide fault-tolerance using the
above described fault-tolerant methodology at the expense of a few extra amount of memory and hardware. As
commented before, the fault-tolerant methodology requires at least three virtual channels per physical channel.
Two of them are used as escape channels with the bubble flow control, E1 and E0. E0 is used by the packets
in the S-I phase, and E1 is used by the packets in the I-D phase. At least an additional adaptive channel
is required to provide adaptive routing. Figure 4.1 shows the FIR registers configuration in a switch of a 2-D
torus network. RRRs establish the deterministic routing in the escape channels ordering the different directions.
X + Y + X − Y − routing is used in order to be able to misroute packets. X+ direction is given the highest
preference by setting the bits corresponding to the X+ escape channels set to 1 in the RRRs corresponding to
the other directions. Y − direction has the lowest preference, by setting the bits corresponding to the escape
channels of the other directions set to 1 in its RRR. The new switch hardware will do the selection of the
proper escape channel considering the I bit in the packet header as shown below. Only the escape channel
corresponding to the current routing phase will be allowed. The RRRs associated with the adaptive channels
do not establish any preference among the VCs. This means that the routing function returns all the adaptive
channels that provide minimal routing and the corresponding deterministic channel following the deterministic
routing subfunction. The bubble condition in the escape channels is implemented by the BR7.

We have presented the FIR register configuration, now we explain how the FIR switch hardware must
be modified to provide fault-tolerance. As commented above, packet subheaders provides information about

7The bits corresponding to the injection channels are not shown. They are set to 0, since two buffers are required.

56 M. E. Gómez, P. López and J. Duato

X+

Y+

FI..LI

MR,RRR,BR X
+E1

X
+E0

Y Y
35

X X XY
−A

Y
−E0

Y

12 bits

RRR, AR, RR, BR

01267891011
−E1−A

4
+E0 +E1

X
+A

Y
+A−E1 −E0

E1

E0

00((i+1) mod K)..00((i+K/2) mod K)
0011,000000000000,000010000000AE0 E1

A

0011,000000000000,111111111111
00((i+(K+1)/2) mod K)..00((i+K−1) mod K)

00((i+(K+1)/2) mod K)..00((i+K−1) mod K)
0011,000000011011,000000000010

E0

E1

A

0011,000000000000,111111111111
00((i+1) mod K)..00((i+K/2) mod K)00E0 E1 A

((j+(K+1)/2) mod K)00..((j+K−1) mod K)00

0011,000000011011,000000000001
00((i+(K+1)/2) mod K)..00((i+K−1) mod K)

1100,000000000011,010000000000
((j+1) mod K)00..((j+K/2) mod K)00

1100,000000000000,111111111111
((j+1) mod K)00..((j+K/2) mod K)00

((j+(K+1)/2) mod K)00..((j+K−1) mod K)00
1100,000000000000,111111111111

((j+(K+1)/2) mod K)00..((j+K−1) mod K)00
1100,000011011011,000000010000

1100,000000000011,001000000000
((j+1) mod K)00..((j+K/2) mod K)00

00((i+1) mod K)..00((i+K/2) mod K)
0011,000000000000,000001000000

1100,000011011011,000000001000

ji

Fig. 4.1. FI, LI, MR, RRR and BR configuration for a 4 × 4 torus and two escape channels.

I Dst2 A Datad1 h1 d2 h2 h3Dst1 d1 h1 d2 h2 d3 h3A d3

+− +−

0 0 0

Decoder
...

A bitI bit

+−

MisEn bit DirMis bits (d bits)

Subheader 2Subheader 1

Fig. 4.2. Hardware to obtain the fault-tolerance control bits from the packet header.

intermediate nodes, disabling adaptivity and misrouting. From the packet header, in addition to the destination
identifier, four control bits are generated (see Figure 4.2). These bits are used by the switch hardware associated
with fault-tolerance. The I and A bits are obtained from the same bits of the packet subheaders. The MisEn

bit is set to one if the packet must be misrouted. This is true if any of the hops fields is different of 0 in the
subheader corresponding to the current routing phase. MisEn can be obtained by using three comparators,
one per hops field in the packet subheader. The DirMis field indicates the direction to misroute the packet.
It has a number of bits equal to the switch degree and contains a “1” in the position that corresponds to the
current direction (port) that must be used to misroute the packet. A decoder can be used to obtain the DirMis

bits. Its input is the first direction to misroute, which is obtained by using a multiplexer (implemented by the
tristate gates and their control logic in the Figure). Figure 4.2 shows the processing of the first subheader.
When the I is reached, this subheader is deleted and then the second subheader is processed as the first one.

Packets must select the proper escape channel considering the I bit in the packet header. To do that, we
propose the extension shown in Figure 4.3.(a) for Figure 3.1. In this figure the Allowed bit is obtained for the
escape channels, E0 and E1, considering the I bit. This bit indicates the routing phase in which the packet
is. E0 is allowed only if packet is traveling to the I node, that is if I is 1. E1 only if packet is traveling to its
final destination, that is if I is 0. The H bit shown in Figure 4.3 is a new configuration bit associated to each
virtual channel. It indicates which escape channel corresponds to the current virtual channel. H is set to 0 in
E0 escape channels and to 1 in E1 escape channels. On the contrary, the adaptive channels are not affected by
the I bit.

Other mechanism consists in disabling adaptivity. If the A bit is set to 0 in any of the packet subheaders,
then the packet must be routed in a deterministic way in that phase and therefore it must use the deterministic
virtual channel corresponding to the proper escape channel. So, as shown in Figure 4.3.(b), if the A bit is

An Efficient Fault-Tolerant Routing Strategy for Tori and Meshes 57

Packet I bit

H

d bits
Allowed Register

Allowed E0/E1

(a)

Allowed AdaptivePacket A bit

d bits
Allowed Register

ChannelsAdapt

(b)

Inside Interval Inside Interval

Fig. 4.3. (a). Selection of the adequate escape channel taking into account the I bit. (b). If A=0, then the adaptive channels
are not allowed.

Inside
Interval

Packet I bit

Packet A bit
Adapt

H

Allowed Register
d bits

Fig. 4.4. Combination of Figure 4.3.(a) and Figure 4.3.(b): Allowed bit taking into account the I and A bits of the packet
header.

set to 0, the adaptive channels are disabled. Adapt is another configuration bit associated with each virtual
channel. It indicates whether the current virtual channel is adaptive (set to 1 in the adaptive virtual channels,
and to 0 in the escape ones). The hardware shown in Figure 4.3.(a) is applied in the escape virtual channels.
Figure 4.4 extends Figure 3.1 merging Figure 4.3.(a) and Figure 4.3.(b) to obtain the hardware for a generic
virtual channel.

Therefore, two new switch configuration bits, H and Adapt, are required per virtual channel in order to
configure the different virtual channels either as escape (E0 or E1) or as adaptive. To do that, we propose
adding two registers to each switch with a number of bits equal to the number of virtual channels of the switch,
that is, d × v bits. In the first register, the Adaptive Register, the bits corresponding to the adaptive channels
are set to 1. In the second register, the Escape Register, the bits corresponding to escape channels E1 are set
to 1.

Next, we consider the last mechanism of the fault-tolerant methodology: misrouting. When misrouting a
packet, it is routed in a deterministic way, so the adaptive channels will be disabled, and the corresponding
escape channel will be used instead. Figure 4.5.(b) obtains the Allowed bit for the adaptive channels when
misrouting. The escape channels to use depends on the current routing phase (E0 or E1) and belongs to the
first direction to misroute, even if the packet destination is not inside the interval bounds of that direction,
since misrouting can provide non-minimal paths. As the packet travels along its path, the number of hops
associated to that direction is decreased at the packet subheader, and when the number of hops is 0, then
the next direction to misroute indicated in the packet subheader is followed. Figure 4.5.(a) shows how escape
channels are allowed taking into account the MisEn and DirMis bits. Once the hops of all the directions
to misroute at the current routing phase are consumed, the MisEn bit is set to 0, and therefore packets are
routed following minimal path, taking into account the FI..LI registers. Figure 4.6 combines Figure 4.5.(b) and
Figure 4.5.(a).

Therefore we can say that FIR allows to implement the fault-tolerant methodology. To do that two registers
(Adaptive and Escape Registers) are added to each switch with a number of bits equal to the number of virtual
channels in the switch. The switch hardware is only a little more complex. The hardware shown in Figure 4.6
must be added to Figure 3.1 to obtain the Allowed bits in the new switch. Remember that in any routing strategy,
some logic is also required to manage the three mechanisms the fault-tolerant methodology is composed of.

5. Evaluation of FTFIR. In this section, we evaluate the Fault Tolerant FIR strategy. We are interested
in analyzing its fault-tolerance, its performance, the amount of memory required and the routing delay.

The fault-tolerant degree and performance of the proposal is the same obtained by the fault-tolerant me-
thodology (evaluated in [5]) since the proposed FT-FIR scheme is a different hardware implementation. This
methodology is 7-fault tolerant. However, the percentage of tolerated fault combinations is greater than 99,9%
up to 10 failures. Concerning performance, in the presence of failures, the performance degradation is small.
As an example, network throughput degrades less than 5.5% when injecting 6 random failures in a 512-node
Torus.

58 M. E. Gómez, P. López and J. Duato

Packet I bit

H

d bits
Allowed Register

Allowed E0/E1

(a) (b)

i

Inside Interval

Packet A bit

d bits
Allowed Register

Allowed Adaptive
ChannelsAdapt

MisEn bit

DirMis
bit Inside Interval

MisEn bit

Fig. 4.5. (a). When using misrouting, if the first direction indicated in the packet subheader corresponds to the direction of
the current output channel, then the corresponding escape channel is allowed. (b). The adaptive channels are not allowed, If the
packet must be misrouted in the current routing phase (MisEn=1).

Inside	
Interval

Inside	
IntervalPacket A bit

Adapt

Packet I bit
H

i

MisEn bit

DirMis bit d bits
Allowed Register

Fig. 4.6. Combination of Figures 4.5.(a) and 4.5.(b): Allowed bit taking into all the fault-tolerant info contained in the packet
header.

Now we compare the amount of memory required at the switches by the FT-FIR strategy and an imple-
mentation based on forwarding tables8. Assume that we have a network composed of N nodes, build with
switches with d ports. The links attached to each port may be split into up to v virtual channels. Finally,
the routing algorithm offers a maximum of r routing options. The FT-FIR approach needs to associate five
configuration registers with each virtual channel, three of them (FI, LI and MR) of size log(N) bits and two
(RRR and BR) of size d × v bits. No matter if the routing is deterministic or adaptive. In addition, two
configuration registers are associated to the whole switch, Adaptive and Escape Registers, of size d × v bits in
order to provide fault-tolerance. Therefore, the total number of bits required to implement the FT-FIR strategy
is CFTFIR = d× v × (3× log(N) + 2× d× v) + 2× d× v bits. So, its cost remains being O(log(N)) as in FIR.
On the other hand, routing based on forwarding tables requires a table with as many entries as the number
of nodes, and each entry must contain the port(s) returned by the routing function. Hence, the cost of this
alternative is CFT = N × log(d× v)× r bits in each switch, which means that the cost is O(N), and not scalable
with the network size.

Routing delay of FIR is given by the time required to check if the destination address is inside the interval
(all the ports make these comparisons concurrently) thus obtaining the Allowed bits plus the time to merge
these bits with the routing restrictions (RRR). In the FT-FIR, this delay is slightly increased by the additional
constraints of the fault-tolerant methodology. However, as part of this hardware may work in parallel with the
interval comparison, the increase in routing delay will be small. On the other hand, some hardware would be
required to support the fault-tolerance mechanism in a conventional routing scheme. This additional hardware
will also increase the routing delay.

6. Conclusions. This paper proposes Fault-Tolerant Flexible Interval Routing (FT-FIR), a fault-tolerant
adaptive routing strategy for commercial switches, . The strategy provides both, fault-tolerance and scalable
routing for commercial switches in regular direct topologies. It is scalable because it requires relatively few
amount of hardware and memory. It uses only 7 registers per each virtual channel to route packets, so the total
requirements of memory is O(log(N)). Moreover, it tolerates a relatively large number of faults while inflicting
a minimal decrease of performance in the presence of faults.

8The fault-tolerant information is stored in the source nodes, but not at the switches.

An Efficient Fault-Tolerant Routing Strategy for Tori and Meshes 59

REFERENCES

[1] C. Carrion, R. Beivide, J. A. Gregorio, and F. Vallejo. A Flow Control Mechanism to Avoid Message Deadlock in K-ary
N-Cube Networks. Forfth International Conference on High Performance Computing, pp. 332-329, December 1997.

[2] W. J. Dally, Virtual-channel flow control, IEEE Trans. on Parallel and Distributed Systems, vol. 3, no. 2, pp. 194-205, March
1992.

[3] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks using virtual channels. IEEE Trans. on
Parallel and Distributed Systems, vol 4, no 4. pp 466-475, April 1993.

[4] J. Duato, S. Yalamanchili and L. Ni. Interconnection Networks. An Engineering Approach. Morgan Kaufmann, 2004.
[5] M. E. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. A. Nordbotten, T. Skeie, and O. Lysne. A New Adaptive Fault-

Tolerant Routing Methodology for Direct Networks, in Proc. International Conference on High Performance Computing,
2004.

[6] M. E. Gómez, P. López, J. Duato. A Memory-Effective Routing Strategy for regular Interconnection Networks, to appear in
Proc. Int. Parallel and Distributed Processing Symposium, 2005. Best Paper Award in the Architecture Track.

[7] N. Santoro and R. Khatib. Routing without routing tables. Tech. report SCS-TR-6, School of Computer Science, Carleton
University, 1982. Also as: Labelling and Implicit Routing in Networks, Computer Journal 28(1), 1985, pp. 5-8.

Edited by: M. Tudruj, R. Olejnik.
Received: February 24, 2006.
Accepted: July 30, 2006.

